Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 551 dokumen yang sesuai dengan query
cover
Budi Setiawan
"Korosi retak tegang merupakan proses korosi yang dihasilkan dari kombinasi sinergis antara tegangan, lingkungan yang korosif serta karakteristik dari material. Pengujian ini mengamati fenomena korosi pada material baja sponge rotary kiln X dan Y yang memiliki komposisi yang berbeda, dimana material X memiliki kandungan nikel dan kromium yang lebih tinggi dibandingkan Y. Metode bentbeam spesimen digunakan untuk melihat ketahanan korosi kedua material pada tegangan aplikasi dan lingkungan yang berbeda dimana lingkungan yang digunakan mengandung ion klorida.
Hasil penelitian menunjukkan terbentuknya lubang pada permukaan material. Pengamatan terhadap fenomena korosi material dilakukan dengan menghitung diameter dan kedalaman lubang yang terbentuk dan perubahan berat yang terjadi setelah pengujian. Hasilnya menunjukkan bahwa dengan peningkatan tegangan dan kadar NaCl, diameter dan kedalaman lubang yang terbentuk semakin bertambah. Selain itu pengurangan berat dan laju korosi juga semakin meningkat. Hasil secara umum menunjukkan bahwa material X memiliki ketahanan korosi yang lebih baik daripada Y.

Stress corrosion cracking is a corrosion process caused by a synergy combination between stress, corrosive environment and material characteristic. This experiment observed corrosion phenomena of sponge rotary kiln steel X and Y whose different compositions, which X has higher nickel and chromium contents than Y do. Bent-beam specimen method used here to observe those two material corrosion resistances in different application stresses and chloride ions-containing environments.
The experimental results showed pits in material surface. Observations of material corrosion phenomena were done by measuring pit diameter and depth and weight loss of the material after exposure. The results showed that pit diameter and depth increased as stress and sodium chloride concentration increased. Besides that, weight loss and corrosion rate of material increased. The common results showed that X has better corrosion resistance than Y.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41724
UI - Skripsi Open  Universitas Indonesia Library
cover
Vita Astini
"Mineral laterit merupakan salah satu dari sekian banyak mineral yang berharga di Indonesia.Makin langkanya bahan baku bijih besi saat ini mendorong banyak pihak mulai melihat bijih laterit karena memiliki kandungan Fe yang cukup tinggi (sekitar 50 %) untuk digunakan sebagai bahan baku pengganti bijih besi yang ada. Namun dibutuhkan suatu proses yang memiliki efisiensi tinggi untuk memproduksi mineral laterit tersebut.Salah satunya dengan reduksi langsung.
Pada proses reduksi langsung terdapat beberapa parameter yang berpengaruh terhadap kinetika dari proses tersebut, salah satunya adalah kadar karbon. Kadar karbon dapat berpengaruh terhadap laju gasifikasi.Tujuan dari penelitian ini adalah untuk menentukan kadar karbon yang efektif dan optimum terhadap kinetika reaksi reduksi langsung. Proses reduksi dilakukan dalam Nabertherm furnace dengan temperatur 700°C, 900°C, 1000°C. Waktu proses reduksi selama 10, 20, 30 menit, dan dengan variasi perbandingan antara bijih laterit dengan karbon 1:3, 1:4, 1:5.
Pada temperatur 900°C dan 1000°C dan waktu proses reduksi 10,20,30 menit dapat terlihat bahwa peningkatan jumlah karbon yang ditambahkan dapat meningkatkan laju gasifikasi sehingga meningkatkan laju reaksi. Hal tersebut terbukti dengan meningkatnya intensitas Fe hasil reaksi. Peningkatan intensitas Fe secara signifikan yang terjadi pada temperatur 900°C dan 1000°C dan waktu proses reduksi 10,20,30 terletak pada penambahan karbon 1 : 5, intensitas yang dimiliki lebih besar dari 2000 hampir pada semua sampel.
Pada temperatur 700°C, merupakan temperatur kritis reduksi wustit menjadi Fe. Pada hasil penelitian Fe hampir tidak ditemukan, kecuali pada sampel dengan waktu tahan 10 menit perbandingan 1:5 dan pada sampel dengan waktu tahan 20 menit perbandingan 1:4. Fe yang muncul diprediksi sebagai hasil reaksi penguraian FeO menjadi Fe dan magnetit.

Laterite mineral is one of many valuable minerals in Indonesia. Iron ore is getting rare nowadays, that people turn to laterite ore as an alternative, which has high iron (Fe) composition (about 50%). Yet, it needs a further process with such high efficiency to produce laterite mineral. One of the process can be taken is by direct reduction.
