Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 129 dokumen yang sesuai dengan query
cover
Oman Zuas
"Sejumlah fotokatalis oksida logam, meliputi xCu2O-yTiO2, xZnO-yTiO2 dan xCu2O-yZnO-zTiO2 telah berhasil di sintesis menggunakan metoda ko-presipitasi, dan digunakan untuk mereduksi CO2 dalam larutan berair. Variasi kandungan Cu2O dan ZnO dalam fotokatis berkisar dari 0,0 sampai 2,0 %-berat. Hasil karakterisasi menggunakan XRD dan TEM memperlihatkan bahwa fotokatalis hasil sintesis memiliki fase anatase, dengan tingkat kristalinitas yang bagus, dan mempunyai ukuran partikel berkisar antara 10 sampai 20 nm. Keberadaan Cu2O dan ZnO dalam sistem fokatalis tidak hanya mengakibatkan terjadinya penurunan harga energi band gap tapi juga meningkatkan luas permukaan spesifik dari fotokatalis. Dari data hasil pengukuran XPS menunjukkan bahwa unsur-unsur Ti, Cu, dan Zn dalam fotokatalis masing-masing berada sebagai Ti(IV), Cu(I), and Zn(II). Hasil evaluasi terhadap kinerja fotokatalis dalam mereduksi CO2 menunjukkan bahwa fotokatalis merupakan bahan yang aktif, dibuktikan dengan terbentuknya beberapa senyawa (yaitu: CO, CH4, C2H4 and CH3OH) sebagai produk hasil reduksi. Pada tingkat penambahan yang sesuai, keberadaan Cu2O dan ZnO mampu meningkatkan kinerja fotokatalis. Dari seluruh fotokatalis yang disintesis, fotokatalis 1.0Cu2O-99.0TiO2, 0.5ZnO-99.5TiO2, and 1.0Cu2O- 0.5ZnO-98.5TiO2 mempunyai aktifitas fotokatalitik tertinggi. Data fotoluminesen memverifikasi bahwa peningkatan kinerja fotokatalis-fotokatalis tersebut kemungkinan disebabkan karena Cu2O dan ZnO mampu bertindak sebagai perangkap elektron dan sebagai pemisah muatan sehingga menghambat kecepatan terjadinya penggabungan kembali electrons dan holes. Sedangkan ukuran partikel, energi band gap, dan luas permukaan spesifik dari fotokatalis bukan merupakan faktor penentu terjadinya peningkatan kinerja dari fotokatalis. Data efisiensi quantum menunjukkan bahwa fotokatalis ber-dopant ganda (1.0Cu2O-0.5ZnO- 98.5TiO2) lebih reaktif dan efektif dibandingkan dengan fotokatalis berdopant tunggal (1.0Cu2O-99.0TiO2 atau 0.5ZnO-99.5TiO2) dalam mereduksi CO2. Evaluasi terhadap kinetika reaksi memperlihatkan bahwa proses reduksi mengikuti model pseudo-first order, dan data yang diperoleh secara teori dan eksperimen menunjukkan adanya hubungan yang baik. Adapun studi tentang penggunaaan fotokatalis secara berulang memperlihatkan bahwa fotokatalis cenderung mengalami penurunan aktifitas, yang kemungkinan disebabkan oleh terjadinya perubahan morfologi permukaan dan muatan bilangan oksidasi dari unsur pembentuk fotokatalis.

