Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Akhmad Faqih
"Pada masa sekarang ini, teknologi semakin berkembang dan terus berkembang dengan cepat. Terutama kebutuhan adanya teknologi automasi yang memerlukan pengembangan lebih dalam lagi sehingga dapat menghasilkan teknologi cerdas yang dapat merespon tanggapan dengan cepat. Penelitian ini melakukan percobaan penerapan jaringan saraf tiruan radial basis function menggunakan metode backward dan metode Orthogonal Least Square (OLS).
Berdasarkan hasil percobaan dapat dilihat bahwa penerapan jaringan saraf tiruan radial basis function metode OLS memiliki proses pelatihan yang lebih cepat dibandingkan penerapan jaringan saraf tiruan radial basis function metode backward. Selain itu, tingkat keakuratan yang dimiliki jaringan saraf tiruan radial basis function metode OLS juga tinggi.

In recent years, technology get better and better. The need of automatic technology that need to be developed more serious so it can result smart technology that can response the stimulation quickly. This research do experimentation on radial basis function neural network using backward methode and Orthogonal Least Square (OLS) methode and then compared with backpropagation neural network.
Based on result of experimentation we can conclude that radial basis function neural network using Orthogonal Least Square (OLS) method has training processing time faster than radial basis function neural network using backward method. Beside of that, radial basis function neural network using Orthogonal Least Square (OLS) method has high accuracy too.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52950
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akhmad Faqih
"ABSTRAK
Pada masa sekarang ini, teknologi semakin berkembang dan terus berkembang dengan cepat. Terutama kebutuhan adanya teknologi prediksi yang memerlukan pengembangan lebih dalam lagi sehingga dapat menghasilkan teknologi yang dapat memprediksi masa depan Multi-Step Ahead MSA secara lebih akurat. Salah satunya untuk teknologi prediksi peramalan cuaca sistem Chaos yang dapat membantu masyarakat dalam mempersiapkan aktifitas yang akan dilakukan. Penelitian ini melakukan simulasi percobaan penerapan Jaringan Saraf Tiruan berbasis Radial Basis Function RBF pada sistem prediksi data Chaos, data Lorenz dan data Mackey-Glass. Berdasarkan hasil percobaan dapat dilihat dari nilai bahwa penerapan jaringan saraf tiruan berbasis Radial Basis Function RBF memiliki tingkat keakuratan yang baik untuk memprediksi lebih dari 100 langkah kedepan.

ABSTRACT
Recently, technologies have been growing and growing fast. Especially, the need of prediction technology that need to be developed more so that it could create a technology that is capable to predict the future Multi Step Ahead MSA more accurate. One of the applied field of this prediction method is for forecasting Chaotic System which help the society in order to prepare their activity that will be scheduled. This research performs simulation experiments in applying the Artificial Neural Network based on Radial Basis Function RBF of prediction system for chaotic data, Mackey Glass equation and Lorenz rsquo s system. As can be seen from the values of the experimental results, applying Artificial Neural Network based on Radial Basis Function results high accuracy for predicting more than 100 steps ahead. "
2018
T51190
UI - Tesis Membership  Universitas Indonesia Library