Ditemukan 115 dokumen yang sesuai dengan query
Kroese, Dirk P.
Abstrak :
The purpose of this handbook is to provide an accessible and comprehensive compendium of Monte Carlo techniques and related topics. It contains a mix of theory (summarized), algorithms (pseudo and actual), and applications. Since the audience is broad, the theory is kept to a minimum, this without sacrificing rigor. The book is intended to be used as an essential guide to Monte Carlo methods to quickly look up ideas, procedures, formulas, pictures, etc., rather than purely a monograph for researchers or a textbook for students. As the popularity of these methods continues to grow, and new methods are developed in rapid succession, the staggering number of related techniques, ideas, concepts and algorithms makes it difficult to maintain an overall picture of the Monte Carlo approach. This book attempts to encapsulate the emerging dynamics of this field of study.
New Jersey: Wiley , 2011
518.282 KRO h
Buku Teks Universitas Indonesia Library
Dian Anggraeni
Depok: Universitas Indonesia, 2010
S27834
UI - Skripsi Open Universitas Indonesia Library
Nafia Aryuna
Abstrak :
Tugas akhir ini membahas penaksiran parameter 0 (probabilitas sukses) pada m distribusi binmial, dimana ada keterkaitan antar parameter 0 pada masing-masing populasi. metode penaksiran yang digunakan adalah metode Bayes. pada metode ini, prosedur yang dilakukan meliputi transformasi parameter 0 ke bentuk logit yaitu a, penentuan prior dan likelihood, pembentukan posterior, modifikasi likelihood, hingga akhirnya diperoleh m taksiran dari a yang akan digunakan untuk menaksir 0 pada tiap populasi. hasil yang diperoleh diaplikasikan pada penaksiran proporsi jumlah perempuan di 10 kursus pada suatu lembaga
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27843
UI - Skripsi Open Universitas Indonesia Library
Rao, B.L.S. Prakasa
Abstrak :
This book gives a comprehensive review of results for associated sequences and demimartingales developed so far, with special emphasis on demimartingales and related processes. Probabilistic properties of associated sequences, demimartingales and related processes are discussed in the first six chapters. Applications of some of these results to some problems in nonparametric statistical inference for such processes are investigated in the last three chapters.
Basel: [Springer , ], 2012
e20419277
eBooks Universitas Indonesia Library
Abstrak :
Chi-squared goodness of fit tests with applications provides a thorough and complete context for the theoretical basis and implementation of Pearson’s monumental contribution and its wide applicability for chi-squared goodness of fit tests. The book is ideal for researchers and scientists conducting statistical analysis in processing of experimental data as well as to students and practitioners with a good mathematical background who use statistical methods. The historical context, especially chapter 7, provides great insight into importance of this subject with an authoritative author team. This reference includes the most recent application developments in using these methods and models.
Oxford, UK: Elsevier, 2013
e20426863
eBooks Universitas Indonesia Library
Shorack, Galen R.
Abstrak :
Originally published in 1986, this valuable reference provides a detailed treatment of limit theorems and inequalities for empirical processes of real-valued random variables. It also includes applications of the theory to censored data, spacings, rank statistics, quantiles, and many functionals of empirical processes, including a treatment of bootstrap methods, and a summary of inequalities that are useful for proving limit theorems. At the end of the Errata section, the authors have supplied references to solutions for 11 of the 19 Open Questions provided in the book's original edition.
Philadelphia : Society for Industrial and Applied Mathematics, 2009
e20443049
eBooks Universitas Indonesia Library
Harrell, Frank E., Jr.
Abstrak :
This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modeling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for fitting nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with too many variables to analyze and not enough observations, and powerful model validation techniques based on the bootstrap. The reader will gain a keen understanding of predictive accuracy, and the harm of categorizing continuous predictors or outcomes. This text realistically deals with model uncertainty, and its effects on inference, to achieve safe data mining. It also presents many graphical methods for communicating complex regression models to non-statisticians.