Some series of mixed oxide photo-catalysts including xCu2O-yTiO2, xZnO-yTiO2 and xCu2O-yZnO-zTiO2 have been successfully synthesized, using coprecipitation method, and applied for CO2 photocatalytic reduction in pressurized aqueous solution. The amounts of either Cu2O or ZnO in the oxide mixture were varied ranging from 0.0 to 2.0 wt%. The XRD and TEM results confirmed that all photocatalysts were found predominantly in anatase phase having good crystalline nature with particle size ranging from 10 to 20 nm. The presence of Cu2O and ZnO has not only exerted a great influence on the properties of the photocatalysts along with decrease the band gap energy, but also increase the specific surface area. The XPS results indicated that chemical states of the Ti, Cu, and Zn element in the photocatalysts system were found as Ti(IV), Cu(I), and Zn(II), respectively. Evaluation of the photocatalysts performance showed that the photocatalysts were active for CO2 reduction and some compounds (i.e., CO, CH4, C2H4 and CH3OH) were detected as the CO2 photocatalytic reduction products. The presence of either Cu2O or ZnO in suitable amount results in increasing the performance of the photocatalysts. The 1.0Cu2O-99.0TiO2, 0.5ZnO-99.5TiO2, and 1.0Cu2O- 0.5ZnO-98.5TiO2 photocatalyst were observed to have the highest photocatalytic activity among their series. Photoluminescence data verified the activity enhancement of photocatalyst due to the acting ability of Cu2O and ZnO as electron trapper and charge carrier separator, inhibiting the recombination rate of electron-hole pairs. The particle size, band gap energy, and surface area were not found as the major factor related to such activity enhancement. Quantum efficiency data indicated that 1.0Cu2O-0.5ZnO-98.5TiO2 was the most active for the photocatalytic reduction of CO2 than both 1.0Cu2O-99.0TiO2 and 0.5ZnO- 99.5TiO2. Reaction kinetic evaluation indicated that the CO2 photocatalytic reduction follows a pseudo-first order model, giving a good fit between theoretical and experimental data. Reusability testing of photocatalyst indicated that the photocatalyst has a tendency to deactivate. The morphology change and chemical state of the element species can be considered as the reasons for declining the activity of the photocatalyst.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
D1945
UI - Disertasi Membership  Universitas Indonesia Library
cover
Vika Rizkia
"Proses anodisasi pada aluminium menghasilkan struktur fenomenal berupa oksida logam yang terkenal dengan istilah Anodic Aluminum Oxide (AAO). AAO sangat diperlukan untuk meningkatkan daya adhesi pada proses pelapisan selanjutnya baik pada aluminium dan paduannya maupun komposit aluminium. Hal tersebut terjadi akibat adanya ikatan saling kunci antara lapisan oksida hasil anodisasi (AAO) dengan pelapis berikutnya. Morfologi pori pada AAO dapat dengan mudah dimodifikasi melalui perubahan parameter anodisasi. Namun, sayangnya penelitian-penelitian sebelumnya belum menyediakan informasi apapun mengenai pengontrolan diameter pori. Sedangkan seperti yang kita ketahui bahwa perbedaan aplikasi yang diinginkan membutuhkan diameter pori yang berbeda pula.
Oleh karena itu guna mendapatkan diameter pori dengan ukuran tertentu maka pemilihan parameter proses anodisasi yang tepat sangatlah penting. Untuk memenuhi kebutuhan tersebut, dalam penelitian ini akan dihasilkan persamaan empiris yang dapat memprediksi ukuran diameter dan densitas pori AAO yang terbentuk hasil anodisasi dengan berbagai parameter tertentu agar dapat digunakan dalam aplikasi yang sesuai.
Tujuan utama penelitian ini adalah pengembangan persamaan empiris yang menggambarkan hubungan konsentrasi oksalat, tegangan dan waktu anodisasi terhadap diameter pori. Namun penelitian ini juga menganalisis mekanisme pembentukan, karakteristik, dan ketahanan korosi lapisan terintegrasi pada Al7075/SiC. Serta menganalisis pengaruh konsentrasi, temperatur, dan resistivitas larutan elektrolit, dan tegangan anodisasi terhadap diameter dan densitas pori AAO pada aluminium foil.
