Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 160 dokumen yang sesuai dengan query
cover
Mega Oktafiani Putri
"Media sosial telah menjadi fenomena dunia, lebih dari 80% pengguna Internet adalah penguna media sosial. Ketika terjadi sebuah bencana, kebutuhan informasi akan meningkat. Twitter merupakan salah satu sumber informasi populer terutama di Indonesia yang tercatat sebagai negara pengguna twitter terbanyak di asia. Oleh karena itu dibutuhkan sebuah sistem yang dapat mengekstraksi informasi dari media sosial. Penelitian ini menawarkan sebuah sistem yang dapat mendeteksi topik pada media sosial twitter dengan merepresentasikan konten media sosial twitter ke graph jaringan kompleks menggunakan pengimplentasian metode pembentukan graph (pengolahan bahasa natural dan konsep graph) dan metrik pengkukur jaringan kompleks sebagai acuan analisa.
Sistem analisa media sosial pada penelitian ini terdiri dari 3 buah subsistem yaitu crawler dengan mengunakan perangkat lunak the archvist, graph converter berupa perangkat lunak Textttogexf untuk Bahasa Indonesia yang diimplementasikan pada bahasa pemrograman Ruby berdasarkan perangkat lunak Textttogexf untuk Bahasa Jepang, dan perangkat lunak untuk memvisualisasikan graph (gephi dan gvedit). Berdasarkan hasil pengujian, metode pembobotan yang paling baik untuk media sosial twitter adalah pembobotan RIDF dan pendefinisian dokumen berdasarkan kategori (persentase keberhasilan: 89%). Pada penelitian ini, topik umum mengenai pilkada 2012 dan 13 sub topik berhasil diekstraksi dari set data banjir Jakarta.

Social media had become worldwide phenomena. More than 80% of Internet?s users are social media?s users. When a disaster occurred, information needs will rise. Twitter is one of popular information resource especially in Indonesia. Because of that, twitter?s information extraction system was needed. This research proposes a system that can detect topic in social media twitter by representing its content as a complex network graph using the implementation of natural language processing, graph concept, and complex network analysis.
This system consists of 3 subsystems which are crawler, graph converter, and application for graph visualization. The Graph visualization is done using Gephi and Graphviz. From testing result, we reach 89% success rate of keyword extraction using RIDF term weighting method and collecting messages by certain category. General topic about governor election and 13 subtopics was successfully extracted from set data flood in Jakarta.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42095
UI - Skripsi Open  Universitas Indonesia Library
cover
Bretto, Alain
"Ce livre est une introduction développée à la théorie des graphes. Autour de cette théorie se développe aujourd'hui l'un des domaines les plus féconds et les plus dynamiques des mahématiques et de l'informatique. La théorie des graphes permet de réprésenter un ensemble complexe d'objets en exprimant les relations entre les éléments : réseaux de communication, circuits électriques, etc. Le livre présente le langage et les notions élémentaires de cette théorie, les différents types de graphes (bipartis, arbres, arborescences, graphes eulériens et hamiltoniens, etc.), il étudie les relations entre les graphes et les structures de données algorithmiques, il traite ensuite des notions de connextié et de flots, puis il développe la notion de planarité, l'ouvrage traite aussi des aspects algébriques, introduit aux thèmes de la coloration et du couplage des graphes, Il aborde aussi la théorie spectrale."
Paris: [, Springer-Verlag], 2012
e20410622
eBooks  Universitas Indonesia Library
cover
Xueliang, Li
"Rainbow connections are natural combinatorial measures that are used in applications to secure the transfer of classified information between agencies in communication networks. Rainbow connections of graphs covers this new and emerging topic in graph theory and brings together a majority of the results that deal with the concept of rainbow connections, first introduced by Chartrand et al. in 2006.
The authors begin with an introduction to rainbow connectedness, rainbow coloring, and rainbow connection number. The work is organized into the following categories, computation of the exact values of the rainbow connection numbers for some special graphs, algorithms and complexity analysis, upper bounds in terms of other graph parameters, rainbow connection for dense and sparse graphs, for some graph classes and graph products, rainbow k-connectivity and k-rainbow index, and, rainbow vertex-connection number.
"
New York: [Springer, ], 2012
e20419466
eBooks  Universitas Indonesia Library
cover
"This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and laplace and seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association schemes, p-ranks of configurations and similar topics. Exercises at the end of each chapter provide practice and vary from easy yet interesting applications of the treated theory, to little excursions into related topics. Tables, references at the end of the book, an author and subject index enrich the text."