Switzerland: Springer International Publishing, 2015
e20510032
eBooks Universitas Indonesia Library
Dany Anggoro
Abstrak :
Tugas akhir ini secara umum bertujuan untuk menghadirkan suatu metode yang dapat membantu kita dalam menghitung nilai-nilai probabilitas transisi yang dibutuhkan dalam penghitungan aktuaria. Penghitungan nilai-nilai probabilitas transisi ini dibatasi pada model tiga state. Pembahasan model ini berkaitan erat dengan proses Markov dan menggunakan nilai force of transition konstan (Proses Markov waktu homogen). Metode yang digunakan dalam mencari nilai-nilai probabilitas transisi berangkat dari penggunaan matriks force of transition dengan force of transition yang bernilai konstan yaitu persamaan P(t) = Adiag( ed1t ,ed2t ,ed3t )A?1 dimana elemen-elemen matriks P(t) ialah nilai probabilitas transisi, vektor kolom dari matriks A ialah vektor eigen dari matriks force of transition, dan nilai d1, d2, d3 ialah nilai-nilai eigen dari matriks force of transition. Proses penghitungan nilai-nilai probabilitas ini melalui pencarian nilai eigen dan vektor eigen dari matriks force of transition. Dalam kasus khusus pada model khusus tiga state,yaitu state select, ultimate, dan dead, akan dibahas perhitungan numerik untuk mencari nilai-nilai probabilitas transisinya.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
S27629
UI - Skripsi Membership Universitas Indonesia Library
Ridho Okta Pawarestu
Abstrak :
Distribusi Transmuted Exponentiated Exponential merupakan generalisasi dari distribusi Exponentiated Exponential yang dibentuk dengan menggunakan metode quadratic rank transmutation maps (QRTM). Distribusi Transmuted Exponentiated Exponential merupakan salah satu distribusi kontinu yang mampu memodelkan data dengan hazard rate naik, turun, bathtub, dan non-monoton. Pada tugas akhir ini akan dibahas konstruksi dari distribusi Transmuted Exponentiated Exponential. Karakteristik-karakteristik distribusi yang meliputi fungsi kepadatan probabilitas, fungsi distribusi, dan hazard rate dari distribusi Transmuted Exponentiated Exponential juga dijelaskan lebih lanjut. Pada bagian akhir, diberikan suatu aplikasi dari distribusi Transmuted Exponentiated Exponential pada suatu data lifetime.
......
Transmuted Exponentiated Exponential distribution is a generalization of Exponentiated Exponential distribution which formed using a method called quadratic rank transmutation maps (QRTM). Transmuted Exponentiated Exponential distribution is a continued distribution which can model increasing, decreasing, bathtub, and non-monotone hazard rate. In this paper, it will be explained how to form Transmuted Exponentiated Exponential distribution. Characteristics of distribution such as, probability density function, distribution function, and hazard rate of Transmuted Exponentiated Exponential distribution will be explained further. Finally, a set of lifetime data will be analyzed using Transmuted Exponentiated Exponential distribution as an illustration.
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S61730
UI - Skripsi Membership Universitas Indonesia Library
Gina Nuryani Putri
Abstrak :
Analisis regresi digunakan untuk mengetahui hubungan antara satu variabel respon dan satu atau lebih variabel penjelas. Ketika variabel respon berupa data count yaitu data yang berupa bilangan bulat non-negatif, analisis regresi yang sering digunakan adalah analisis regresi Poisson. Pada regresi Poisson terdapat asumsi kesamaan nilai mean dengan nilai variansinya. Dalam data count sering didapati kondisi dimana nilai variansi lebih besar dari nilai meannya atau disebut overdispersi. Pada data yang overdispersi, regresi Poisson kurang tepat jika digunakan karena nilai standard error dari taksiran parameter yang dihasilkan akanunderestimate sehingga beresiko memberikan kesimpulan yang tidak tepat. Model regresi Poisson-Inverse Gaussian dapat digunakan pada data count yang overdispersi dan memiliki tail panjang. Penaksiran parameter model regresi Poisson-Inverse Gaussian menggunakan metode maksimum likelihood dan solusi dari fungsi log -likelihood-nya menggunakan pendekatan numerik yaitu Newton-Raphson. Uji kesesuaian model yang digunakan mencakup statistik pseudo R-Squared, uji rasio likelihood, dan Uji Wald.
......Regression analysis is used to investigate the relationship between one response variable and one or more regressor variables. If the response variable is count data, that has non negative integer value, the regression analysis that usually used is Poisson Regression. Poisson regression has an assumption that mean of response variable equal to its variance. On count data frequently found that the variance is greater than mean, or called overdispersion. On overdispersion case, poisson regression is inconvenient to used because it may underestimate the standard error of regression parameters and consequently it risk to give misleading inference. Poisson Inverse Gaussian regression model can be used on overdispersion and long tail count data. Parameter estimation of Poisson Inverse Gaussian Regression Model can be obtained through the maximum likelihood method and the solution of log likelihood function may be solved by using numerical method called Newton Raphson. Goodness of fit testing of this model includes pseudo R Squared, rasio likelihood test, and Wald test.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68659
UI - Skripsi Membership Universitas Indonesia Library