Proses anodisasi Al7075/SiC dilakukan dalam larutan asam sulfat 16% H2SO4 dengan rapat arus 15, 20, 25 mA/cm2 pada 25, 0, -25oC selama 30 menit. Selanjutnya dilakukan proses sealing dalam larutan CeCl3.6H2O + H2O2 pada temperatur ruang dengan pH 9 selama 30 menit. Proses anodisasi pada aluminium foil dilakukan dalam larutan 3 M H2SO4 + 0,5 M; 0,7 M; dan 0,9 M H2C2O4, dan 0,3; 0,5; 0,7 M H2C2O4 selama 40-60 menit. Proses anodisasi dilakukan pada tegangan konstan 35, 40, dan 45 V untuk larutan asam oksalat dan 15 V untuk larutan campuran.
Pengamatan dan evaluasi morfologi lapisan pori hasil anodisasi dilakukan menggunakan alat FE-SEM (Field Emission Scanning Electron Microscope), ketahanan korosi material diinvestigasi menggunakan pengujian polarisasi dan EIS, sedangkan analisa kualitatif terhadap morfologi pori (diameter dan densitas) pada AAO menggunakan perangkat lunak ImagePro. Pengembangan persamaan empiris menggunakan metode derajat terkecil dan permukaan respon.
Proses terintegrasi yang diaplikasikan pada komposit Al7075/SiC pada temperatur anodisasi 0 oC menghasilkan terbentuknya deposit bulat kaya cerium dengan diameter 64 nm ( 3 nm) yang menutupi seluruh permukaan lapisan oksida dan rongga secara efektif. Proteksi terintegrasi anodisasi dan pelapisan cerium meningkatkan ketahanan korosi hingga 4 order perbesaran dibandingkan tanpa perlindungan akibat terjadinya ikatan saling kunci antara kedua lapisan tersebut.
Peningkatan konsentrasi larutan elektrolit asam oksalat, temperatur, tegangan dan waktu celup anodisasi dalam larutan 0,3; 0,5; dan 0,7 M mengakibatkan peningkatan diameter pori permukaan pada AAO. Sedangkan, penambahan asam sulfat dalam asam oksalat menghasilkan pori dengan morfologi diameter pori yang jauh lebih halus dan densitas pori yang jauh lebih besar. Secara umum, densitas pori hanya tergantung pada diameter pori hasil anodisasi, dimana peningkatan diameter pori menghasilkan densitas pori yang semakin menurun. Persamaan empiris hubungan antara tiga faktor anodisasi (konsentrasi asam oksalat, tegangan, dan waktu anodisasi) dengan diameter pori hasil dari penelitian ini adalah : Dp = 0,140625 MVt + 0,33125 MV ? 523542 Mt + 35,64583 M ? 0,04006 Vt + 0,685764 V +1,792431 t ? 42,5053 (derajat terkecil) dan Dp = 33,3 ? 236,3 M ? 1,453 V + 0,3942 t + 7,60 MV (metode derajat satu)

Anodizing process in aluminum produces a phenomenal structure in form of metal oxide which is known as Anodic Aluminum Oxide (AAO). AAOis a very useful morfology to improve the adhesion properties for further coating in aluminum alloy and composite aluminum. This phenomenon is related to the presence of interlock bond between AAO and the next layer. The AAO morphology can be modified simply by varying anodizing parameters.
Therefore, selecting appropriate parameters plays an important role in order to obtain the desired pore size. Unfortunately, the preliminary studies did not provide any information on controlling the pore size and density (through increasing/decreasing the concentration of sulfuric acids, voltage, and duration of anodizing to determine pore diameter and density).
For that purpose, in this research some empirical models were built to predict the pore size produced by anodizing process in various parameters. The grand design if this research aims to develop empirical equations which predict the relationship between oxalic acid concentration, anodizing voltage and time to the pore diameter. However, this research also aims to analyze the formation mechanism and of the integrated layer on Al7075/SiC, as well as the enhancement of corrosion resistance resulted from the integrated layer. Moreover, the influence of various anodizing parameters, i.e. resistivity, concentration, temperature, and type of electrolyte on pore characteristics of AAOis also conducted in this study.