New York: [Springer, ], 2012
e20419499
eBooks  Universitas Indonesia Library
cover
Laoh, Enrico
"ABSTRAK
Sebagai salah satu negara maritim terbesar di dunia, moda transportasi Indonesia lebih cenderung condong kepada transportasi laut. Salah satu sektor yang menitik beratkan distribusinya menggunakan transportasi laut adalah sektor minyak dan gas bumi. Pengoptimasian biaya transportasi laut ini telah dilakukan dengan berbagai metode agar dapat menghasilkan biaya yang seminim mungkin dengan kelebihan dan kekurangan yang dimiliki masing-masing metode. Pada penelitian ini dilakukan klasterisasi pola distribusi minyak bumi menggunakan pendekatan graph mining. Dengan melakukan single linkage clustering dengan tujuh fungsi graph, didapatilah pembangunan hasil klaster dengan menggunakan gabriel graph dan minimum spanning tree memberikan hasil yang terbaik. Klaster pola yang dihasilkan selanjutnya dapat digunakan untuk proses pengoptimalisasian pola distribusi. Hasil dari penelitian ini menunjukan bahwa jumlah klaster terbaik dan feasible adalah sebanyak 43 klaster.

ABSTRACT
As one of the largest maritime countries in the world, Indonesia transportation modes are more likely inclined to sea transport. One sector that the distribution are mainly using sea transport is oil and gas sector. Optimizing the cost of sea transport has been carried out by various methods in order to produce cost as little as possible with the advantages and disadvantages of each method. In this research petroleum distribution pattern clasterization is done by using graph mining approach. By conducting single linkage clustering with seven graph function, the result shows that clustering using gabriel graph and minimum spanning tree gives the best result. The clustered patterns result then can be used for the process of optimizing the distribution pattern. The result shows that the best and feasible number of cluster can be built is 43 clusters
"
2016
S63315
UI - Skripsi Membership  Universitas Indonesia Library
cover
Roberts, Fred S.
"Explores modern topics in graph theory and its applications to problems in transportation, genetics, pollution, perturbed ecosystems, urban services, and social inequalities. The author presents both traditional and relatively atypical graph-theoretical topics to best illustrate applications."
Philadelphia : Society for Industrial and Applied Mathematics, 1978
e20442907
eBooks  Universitas Indonesia Library
cover
Frisca
"Spectral clustering adalah salah satu algoritma clustering modern yang paling terkenal. Sebagai teknik clustering yang efektif, metode spectral clustering muncul dari konsep teori graf spektral. Metode spectral clustering membutuhkan algoritma partisi. Ada beberapa metode partisi termasuk PAM, SOM, Fuzzy c-means, dan k-means. Berdasarkan penelitian yang telah dilakukan oleh Capital dan Choudhury pada 2013, ketika menggunakan Euclidian distance, k-means memberikan akurasi yang lebih baik dibandingkan dengan algoritma PAM. sehingga, makalah ini menggunakan algoritma k-means. Keuntungan utama dari spectral clustering adalah mengurangi dimensi data, terutama dalam hal ini untuk mengurangi dimensi yang besar dari data microarray.
Microarray data adalah chip berukuran kecil yang terbuat dari slide kaca yang berisi ribuan bahkan puluhan ribu jenis gen dalam fragmen DNA yang berasal dari cDNA. Aplikasi data microarray secara luas digunakan untuk mendeteksi kanker, misalnya adalah karsinoma, di mana sel-sel kanker mengekspresikan kelainan pada gen-nya. Proses spectral clustering dimulai dengan pengumpulan data microarray gen karsinoma, preprocessing, menghitung similaritas, menghitung , menghitung nilai eigen dari , membentuk matriks , dan clustering dengan menggunakan k-means. Dari hasil pengelompokan gen karsinoma pada penelitian ini diperoleh dua kelompok dengan nilai rata-rata Silhouette maksimal adalah 0.6336247. Proses clustering pada penelitian ini menggunakan program open source R.

Spectral clustering is one of the most famous modern clustering algorithms. As an effective clustering technique, spectral clustering method emerged from the concepts of spectral graph theory. Spectral clustering method needs partitioning algorithm. There are some partitioning methods including PAM, SOM, Fuzzy c means, and k means. Based on the research that has been done by Capital and Choudhury in 2013, when using Euclidian distance k means algorithm provide better accuracy than PAM algorithm. So in this paper we use k means as our partition algorithm. The major advantage of spectral clustering is in reducing data dimension, especially in this case to reduce the dimension of large microarray dataset.