In the process of direct reduction, there are parameters that give impact to the kinetics of the process. One of them is carbon composition. The carbon composition influences the gasification rate. The purpose of this research is to find the effective and optimum carbon composition to the reaction rate of the direct reduction process. The reduction process is made in Nabertherm furnance with the temperature of 700°C, 900°C, 1000°C; the duration of time of the reduction process is 10, 20, 30 minutes; with the compositions ratio of laterite ore and carbon varies from 1:3, 1:4, 1:5.
On the temperature of 900°C and 1000°C with the duration of reduction process varies from 10, 20, 30 minutes, it is shown that the increase of the added carbon composition has increased the gasification rate, so that the reaction rate is also increase. This is proved by the increase of the Fe intensity as the result of the process. The significant increase of the Fe intensity on the temperature of 900°C and 10000C occurs on the carbon composition of 1:5. The high intensity (more than 2000) is shown at all samples, except for the sample of 10000C with the 30 minutes duration of the process; there is no Fe found for the re-oxidation process of the Fe metallic.
The temperature of 700°C is the critical temperature in the reduction process of wustite to be iron. Based on the research, Fe is almost not to be found, except for the sample with the duration of 10 minutes and composition of 1:5, as well as the sample with the duration of 20 minutes and composition of 1:4. The iron that is shown is predicted to be the result of decomposition reaction of FeO to be iron and magnetite."
2008
S41722
UI - Skripsi Open  Universitas Indonesia Library
cover
Indri Astuti Kurniasari
"Hot Dip Galvanizing merupakan salah satu jenis proses pelapisan baja dengan logam lain yaitu seng cair. Proses ini dilakukan dengan cara mencelupkan baja kedalam bak yang berisi seng cair. Tahapan proses galvanizing terdiri dari degreasing, pickling, fluxing, dipping dan quenching. Pembentukan fasa Fe-Zn akan terjadi selama proses galvanizing. Mekanisme pelekatan seng pada baja merupakan proses difusi. Pembentukan fasa Fe-Zn tergantung pada komposisi baja dan logam cair serta waktu pencelupan.
Tujuan dari penelitian ini adalah untuk mengetahui pengaruh waktu pencelupan dan kadar kromium yang terkandung didalam baja terhadap lapisan yang terbentuk. Baja dengan kadar kromium yang berbeda, digalvanisasi pada temperature 470°C dengan komposisi seng cair 1,5% Fe, 0,90% Pb, 0,35% Al and 97,25% Zn. Waktu pencelupan yang digunakan adalah 3, 15 dan 50 detik.
Penelitian mengenai pengaruh kromium pada baja dilakukan dengan pengujian kekerasan lapisan, ketebalan lapisan dan analisa struktur mikro. Dari hasil pengamatan menunjukkan bahwa kromium akan mempengaruhi kekerasan tetapi tidak berpengaruh terhadap ketebalan. Nilai kekerasan paling tinggi didapatkan pada baja dengan kadar 0,32 % Cr. Mekanisme kekerasan kromium pada lapisan galvanisasi adalah solid solution dengan substitusi. Ketebalan lapisan yang terbentuk tidak tergantung pada lamanya waktu pencelupan tetapi tergantung pada ketebalan sampel dan konsentrasi silikon (Si).
Penambahan 0,35% Al pada bak galvanizing, akan menghasilkan lapisan intermetalik Fe2Al5. Dari hasil pengamatan yang dilakukan pada mikroskop optic menunjukkan bahwa hanya pada waktu pencelupan yang sangat singkat yaitu 3 detik, fasa intermetalik terdapat pada semua sampel. Fasa ini akan mempengaruhi kekerasan lapisan dimana dihasilkan kekerasan lapisan tertinggi pada waktu celup 3 detik.

Hot Dip Galvanizing is one of steel coating process with molten zinc. This process is done by immersing steel in bath which content of liquid zinc. The steps of this process consist of degreasing, pickling, fluxing, dipping and quenching. Zinc-iron phases may develop at the steel substrate during the hot-dip galvanizing process. The mechanism of zinc plating to the steel is diffusion mechanism. The formation of Fe-Zn phase depends on many factors, such as the chemical composition of both the bath and the steel, and immersion time.
The aim of the research was to investigate the influence of both immersion time and chromium contents of the steel substrate on coating characteristics. Thus, steels which had different chromium contents, were galvanized at 470°C and the compositions of liquid metal are 1,5% Fe, 0,90% Pb, 0,35% Al and 97,25% Zn. The immersion time was varied between 3, 15 and 50 seconds.