Anodizing process of Al7075/SiC was conducted in 16% H2SO4 solution in current densities 15, 20, 25 mA/cm2 at25, 0, -25oC for 30 minutes. Subsequently, cerium sealing process was carried out in CeCl3.6H2O+H2O2 at room temperature and pH 9 for 30 minutes. Anodizing of aluminum foil were carried out in 0,3; 0,5; 0,7M H2C2O4 solution and a mixture solution of 0.5M, 0.7M, and 0.9M H2C2O4 and 3M H2SO4 for 40-60 minutes. Anodizing processes were performed under potentiostatic conditions with constant potentials of 35, 40, and 45V for oxalic solution and 15 V for a mixture solution.
Morphology of AAO layer observations were performed using field emission scanning electron microscopy (FE-SEM) FEI Inspect F50, while the corrosion resistance of materials were investigated by means of polarization and EIS, and qualitative analysis of pore characteristics (pore diameters and densities) accomplised by ImagePro software.
The development of empirical equations using least square and response surface methods Integrated protection by conducting anodization at 0oC prior to cerium sealing in Al7075/SiC leads tothe formation of cerium spherical deposit in the diameter of 64 nm ( 3nm) which effectively covered most of the surface of oxide film as well as cavity. Moreover, this integrated protection enhanced four orders magnification of corrosion resistance than that of bare composite due to interlock bonding between the layers.
The increasing of electrolyte concentration and temperature, as well as voltage and duration of anodizing in 0.3; 0.5; dan 0.7 M oxalic acid leads to the increasing of pore diameter in AAO surface. While, the addition of sulfuric acid in oxalic acid provides much smaller pore diameters and higher pore densities at lower voltages than single electrolyte of oxalic acid. In general, pore density is only dependent on pore diameter, which decreases with the increases of pore diameter. The empirical equations built in this research are : Dp = 0,140625 MVt + 0,33125 MV ? 523542 Mt + 35,64583 M ? 0,04006 Vt + 0,685764 V +1,792431 t ? 42,5053 (least square) and Dp = 33,3 ? 236,3 M ? 1,453 V + 0,3942 t + 7,60 MV (first order model)
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
D2263
UI - Disertasi Membership  Universitas Indonesia Library
cover
Sianturi, Manogari
"Penumbuhan lapisan porous anodik aluminium oksida (PAAO) di atas substrat aluminium tubular merupakan suatu tantangan karena struktur pori tumbuh kurang teratur, kurang homogen, dan lapisannya rentan mengalami retakan. Penelitian ini bertujuan untuk meningkatkan ketahanan terhadap retakan lapisan PAAO yang ditumbuhkan di atas substrat aluminium tubular dengan penambahan etilen glikol (EG) dan pemanasan. Lapisan PAAO diperoleh melalui anodisasi aluminium dalam larutan 0,3 M asam sulfat dan oksalat pada suhu 10°C selama 4 jam. EG ditambahkan dengan variasi konsentrasi 0, 5, 10 dan15 vol%. Morfologi lapisan PAAO dikarakterisasi dengan FESEM dan struktur kristalnya dianalisis dengan XRD. Jumlah retakan berkurang dari 4,04x10-4/ µm2 menjadi 2,24x10-5/ µm2 retakan dan 2,47x10-4/µm2 menjadi 6,73x10-5/µm2 retakan dalam asam sulfat dan asam oksalat dengan penambahan 0-15 vol% EG. Rentang diameter pori sebelum dilepas dari substrat adalah 10-14 nm dan setelah dilepas dari substrat dan dietsa kimia menjadi 14-24 nm. EG berperan dalam menjaga stabilitas suhu selama anodisasi, mengurangi kerapatan arus dan meningkatkan viskositas larutan sehingga mampu mengurangi populasi dan lebar retakan. Pemanasan lapisan PAAO dari 1000-1250 oC menyebabkan perubahan fasa dari fasa amorf menjadi fasa kristal g, d, dan ὰ Al2O3.

