Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Achmad Eriza Aminanto
Abstrak :
Pandemi COVID-19 sejak tahun 2020 menyebabkan transofrmasi digital secara masif yang terjadi, Tantangan keamanan yang perlu diatasi berasal dari sifat keterbukaan media nirkabel yang menjadi media komunikasi utama di IoT. Hal tersebut menyebabkan besarnya kerugian yang disebabkan kejahatan siber. Kepolisian Republik Indonesia lewat Direktorat Tindak Pidana Siber diharapkan memiliki peran pencegahan dalam melakukan giat pengawasan terhadap serangan-serangan ini, dimana Dittipidsiber belum memiliki fungsi pencegahan serangan siber. Sistem Pendeteksi Intrusi (Intrusion Detection System) atau lebih dikenal sebagai IDS, merupakan salah satu sistem yang dapat memantau serang siber ini, di mana memanfaatkan kecerdasan buatan untuk dapat memisahkan antara serangan siber dan bukan serangan. Pada penelitian ini, akan dihasilkan model pemolisian berbasis machine learning untuk pendeteksian serangan siber pada jaringan Wi-fi dan IoT. Model tersebut melakukan perekaman data jaringan, kemudian data tersebut dilakukan analisa IDS sehingga dapat ditampilkan di command room, yang kemudian ketika adanya indikasi serangan dapat dilakukan penindakan dengan cepat. Dilakukan simulasi dan analisis terhadap berbagai metode seleksi fitur dan model klasifikasi untuk menghasilkan IDS yang baik. Penelitian ini menggunakan dataset publik berisi serangan siber terhadap jaringan Wi-Fi. Dari hasil eksperimen, didapatkan bahwa metode terbaik untuk pengurangan fitur adalah mutual information dengan fitur berjumlah 20, dan metode untuk klasifikasi serangan adalah Neural Network, menghasilkan F-Score sebesar 94% dengan waktu yang dibuthkan 95 detik. Hasil ini menunjukkan IDS yang diusulkan memiliki kemampuan untuk mendeteksi serangan dengan cepat dan hasil deteksi yang sama bagus dengan penelitian sebelumnya. ......Since 2020, the Covid-19 pandemic has caused massive digital transformation. Security challenges needed to be overcome is based on the nature of wireless media which is the main communication medium in IoT (Internet of Things). Such condition generates huge loss caused by cybercrime attacks. Indonesian National Police through Directorate of Cyber Crime (Dittipidsiber) is expected to have preventive roles in supervising these attacks, where Dittipidsiber has not had a cyber-attack prevention function. The Intrusion Detection System (IDS) is a system that can identify these cyber-attacks, utilizing artificial intelligence to be able to separate between cyber-attacks and non-attacks. In this study, a machine learning-based policing model will be generated for detecting cyber-attacks on Wi-Fi and IoT networks. The model records network data that will be analysed by IDS so that it can be displayed in the command room. After that, any indications of attacks can be identified quickly. The author performs the simulations and analyses various feature selection methods and classification models in order to produce a good IDS. The study employs a public dataset containing cyber-attacks against Wi-Fi networks. Based the experimental results, it is found that the best method for reducing features is mutual information using twenty features and the method for classifying attacks is Neural Network, resulting F-Score of 94% with a time required of 95 seconds. These results indicate that the proposed IDS have the ability to detect attacks quickly and the detection results are the same as previous studies.
Depok: Sekolah Kajian Stratejik dan Global Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Achmad Eriza Aminanto
Abstrak :
Analisis biclustering merupakan pengembangan analisis clustering, dimana analisis biclustering merupakan proses partisi data matriks menjadi sub-matriks berdasarkan baris dan kolom secara simultan. Salah satu metode analisis bicluster yaitu dengan menggunakan model probabilistik, contohnya adalah Plaid model yang dapat memberikan hasil bicluster yang bersifat overlapping. Plaid model, memperhitungkan nilai elemen yang diberikan dari suatu sub-matriks tertentu, sehingga pada analisis biclustering dapat dilihat sebagai jumlah kontribusi atau efek dari bicluster tertentu. Tahapan analisis biclustering dengan plaid model diawali dengan input data berbentuk matriks, kemudian dilakukan penaksiran model awal dan membuat matriks residual dari model tersebut. Kemudian penentuan kandidat bicluster. Kandidat tersebut ditaksir parameter efeknya dan parameter keanggotaan bicluster. Terakhir dilakukan pemangkasan kandidat bicluster tersebut. Implementasi dilakukan pada data matriks ekspresi gen berupa data numerik yaitu data penyakit kanker usus, dimana baris berisikan observasi atau pasien sedangkan kolom berisikan jenis dari gen yang dilakukan dalam 6 skenario. Masing-masing skenario menggunakan parameter model dan nilai threshold berbeda. Validasi hasil implementasi menggunakan indeks Jaccard yaitu kedektahan hasil anggota bicluster dan variansi koherensi. Hasil implementasi menunjukkan penggunaan model yang lebih sederhana yang hanya menggunakan efek mean memberikan variansi koherensi yang lebih tinggi dibandingkan penggunaan model yang berisi mean, efek baris, dan efek kolom dari bicluster.
Biclustering analysis is the development of clustering analysis, which is the process of partitioning matrix data into sub-matrices based on rows and columns simultaneously. One method of bicluster analysis is using probabilistic model, for example the Plaid model that provide overlapping bicluster. Plaid model, calculates the value of an element given from a particular sub-matrix, thus can be seen as number of contributions of particular bicluster. The process begins with matrix data input, then an initial model is assessed and makes a residual matrix from the model. Then determining bicluster candidates. The candidate assessed for its effect parameters and bicluster membership parameters. Finally, the bicluster candidate was prunned. The implementation is carried out on the gene expression matrix data in form of numerical data, namely colon cancer data, where the rows contain observations while the columns contain the types of genes carried out in 6 scenarios. Each scenario uses different model parameters and threshold values. Validation of the implementation results using Jaccard index and coherence variance. Implementation results show that simpler model which only uses mean effect gives higher coherence variance than using model that contains mean, row, and column effect of the bicluster.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library