In this study, the influence of chromium on the zinc coating was investigated with micro hardness testing, thickness testing and microstructure analysis. From the investigation showed that Chromium would affect the hardness but it did not affect the thickness. The hardness values of steel with 0,32% Cr was the highest. The hardness mechanism of chromium in coating layer was substitution solid solution. The thickness of the coatings was not strongly dependent on the immersion time but it was dependent on the thickness of steel and the concentration of Silicon (Si).
Adding 0,35% of aluminum to the galvanizing bath, will produce a thin layer of intermetallic, Fe2Al5. From the cross-section of samples were observed by optic microscopy showed that, only for very short immersion time (3 second), all of samples had intermetallic phase. This phase will affect to the hardness of the coating which in this immersion time is produced the highest value of hardness."
2008
S41720
UI - Skripsi Open  Universitas Indonesia Library
cover
Ade Utami Hapsari
"Korosi adalah proses degradasi material akibat adanya reaksi kimia antara material dengan lingkungan. Setiap material memiliki bentuk dan perilaku korosi yang berbeda-beda. Hal tersebut tergantung dari lingkungan dan karakteristik material tersebut.
Tujuan dari penelitian ini adalah untuk mengetahui pengaruh aplikasi tegangan dan waktu perendaman terhadap bentuk korosi yang dihasilkan, laju korosi dan kedalaman degradasi pada baja dari bijih besi laterit. Selain itu, penelitian dilakukan untuk mengetahui pengaruh ion Cl- di lingkungan terhadap laju korosi dan panjang retak pada baja dari bijih besi laterit. Baja Laterit (25x2.5x0.02 cm) diberikan tegangan dengan two point loaded. Baja tersebut direndam di dalam lingkungan air danau antara Fakultas Teknik dan Fakultas Ilmu Budaya UI selama beberapa minggu. Hasil penelitian didapat melalui pengamatan visual, pengurangan berat material, pengamatan mikrostruktur, dan pengukuran dalamnya degradasi material.
Hasil penelitian menunjukan bahwa pengurangan berat akan meningkat dengan meningkatnya waktu perendaman dan kedalaman degradasi pada baja dari bijih besi laterit akan meningkat dengan meningkatnya aplikasi tegangan dan waktu perendaman. Pengurangan berat terendah sebesar 0.018 gr dengan aplikasi tegangan sebesar 314 MPa dan waktu perendaman selama 1 minggu. Pengurangan berat terbesar sebesar 0.146 gr dengan aplikasi tegangan sebesar 481 MPa dan waktu perendaman selama 4 minggu. Kedalaman degradasi terbesar berkisar 31 μm terjadi pada tegangan 712 MPa dengan waktu perendaman selama 4 minggu. Sedangkan kedalaman degradasi terkecil berkisar 5 μm terjadi pada tegangan 314 MPa dengan waktu perendaman selama 1 minggu. Laju Korosi pada baja dari bijih besi laterit mengalami peningkatan dengan meningkatnya kadar Cl- di lingkungan air danau. Laju korosi tertinggi berkisar 0.09 mm/yr terjadi pada lingkungan penambahan 300 ppm Cl- dan laju korosi terkecil berkisar 0.009 mm/yr pada lingkungan air danau. Pengamatan mikrostukur menunjukan bahwa bentuk korosi pada baja laterit terjadi secara intergranular.

Corrosion is the destructive attack of a metal by chemical or electrochemical reaction with its environment. Every material has difference form of corrosion. It depends on environment and characteristics of materials.
The subject of this research is to investigate the effect of applied stress and immersion time to form of corrosion, corrosion rate and depth of corrosion of steel from laterite iron ore. This research also investigated the effect ion Cldissolved in solution to corrosion rate and crack length of steel from laterite iron ore. Laterite steel (25x2.5x0.02 cm) was applied stress with two point loaded and then was immersed in lake water environment for several weeks. The results are acquired with visual examination, weight loss material, microstructure examination, and depth of corrosion measurement.