The growth of the porous anodic aluminum oxide (PAAO) layer on a tubular aluminum substrate is challenging because the pore structure grows less orderly, less homogeneous, and layers are prone to cracking. This study aims to improve resistance to cracking of PAAO layers grown on tubular aluminum substrates by adding ethylene glycol (EG) and heating. The PAAO layer was obtained by anodizing aluminum in a 0.3 M sulfuric and oxalic acid at 10 °C for 4 hours. The EG was added at various concentrations of 0, 5, 10, and 15 vol%. The morphology of PAAO layers was characterized by FESEM and the crystal structure was analyzed by XRD. The population of cracks decreased from 4.04x10-4/µm2 to 2.24x10-5/µm2 and 2.47x10-4/µm2 to 6.73x10-5/µm2 cracks in sulfuric and oxalic acid by addition EG 0-15 vol%. The pore diameter range before being removed from the substrate was 10-14 nm and after being removed from the substrate and chemically etched it was 14-24 nm. EG plays a role in maintaining temperature stability during anodization, reducing current, and increasing viscosity of solution to reduce population and width of the crack. Heating PAAO layer from 1000-1250 oC causes the phase change from amorphous to crystalline g-, d-, and ὰ-Al2O3."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Nurhayati Indah Ciptasari
"Dalam beberapa tahun terakhir, peningkatan pesat teknologi telah mendorong pengembangan berbagai jenis material di bidang ilmu pengetahuan dan penelitian. Salah satu material yang paling populer untuk penelitian adalah reduced Graphene Oxide (rGO). Material dibuat dari Graphene Oxide (GO) dengan melakukan berbagai metode pengolahan kimia dan termal untuk mengurangi kandungan oksigen di dalamnya. Sifat-sifat luar biasa dari rGO seperti sifat termal, mekanik, dan elektronik menjadikannya sebagai kandidat bahan yang potensial digunakan dalam berbagai aplikasi dengan penambahan matriks untuk memperluas penggunaannya. Penelitian ini bertujuan untuk mengembangkan kemungkinan material nanokomposit reduced Graphene Oxide (rGO) untuk aplikasi fotokatalitik yang lebih ramah lingkungan serta pengembangan material nanokomposit reduced Graphene Oxide (rGO) untuk aplikasi superkapasitor. Penelitian dilakukan dengan beberapa tahapan. Pertama dengan membuat bahan baku reduced graphene oxide dari grafit dengan menggunakan metode Hummers modifikasi. Kemudian mensintesis rGO dengan AgNPs (Perak Nanopartikel) menggunakan metode hidrotermal in-situ dengan reduktor NaBH4. Setelah itu, dilakukan pengujian aktivitas fotokatalitiknya terhadap ion Pb untuk mengetahui kinerja efektivitas rGO/AgNPs fotokatalitik dan potensinya sebagai bahan fotokatalitik alternatif dalam pengolahan limbah. Selanjutnya sintesis nanokomposit rGO dengan ZrO2 (Zirkonia) dilakukan dengan metode hidrotermal in-situ menggunakan reduktor NaBH4. Kemudian dilakukan karakterisasi sifat fisik dan kimianya agar dapat diaplikasikan pada superkapasitor. Analisis dilakukan dengan menggunakan X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Spektroskopi Raman, Spektrofotometer UV-Vis, Fourier Transform Infra Red (FTIR), dan Electrochemical Impedance Spectroscopy (EIS). Hasil penelitian ini Sintesis nanokomposit rGO/AgNPs menggunakan metode hidrotermal in-situ dengan reduktor NaBH4 untuk menguji aktivitas fotokatalitiknya terhadap ion Pb berhasil dilakukan. Performa fotokatalitik dengan uji terhadap ion Pb didapatkan persentase maksimum sebesar 44% pada 1,5 jam iradiasi. Nanokomposit rGO/ZrO2 berhasil disintesis dengan metode hidrotermal in-situ menggunakan reduktor NaBH4. Nilai spesifik kapasitansi tertinggi sebesar 482 F/g diperoleh pada rGO-ZrO2 = 1:2 dengan menggunakan PANI dalam larutan elektrolit H2SO4 karena pada kondisi ini menghasilkan nilai resistansi yang rendah sebesar 238,53 ohm.  

