Ditemukan 1 dokumen yang sesuai dengan query
Anggiat Bernard
Abstrak :
Metode Adaptif Neuro Fuzzy Inference System (ANFIS) untuk penerapan pada identifikasi dan aplikasi kendali sistem multi masukan multi keluaran (MIMO) dan sistem satu masukan satu keluaran (SISO) diharapkan dapat menjadi salah satu metode kendali cerdas alternatif selain mengandalkan metode kendali cerdas umum seperti Jaringan Syaraf Tiruan backpropagation. Sistem plant MIMO tersebut mengacu kepada sistem Pesawat Udara Nirawak SRITI yang menghasilkan 3 surface kendali.
Metode ANFIS yang dibangun merupakan metode yang terdiri dari metode Jaringan Syaraf Tiruan Adaptif dan model sistem inferensi fuzzy. Algoritma pembelajaran identifikasi, invers, dan algoritma pembelajaran On-Line merupakan metode pembelajaran yang digunakan pada sistem ini.
Melalui rancangan metode ANFIS ini kemudian dilakukan simulasi untuk memperlihatkan hasil identifikasi dan pembelajaran secara On-line sistem ketika masukan dan keluaran sistem Pesawat Udara Nirawak (UAV) diberikan. ANFIS dengan algoritma pembelajaran identifikasi dan invers telah dapat memberikan hasil respon yang baik, namun untuk menyempurnakan hasil metode pembelajaran Off-line sistem harus diberikan suatu pengestimasi tambahan yang menjadikannya sistem On-line. Hasil percobaan On-line telah menunjukkan keberhasilan sistem ANFIS dalam mengidentifikasi dan mempelajari sistem SISO dan MIMO.
......Adaptif Neuro Fuzzy Inference System (ANFIS) method for Multi Input Multi Output (MIMO) plant system identification and control application expected to become one of an alternative smart control method in addition to relying on another smart control method such as backpropagation neural network. That MIMO plant system refers to Unmanned AeroVehicle which produce 3 control surface.
ANFIS method which will be proposed consist of adaptive neural network method and Fuzzy Inference System model. Identification learning algorithm, inverse learning algorithm, and On-line learning are identification and control methods used in this system.
From this proposed ANFIS method then simulated to demonstrate the identification and learning’s output when UAV SRITI plant system's input and output were given. ANFIS with identification and inverse learning algorithm had given good response, but for more perfection of Off-line system method, there should be given some additional estimator to make it On-line. The On-line method result has demonstrated the success of ANFIS system in identifying and learning SISO and MIMO systems.
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52846
UI - Skripsi Membership Universitas Indonesia Library