The result showed that weight loss increased with increasing immersion time. Depth of corrosion also increases with increasing applied stress and immersion time. The lowest weight loss was 0.018 gr with applied stress 314.905 MPa immersed for 1 week. The highest weight loss was 0.146 gr with applied stress 418.67 MPa immersed for 4 week. The lowest depth of corrosion was 5 μm with applied stress 314.905 MPa immersed for 1 week. The highest depth of corrosion was 31 μm with applied stress 712 MPa immersed for 4 week. Corrosion rate increased with increasing ion Cl- in solution. The lowest corrosion rate was 0.009 mm/yr where immersed in lake water environment. The highest corrosion rate was 0.09 mm/yr where immersed in solution with the addition of 300 ppm Cl-. Microscopic scale showed that the corrosion is intergranular.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41729
UI - Skripsi Open  Universitas Indonesia Library
cover
Astika Kurniawati
"Paint, salah satu jenis organic coating, merupakan zat yang dapat digunakan untuk melindungi baja dari lingkungannya sehingga dapat mencegah proses korosi. Perkembangan teknologi membuat paint dapat diaplikasikan di lingkungan air laut, seperti glass flake epoxy coating yang mengandung pigmen micro glass flake. Namun keberhasilan proteksi dari paint sangat ditentukan oleh preparasi permukaan yang baik. Sehingga diperlukan sistem pelapisan dan preparasi permukaan yang baik.
Tujuan dari penelitian ini ialah untuk mengetahui ketahanan korosi, kekuatan adesi, dan ketahanan termal dari glass flake epoxy coating pada substrat baja karbon. Preparasi permukaan dilakukan dengan pengamplasan dengan variasi grit amplas 100, 150, dan 180. Rasio pencampuran volum antara base dan activator yang digunakan ialah sebesar 2,5:1, 3,5:1, dan 4,5:1.
Ketahanan korosi dari lapisan diketahui melalui pengujian sembur garam selama 96 jam. Sedangkan kekuatan adesi lapisan dengan substrat diketahui melalui pulloff adhesion test (dengan kekuatan tarik maksimal alat sebesar 3,5 N/mm²). Untuk mengetahui ketahanan termal lapisan dilakukan pemanasan pada temperatur 150°C selama 15 menit. Pengamatan metalografi juga dilakukan untuk mengetahui struktur dari lapisan film dan juga lapisan interface antara lapisan film dan substrat baja.
Dari pengujian sembur garam didapat nilai peringkat lebar goresan pada semua sampel uji menurun dari 10 menjadi 9 dengan meningkatnya waktu pemaparan. Sedangkan dari pengujian adesi didapat hasil bahwa kekuatan adesi dari lapisan ialah lebih besar dari 3,5 N/mm² karena tidak ada lapisan film yang terangkat dari substrat baja hingga kekuatan tarik maksimal 3,5 N/mm². Secara visual, lapisan film tidak mengalami kerusakan setelah proses pemanasan.

Paint, one type of organic coatings, is a substance can be used to protect steel from its environment so that corrosion can be prevented. Technology development makes paint can be used in marine environment, like glass flake epoxy coating containing micro glass flake pigment. However, good surface preparation has strong effect in producing successful paint protection. So, there must be a good painting system and a good surface preparation to create a good protection.
This research was conducted to evaluate corrosion resistance, adhesion strength, and thermal resistance of glass flake epoxy coating in steel substrate. Surface preparation was performed by grinding using grinding grit of 100, 150, and 180. Mix ratios of volume between base and activator used were 2,5:1, 3,5:1, and 4,5:1.
The corrosion resistance was known by salt spray test with 96 hours of exposure. The adhesion strength was acquired from pull-off adhesion test (with 3,5 N/mm² maximum tensile strength). The coating was heated in 150°C temperature for 15 minutes to get thermal resistance value of the coating. Metallographic examination was also performed to observe the structure of the coating film and interface layer between the coating film and the substrate.
From the salt spray test, the value of rating number decreased from 10 to 9 with increasing exposure time. The adhesion strength of the coatings was higher than 3,5 N/mm², because there were no failure of all film until 3,5 N/mm² maximal tensile load were applied to the coating. From visual examination, there were no film degradation after heating."
2008
S41721
UI - Skripsi Open  Universitas Indonesia Library
cover
Ikhwan Novarullah
"Korosi merupakan kerusakan atau berkurangnya mutu suatu material logam karena bereaksi dengan lingkungannya. Terdapat beberapa macam jenis korosi, seperti korosi seragam, korosi galvanik, korosi sumuran, dan korosi retak tegang. Pada penelitian ini dilakukan pengujian ketahanan korosi pada material baja sponge rotary kiln (SRK), yang tergolong baja karbon rendah.