In recent years, rapid advancements in technology have driven the development of various types of materials in the field of science and research. One of the most popular materials for research is reduced Graphene Oxide (rGO). This material is made from Graphene Oxide (GO) through various chemical and thermal processing methods to reduce its oxygen content. The outstanding properties of rGO, such as thermal, mechanical, and electronic properties, make it a potential candidate for use in various applications with matrix additives to expand its usage. This research aims to explore the potential of reduced Graphene Oxide (rGO) nanocomposite materials for environmentally friendly photocatalytic applications and the development of rGO nanocomposite materials for supercapacitor applications. The research is conducted in several stages. Firstly, raw materials of reduced graphene oxide are produced from graphite using a modified Hummers method. Then, rGO is synthesized with AgNPs (Silver Nanoparticles) using an in-situ hydrothermal method with NaBH4 as the reducing agent. Subsequently, the photocatalytic activity of the rGO/AgNPs composite is tested against Pb ions to evaluate its effectiveness and potential as an alternative photocatalytic material in wastewater treatment. Furthermore, the synthesis of rGO nanocomposites with ZrO2 (zirconium dioxide) is carried out using an in-situ hydrothermal method with NaBH4 as the reducing agent. The physical and chemical properties of the nanocomposites are characterized for their application in supercapacitors. Analysis is performed using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Raman Spectroscopy, UV-Vis Spectrophotometry, Fourier Transform Infrared (FTIR) Spectroscopy, and Electrochemical Impedance Spectroscopy (EIS). The results of this research show the successful synthesis of rGO/AgNPs nanocomposites using an in-situ hydrothermal method with NaBH4 as the reducing agent to test their photocatalytic activity against Pb ions. The photocatalytic performance, tested against Pb ions, achieved a maximum percentage of 44% after 1.5 hours of irradiation. Additionally, the rGO/ZrO2 nanocomposites were successfully synthesized using the in-situ hydrothermal method with NaBH4 as the reducing agent. The highest specific capacitance value of 482 F/g was obtained at rGO-ZrO2 = 1:2 ratio, using PANI in the H2SO4 electrolyte solution, as this condition resulted in a low resistance value of 238.53 ohms."
Depok: Fakultas Teknik Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
G.N. Anastasia Sahari
"Komposit keramik yang berbasis Al2O3 adalah material yang potensial untuk aplikasi temperatur tinggi. Reaksi antarmuka yang terjadi diantara matriks dan penguat penting dan merupakan penentu atau peran kunci dalam kemajuan aplikasi dari komposit keramik. Proses directed metal oxidation (dimox) merupakan salah satu proses pembuatan komposit matriks keramik yang fleksibel dan menawarkan kemampuan untuk membentuk komposit near-net shape dengan bermacam-macam komposisi dan mikrostruktur. Keberhasilan pembuatan komposit Al2O3/Al dengan proses ini dipengaruhi oleh dopant, waktu tahan, temperatur dan atmosfir tempat berlangsungnya proses.