Microarray data is a small sized chip made of a glass plate containing thousands and even tens of thousands kinds of genes in the DNA fragments derived from doubling cDNA. Application of microarray data is widely used to detect cancer, for the example is carcinoma, in which cancer cells express the abnormalities in his genes. The spectral clustering process is started with collecting microarray data of carcinoma genes, preprocessing, compute similarity matrix, compute , compute eigen value of , compute , clustering using k means algorithm. In this research, Carcinoma microarray data using 7457 genes. The result of partitioning using k means algorithm is two clusters clusters with maximum Silhouette value 0.6336247.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47117
UI - Tesis Membership  Universitas Indonesia Library
cover
Tarjan, Robert Endre
"There has been an explosive growth in the field of combinatorial algorithms. These algorithms depend not only on results in combinatorics and especially in graph theory, but also on the development of new data structures and new techniques for analyzing algorithms.
Four classical problems in network optimization are covered in detail, including a development of the data structures they use and an analysis of their running time.
Data Structures and Network Algorithms attempts to provide the reader with both a practical understanding of the algorithms, described to facilitate their easy implementation, and an appreciation of the depth and beauty of the field of graph algorithms."
Philadelphia: Society for Industrial and Applied Mathematics, 1983
e20448031
eBooks  Universitas Indonesia Library
cover
Eduardus Hardika Sandy Atmaja
"ABSTRACT
Criminality is a social problem causing negative impacts on society welfare. Police as law enforcement officer was required to take actions to prevent criminality which was increasingly widespread. Such efforts could be realized by analizing criminal data to obtain useful information for the preparation of criminal prevention strategies. However, extracting knowledge from criminal data effectively was a problematique for them. In this study, data mining was used to solve knowledge extraction problem from the dataset. The technique was aimed to get information about crime patternsby analyzing criminal activity habits. Association rule mining and apriori algorithm were used to find crime patterns. Generating crime patterns in data mining was difficult to understand when there were too many rules. Graph based visualization of association rules designed to solve that problem. Generated visualization showed relationship between crimes. That visualization was expected to help the police to understand the crime pattern so they could do prevention efforts more effectively. The results showed that the visualization of association rules could present association rules in more interesting way and described the crime pattern."
Yogyakarta: Media Teknika, 2017
620 MT 12:1 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Fatimah Sirin
"Multi-Agent System MAS atau sistem dengan agen-ganda didefinisikan sebagai sebuah sistem yang terdiri dari beberapa autonomous agents yang saling berinteraksi satu sama lain. MAS dapat diaplikasikan di berbagai disiplin ilmu, seperti di bidang biologi, fisika, ekonomi, ilmu komputer, dsb. Pada penelitian dalam beberapa tahun terakhir, MAS yang dirancang dapat dibedakan berdasarkan: model, skema organisasi, topologi komunikasi, protokol dan algoritma pengendalian MAS yang digunakan, serta parameter lain pada MAS, seperti waktu pencuplikan, waktu tunda, gangguan, batasan, dsb.
Walaupun teknologi MAS tidak dapat dikatakan sebagai teknologi yang baru, berbagai masalah masih kerap alam ditemukan dalam implementasinya. Masalah yang biasa ditemukan dalam perancangan MAS antara lain berupa masalah komunikasi, pengendalian agent, hingga MAS yang terlalu kompleks seperti MAS dengan model dinamik agent yang berubah-ubah terhadap waktu . Oleh karena itu, diperlukan penelitian lebih lanjut mengenai MAS dengan kompleksitas tinggi. Pada penelitian ini, akan dikembangkan protokol pengendalian yang tepat guna untuk MAS dengan kompleksitas tinggi sehingga dapat mencapai konsensus walaupun dihadapkan dengan batasan-batasan yang ditemukan pada sistem, seperti topologi komunikasi yang berubah-ubah yang mengganggu ketahanan sistem.

Multi Agent System MAS or a system with multiple agents is defined as a system consisting of multiple autonomous agents interacting with each other. MAS can be applied in various disciplines, such as in the fields of biology, physics, economics, computer science, etc. In researches in the recent decades, the designed MAS can be distinguished by model, organizational scheme, communications topology, protocol and control algorithm which is used, and other parameters on MAS, such as sampling time, delay time, interruption, constraints, etc.
Although MAS technology can not be said to be a new technology, various problems are still often found in implementation. Common problems can be found in communication problems, agent control, up to MAS that is too complex such as MAS with time varying dynamic model of agents. Therefore, further research is needed on MAS with high complexity. In this research, appropriate control protocol will be developed for MAS with time varying dynamic model of agents so that it can reach consensus, although faced with the constraints found in the system, such as the changing communications topology.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library