Pengujian ketahanan korosi ini dilakukan dengan menggunakan variabel tegangan aplikasi dan pH lingkungan. Material baja sponge rotary kiln diberi tegangan aplikasi yang berbeda, kemudian dicelup pada lingkungan asam (pH 3), netral (pH 7), dan basa (pH 12) selama 115 jam. Dari hasil pengujian ini kemudian dilakukan karakterisasi korosi yang terjadi dengan melakukan perhitungan pengurangan berat dan laju korosi, pengukuran diameter dan kedalaman korosi sumuran, serta pengamatan struktur mikro permukaan material dengan menggunakan mikroskop optik.
Hasil penelitian menunjukkan bahwa semakin besar tegangan aplikasi yang diberikan, maka terjadi peningkatan pengurangan berat, laju korosi, diameter dan kedalaman korosi sumuran. Sementara bila pH lingkungan semakin rendah (asam), maka terjadi peningkatan terhadap pengurangan berat dan laju korosi, namun terjadi penurunan terhadap diameter dan kedalaman korosi sumuran.

Corrosion is the destructive result of chemical reaction between a metal or metal alloy and its environment. Corrosion can take many forms, such as uniform corrosion, galvanic corrosion, pitting corrosion, and stress corrosion cracking. In this research, corrosion testing conducted on Sponge Rotary Kiln (SRK) steel, which included in low carbon steel.
The variables on this testing are applied stress and environment pH. Different applied stress were given to sponge rotary kiln steel, and then immersed it in acid (pH 3), neutral (pH 7), and basic (pH 12) environment for 115 hour. Measurement of corrosion characteristics includes weight loss, corrosion rate, diameter and depth of pitting, and also examination the microstructure of material surface using optical microscope.
This research shows that increased applied stress could increase weight loss, corrosion rate, diameter and depth of pitting. While decrease acidity (pH) could increase weight loss and corrosion rate, but decrease the diameter and depth of pitting."
2008
S41694
UI - Skripsi Open  Universitas Indonesia Library
cover
Sipayung, Sandhy Putra Pangidoan
"Aluminium merupakan salah satu material logam yang banyak digunakan serta dikembangkan pada berbagai macam aplikasi. Untuk meningkatkan kualitas aluminium, baik sifat fisik maupun mekanisnya, dilakukan beberapa perlakuan terhadap aluminium tersebut. Salah satu proses yang dilakukan adalah dengan rekayasa permukaan melalui proses anodisasi. Dalam proses anodisasi, pada permukaan aluminium akan terbentuk lapisan aluminium oksida yang amat keras dan tahan terhadap korosi.
Saat ini pengembangan proses anodisasi dikembangkan dalam pengetahuan tentang nanoteknologi. Melalui proses anodisasi yang dilakukan diharapkan lapisan yang dihasilkan memiliki kebaikan sifat-sifat mekanis seperti ketebalan, kekerasan, dan karakteristik diameter pori yang sesuai agar nantinya dapat digunakan pada aplikasi nanoteknologi seperti pembuatan carbon nanotube, nanoporous membrane, ataupun quantum dots. Salah satu parameter yang terpenting dan menentukan karakteristik permukaan hasil anodisasi adalah konsentrasi dan jenis elektrolit yang digunakan.
Penelitian kemudian dilakukan untuk memahami pengaruh dari besarnya penambahan konsentrasi elektrolit terhadap karakteristik dari lapisan oksida yang dihasilkan pada permukaan aluminium foil. Pada penelitian ini digunakan elektrolit tetap asam oksalat 0,5 M, serta variabel bebas penambahan asam sulfat 0,12 M, 0,24 M, 0,36 M, dan 0,48 M.
Hasil penelitian kemudian menunjukkan bahwa lapisan oksida yang dihasilkan benar merupakan lapisan Al2O3 dan dengan meningkatnya konsentrasi asam sulfat lapisan oksida yang dihasilkan akan memiliki permukaan yang semakin pekat warna kelabu-nya serta meningkat ketebalannya, hingga mencapai ketebalan tertinggi sekitar 14,51 µm pada konsentrasi 0,36 M namun menurun hingga ketebalan 9,95 µm pada konsentrasi 0,48 M. Kekerasan lapisan yang dihasilkan tidak valid karena alat pengujian yang digunakan kurang mendukung untuk jenis sampel yang digunakan.

Aluminium is one of the most common metal that has been used and developed in wide application. To enhance the quality of aluminium (physical and mechanical properties), some process have been done to the aluminium itself. One of the process is by changing its surface properties with anodizing process. In anodizing process, the aluminium oxide layer would be formed on the surface, and it has great hardness and good corrosion resistance.