Penelitian ini dilakukan dalam rangka menghasilkan komposit matriks keramik yang memiliki sifat mekanik yang baik dan antarmuka yang baik pula sebagai hasil dari reaksi antarmuka matriks dan penguat dalam meningkatkan ketangguhan dari matriks keramik. Temperatur proses yang digunakan 1100°C, 1200°C dan 1300°C dengan lamanya pemanasan 10 jam, 15 jam dan 24 jam untuk lingkungan atm dan temperatur proses yang digunakan untuk lingkungan N2 adalah 1100°C, 1150°C dan 1200°C dengan lamanya pemanasan 15 jam dengan persentase Mg sebagai dopant 5, 8, 10, 12 %. Hasil penelitian menunjukkan kedalaman infiltrasi maksimum dicapai pada waktu tahan proses 24 jam dengan 12% Mg dan temperatur 1300°C sebesar 29,34 mm, densitas maksimum dicapai pada waktu tahan proses 24 jam dengan 8% Mg pada temperatur 1100°C sebesar 3,50 gr/cm3, kekerasan mikro optimum dicapai pada waktu tahan proses 24 jam dengan 8% Mg dan temperatur 1100°C sebesar 1221 VHN, nilai fracture toughness maksimum pada waktu tahan proses 24 Jam dengan persentase 5% Mg dan temperatur 1300°C sebesar 8,25 MPa.m1/2. Reaksi antarmuka yang terbentuk dalam KMK Al2O3/Al adalah Al2O3, MgAl2O4, Mg3N2, AlN, AlSiO and MgSiO3.

Al2O3 based ceramic composites are potential materials for advanced temperature applications. Interfacial reaction that °Ccurs between the matrix and the reinforcement is the critical, determinant and the key role in advancing the application of ceramic composites. Directed melt oxidation (dimox) pr°Cess is one of the flexible way to produce ceramic matrix composites that offer the ability to form near-net shape composites in various compositions and microstructures. The successful manufacturing of Al2O3/Al composite using dimox pr°Cess is influenced by the dopant, holding time, temperature and the atmospheric circumstances on the site of the pr°Cess.
The research was performed in order to produce ceramic matrix composites that have reliable mechanical properties and good interface as a result of matrix interface and reinforcement reaction in improving the toughness of matrix ceramic. Pr°Cess temperature was set up at 1100 °C, 1200 °C and 1300 °C for 10 hours, 15 hours and 24 hours in furnace atmosphere, while the temperature pr°Cess was set up at 1100 °C, 1150 °C and 1200 °C in N2 atmosphere for 15 hours with the same Mg content various from 5, 8, 10 and 12% wt of Mg as the dopant. The results indicated that the maximum depth of infiltration was 29.34 mm achieved in 24 hours sample with 12% wt of Mg at 1300 °C. Generated density was 3.50 gr/cm3 which was the maximum density after 24 hours of the pr°Cess with 8% wt of Mg at 1100 °C. The optimum microhardness of 1221 VHN was achieved in 24 hours at 1100 °C with 8% wt of Mg. The maximum value of fracture toughness of 8.25 MPa.m1/2 which was achieved in 24 hours for sample with 5% wt of Mg at 1300 °C. The interfacial reaction was analyzed by XRD, content of phase that was formed by Al2O3/Al CMCs were Al2O3, MgAl2O4, Mg3N2, AlN, AlSiO and MgSiO3."
Depok: Universitas Indonesia, 2012
D1282
UI - Disertasi Open  Universitas Indonesia Library
cover
cover
Syari Nurulita
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2000
S29657
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Quinidine, stereoisomer quinine, dapat digunakan sebagai obat
jantung Sintesis organik dengan mengoksidasi quinine menjadi quininone
kemudian direduksi kembali dapat mengnasilkan quinidine. Melalui
quininone dapat juga disintesis derivat oksim yang diduga relatif kurang
toksik. Penelitian ini bertujuan untuk mensintesis quininone dengan metode
oksidasi menggunakan kromat. Pada oksidasi dilakukan modifikasi pada
sunu dan vvaktu reaksi serta bentuk quinine yang dioksidasi. Hasil penelitian dari analisis dengan kromatografi lapis tipis dan pengukuran spektrum serapan UV dan IR diperolen nasil banvva semua metode oksidasi yang digunakan dapat menghasilkan quininone Perbedaan terletak pada yield