At the present, the anodizing process has been developed for the knowledge of nanotechnology. By anodizing, it is hoped that the layer produced would have good mechanical properties like thickness, hardness, and good pore diameter characteristic. Then, with it good properties, it can be used in nanotechnology application like in the manufacturing of carbon nanotube, nanoporous membrane, and quantum dots. One of the most important parameter to the characteristic of the anodizing surface layer is the use of electrolyte.
This experiment was conducted to study the effect of increasing electolyte concentration to the characteristic of the oxide layer that produced at the surface of aluminium foil. The experiment used 0,5 M oxalic acid mixed with 0,12 M, 0,24 M, 0,36 M, and 0,48 M sulfuric acid.
The results showed that the oxide layer was Al2O3 layer. With the increase of sulfuric acid concentration, the oxide layer would be darker in the colour of gray and has some increasing in thickness. The highest thickness was about 14,51 µm in the addition of 0,36 M electrolytic concentration, but it is decreased to the 9,95 µm thickness when the concentration increased up to 0,48 M. The hardness of the layer could not be tested. The hardness testing machine used was not supported the kind of sample that were tested.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41736
UI - Skripsi Open  Universitas Indonesia Library
cover
Chumairah Desiana
"Bahan baku baja selama ini kebanyakan berasal dari bijih besi hematit. Tidak adanya bahan baku bijih besi ini di Indonesia mendorong perusahaan besi baja untuk membuat baja dari mineral laterit yang tersebar di Indonesia dengan kandungan Fe cukup tinggi sekitar 50%. Baja laterit masih diproduksi terbatas dan belum banyak diaplikasikan. Salah satu contoh aplikasi baja laterit adalah sebagai material jembatan TEKSAS diatas Danau Mahoni, Universitas Indonesia. Karena terpapar secara langsung pada lingkungan, maka ketahanan korosi baja laterit perlu diketahui. Pada kondisi aplikasi ini baja laterit mungkin terbasahi air danau, dan faktor lingkungan seperti temperatur dapat mempengaruhi ketahanan korosi baja laterit.
Penelitian ini bertujuan untuk mengetahui pengaruh temperatur terhadap laju korosi baja karbon dari bijih besi hematit dan baja laterit pada lingkungan air danau FTUI. Perbedaan mendasar baja laterit dan baja karbon adalah adanya elemen tambahan Ni dan Cr pada baja laterit yang menggolongkan baja laterit sebagai baja paduan rendah (low alloy steel) dan dapat mempengaruhi ketahan korosi dari baja. Pengujian laju korosi menggunakan metode weight loss dimana kedua jenis baja direndam dalam air danau selama 1, 2, 3, 4 dan 5 hari dengan 3 variasi temperatur, yaitu temperatur ruang, 50°C dan 70°C.
Dalam penelitian ini disimpulkan laju korosi baja karbon cenderung menurun 13% dan baja laterit cenderung konstan seiring dengan bertambahnya waktu pada temperatur ruang dan cenderung menurun sekitar 12% pada baja karbon dan 17% pada baja laterit dengan bertambahnya waktu pada temperatur 50°C dan pada 70°C laju korosi cenderung menurun 9% untuk baja karbon dan 20% untuk baja laterit. Laju korosi baja karbon dan baja laterit meningkat dengan bertambahnya temperatur. Pada baja karbon laju korosi meningkat dari 4,4 mpy pada temperature ruang menjadi 10,3 mpy pada temperatur 50°C dan 11,5 mpy pada temperature 70°C. Pada baja laterit laju korosi juga meningkat dari 3,58 mpy pada temperature ruang menjadi 9,09 mpy pada temperatur 50°C dan meningkat lagi menjadi 11,5 mpy pada temperatur 70°C. Laju korosi baja laterit mempunyai ketahanan korosi yang lebih baik dari baja karbon karena pengaruh elemen paduan yang terkandung dalam baja laterit.

Most of steel are produced from hematite iron ore. The scarcity of hematite iron ore in Indonesia, encouraged iron & steel company to produced steel from laterite mineral, which has high deposit in Indonesia with high grade iron (50%Fe). Laterite steel now are produced with limited quantity. One of the application of laterite steel as material in TEKSAS bridge on Mahoni lake, University of Indonesia. Because laterite steel directly exposed to environment, corrosion resistance of laterite steel is an important factor. Laterite steel bridge may wetting with lake water and environment factor, like temperature could effect laterite steel corrosion resistant.
The objective of this research to observe the influence of temperature to corrosion rate of carbon steel from hematite iron ore and laterite steel on lake water environment. The difference between carbon steel and laterite steel, are addition of Cr and Ni on laterite steel, which classified laterite steel into low alloy steel and may effected corrosion behaviour of steel. Corrosion rate measurement are conducted by weight loss method, which both of steel immersed in lake water with time period 1, 2, 3, 4 and 5 day at room temperature, 50°C and 70°C.
The conclusion of this research was the corrosion rate of carbon steel decreased 13% and laterite steel were constant with immersion time at room temperature. But, tendency of carbon steel and laterite steel corrosion rate decreased with immersion time in temperature 50°C and 70°C. Carbon steel decrease about 12% and laterite steel 17% in temperature 50°C. Corrosion rate of carbon steel in temperature 70°C decrease 9% and laterite steel 20%. The corrosion rate of carbon steel and laterit steel increased with increasing temperature. Corrosion rate of carbon steel increase from 4,4 mpy in room temperature into 10,3 mpy in temperature 50°C and 11,5 mpy in temperature 70°C. Corrosion rate of laterite steel increase from 3,58 mpy at room temperature to 9,09 mpy at temperature 50°C and to 11,5 mpy at temperature 70°C. Laterite steel have higher corrosion resitance than carbon steel because of addition element on laterite steel.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41763
UI - Skripsi Open  Universitas Indonesia Library
cover
Eka Febriyanti
"Baja dari sponge bijih besi laterite merupakan produk baja yang dihasilkan PT Krakatau Steel. Baja lembaran ini terbuat dari mineral laterite dengan kandungan Fe sekitar 50 %, Mg, dan Si berkisar pada besaran 20-25 %. Baja ini sudah diaplikasikan di roof (atap) Jembatan TekSas pengubung Fakultas Teknik dan Fakultas Sastra UI.
Perilaku korosi baja lembaran dari sponge bijih besi laterite dan baja karbon pada larutan dengan penambahan NaCl sebesar 0 ppm, 100 ppm, 200 ppm, 300 ppm, dan 400 ppm serta larutan dengan pH 4, 5, dan 6 selama waktu perendaman 48 jam, 72 jam, 120 jam, dan 168 jam dilakukan dengan menggunakan pengujian weight loss berdasarkan pada standar ASTM G1-03 dan ASTM G31 ? 72. Selain itu, penelitian ini juga menggunakan teknik analitik seperti pengujian Optical Spectroscopy untuk mengetahui komposisi unsur penyusun kedua baja dan Energy Dispersive X-ray Analysis (EDX) untuk memeriksa komposisi unsur dari produk korosi kedua baja tersebut.
Dari hasil penelitian terlihat bahwa semakin meningkatnya waktu perendaman (jam) maka laju korosi (mpy) untuk baja karbon dari bijih besi hematite dan bijih laterite masing-masing berkisar dari 3.5 mpy s/d 10 mpy dan 2.6 mpy s/d 4.2 mpy. Sedangkan dengan semakin meningkatnya penambahan NaCl (ppm) maka laju korosi (mpy) untuk masing-masing baja berkisar dari 3.5 s/d 4.1 mpy dan 2.9 mpy s/d 4.2 mpy serta dengan semakin meningkatnya pH larutan maka laju korosi (mpy) untuk masing-masing baja berkisar dari 14 mpy s/d 5 mpy dan 20 mpy s/d 5 mpy. Jadi, dengan semakin meningkatnya waktu perendaman (jam), konsentrasi NaCl (ppm), dan pH larutan maka ketahanan korosi dari baja laterite hampir sama dengan baja karbon biasa.
Selain itu dalam penelitian ini juga diamati pengaruh penambahan NaCl (ppm) dan penurunan pH larutan terhadap degradasi kerusakan yang dihasilkan dari baja laterite dan baja karbon. Analisa dengan metode EDX menyatakan bahwa deposit yang terbentuk di permukaan kedua baja utamanya terdiri atas unsur Fe, O, C, Si, serta sedikit Ca pada baja laterite.

Steel from sponge laterite iron ore is a product from Krakatau Steel Company. This steel extracted from mineral laterite which contained 50 % Fe, Mg, and 20-25 % Si. Laterite steel is used on roof in TekSas Bridge connecting Technique Faculty and Sastra Faculty University of Indonesia.
Corrosion behaviour of steel sheet from sponge laterite iron ore and carbon steel in solutions with addition of 0 ppm, 100 ppm, 200 ppm, 300 ppm, and 400 ppm NaCl with pH 4, 5, and 6 were studied by using weight lost test based on ASTM G1-03 dan ASTM G 31-72 standard. Beside, this study used analytical techniques such as Optical Spectroscopy to obtain chemical composition data from both steels and Energy Dispersive X-ray Analysis (EDX) to examine composition from corrosion product formed in surface steels.
The experiment showed that with increased immersing time (hour) produced corrosion rate (mpy) to carbon steel and laterite steel are about from 3.5 mpy until 10 mpy and 2.6 mpy until 4.2 mpy. The increase of addition NaCl concentration (ppm) produced corrosion rate (mpy) to both steel are about from 3.5 mpy until 4.1 mpy and 2.9 until 4.2 mpy. An increase in pH solution produced corrosion rate (mpy) to both steel are about from 14 mpy until 5 mpy and 20 mpy until 5 mpy. So, an increased immersing time (hour), the increase of addition NaCl concentration (ppm), and an increased in pH solution makes laterite steel and carbon steel have almost same corrosion resistant.
In addition to this research also study the effect of increasing addition of NaCl concentration (ppm) and a decrease in pH solution to damage degradation carbon steel and laterite steel. From EDX analyses, there were some Fe, C, O, Si along with little Ca compounds in the surface deposit laterite steel.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41635
UI - Skripsi Open  Universitas Indonesia Library
cover
Hutasoit, Martino R.
"Modifikasi permukaan aluminium secara elektrokimia merupakan suatu proses yang tengah berkembang pesat saat ini. Modifikasi permukaan secara elektrokimia pada awalnya lebih diarahkan pada peningkatan nilai ketahanan korosi, peningkatan kekerasan, dan juga peningkatan nilai estetika. Namun pada perkembangannya, salah satu proses elektrokimia, yaitu anodisasi, telah berkembang menjadi suatu proses modifikasi permukaan yang bertujuan untuk diaplikasikan pada teknologi berbasis nanoteknologi. Pemanfaatan lapisan oksida pada permukaan aluminium hasil proses anodisasi dilakukan dengan memanfaatkan pori (porous anodic alumina) yang terbentuk sebagai template pada pembuatan material yang berbasis pada nano teknologi seperti quantum-dot arrays, photonic crystals, magnetic memory arrays, nanowire dan berbagai alat mikroelektronik lainnya.
Penelitian ini bertujuan untuk mengetahui pengaruh perubahan konsentrasi larutan elektrolit terhadap ketebalan lapisan oksida yang terbentuk pada permukaan aluminium. Penelitian dilakukan dengan menggunakan sampel logam berupa aluminium foil (pure aluminium, 96.49%Al) dengan permukaan anodisasi sebesar 2X2 cm. Larutan elektrolit yang digunakan adalah asam oksalat dengan variasi konsentrasi 0.4 M, 0.5 M, 0.6 M. Tegangan pada proses adalah 32.5 Volt, temperatur dijaga pada rentang 4°C - 16°C, dan diaduk dengan menggunakan magnetic stirrer 500 rpm.
Hasil yang diperoleh melalui penelitian ini adalah bahwa tidak terjadi perubahan warna yang signifikan pada proses anodisasi dengan larutan asam oksalat. Nilai ketebalan lapisan oksida yang terbentuk akan semakin meningkat pada peningkatan konsentrasi asam oksalat. Nilai kekerasan pada sampel aluminium foil tidak dapat dilakukan dengan menggunakan metode microhardness tester.

Modification of aluminum surface with electrochemistry methods are developing rapidly nowadays. This surface modification were initially intended to increase the corrosion resistance, hardness, properties and improving the aesthetic appearance of aluminum. Recently, one of these electrochemistry methods, anodizing, were developed into one of the surface modification that can be applied in nanotechnology. Oxide layer which formed by anodizing process in the aluminum surface could be used as template for microelectronic nanotechnology material such as quantum-dot arrays, photonic crystals, magnetic memory arrays, nanowire because of it porous anodic alumina texture.
This research is conducted to found the effect of electrolyte concentration changes on thickness of oxide layer formed in aluminum surface. This research is carried out with aluminum foil sample (pure aluminum, 96.49% Al) with anodizing surface measured 2X2 cm. Electrolyte which used in this research is oxalic acid with concentration variation 0.4 M, 0.5 M, 0.6 M. This process using 32.5 Volt potential, temperature were kept in range of 4°C - 16°C, and the electrolyte were stirred electromagnetically at 500 rpm.
The result from this research shows that the colour of oxide layer by anodizing of aluminum in oxalic acid solution was transparent. By anodizing in oxalic acid, the thickness of formed oxide layer was dependent with the increase of concentration. Hardness testing on aluminum foil or oxide layer could?nt use to obtain hardness number in this research.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41633
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>