produk yang dihasilkan Hal tersebut dipengaruhi oleh kondisi reaksi berupa
vvaktu, suhu, dan cara pemisanan yang belum dilakukan dan diketahui
dengan baik. Oksidasi yang mendapatkan hasil yang paling baik pada
penelitian ini adalan two phase oxidation dan oksidasi dengan kromat suhu
50°C dengan hasil berturut-turut sebanyak 6.9% dan 16% yang produknya
masih berupa campuran quinine dan quininone"
Universitas Indonesia, 2007
S30424
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Untuk memperoleh hasil yang optimal dalam reaksi oksidasi parsial Metana, perlu dicari rasio yang tepat antara Oksigen (O2) dan Metana (CH4) sebagai reaktan (rasio reaktan). Selain itu perlu dianalisa kemungkinan terbentuknya senyawa Karbon dalam bentuk padat. Analisa terhadap reaksi oksidasi parsial Metana dilakukan melalui pendekatan model matematika berupa Sistem Persamaan Non Linier (SPNL) yang dalam penyelesaiannya digunakan Metode Broyden. Hasil komputasi yang diperoleh dari penerapan Metode Broyden adalah bahwa tidak terbentuk senyawa Karbon dalam bentuk padat dan rasio reaktan sebesar 0.5767154 dapat memberikan hasil yang optimal. "
Universitas Indonesia, 2006
S27649
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ivan Afrianto
"Mekanisme yang terjadi pada peristiwa terbakar sendiri dari batubara adalah pemanasan lambat dan oksidasi yang dipicu dengan absorpsi oksigen pada temperatur rendah. Pada kondisi tertentu, dimana panas yang terjadi akibat oksidasi batubara ataupun reaksi isotermik lainnya ditiadakan. Akibat dari tidak adanya pertukaran kalor batubara dengan lingkungannya (kondisi adiabatik), temperatur batubara meningkat dan pembakaran spontan dapat terjadi.
Penelitian sifat terbakar sendirinya dengan menggunakan metode oksidasi adiabatik sebenarnya telah dilakukan. Akan tetapi metode yang telah digunakan ini menyebabkan terjadinya oksidasi yang tidak diinginkan pada saat awal pemanasan.
Adanya udara yang mengandung oksigen saat itu menyebabkan sampel batubara beroksidasi sehingga meningkatkan temperaturnya. Hal ini bisa menyebabkan kerusakan sampel batubara dan mempengaruhi karakteristik batubara itu sendiri.
Agar batubara tidak beroksidasi pada saat pemanasan awal maka dialirkan nitrogen sebagai gas inert. Proses pemanasan sendiri dilakukan sampai temperatur batubara sama dengan temperatur oven (40°C, 50°C, 60°C). Setelah temperatur batubara dan oven sama, gas inert (Nitrogen) diganti dengan udara. Pada saat itu batubara akan beroksidasi dan temperaturnya meningkat. Untuk mencapai kondisi adiabatik maka temperatur oven diatur agar mengikuti temperatur sampel.
Dengan menggunakan gas inert maka didapatkan metode oksidasi yang lebih baik. Metode ini dapat merefleksikan keadaan di alam dengan menggunakan temperatur rendah dan mengeliminir terjadinya perpindahan panas dari sampel ke lingkungan atau sebaliknya. Dari pengujian ini didapatkan grafik profil kenaikan temperatur terhadap waktu. Selain itu didapat nilai Initial Rate Heating (IRH) dan Total Temperatur Rise (TTR) yang merupakan faktor penting dalam penentuan klasifikasi resiko terbakar dengan sendirinya.

Mechanism of spontaneous heating of coal is dependent on the acumulation of heat generated from its oxidation reaction at low temperatur. The Heat is also absorbed by the thermal capacity of the coal as it rises in temperatur. If the heat generated from the process is greater than that lost from it, spontaneous combustion is likely to occur.
Adiabatic oxidation study on the propensity of pulverised coals to spontaneous combustion has been done. This method caused the sample contact with oxygen of air at temperatur ambient untill the coal reach initial temperatur. The coal slowly oxidises and its rises in temperatur. It can cause deterioration of the sample and thereby adversely affect the adiabatic oxidation test result.
To prevent partial oxidation of the sample, nitrogen gas flow was allowed to pass through the sample for at least 12-15 h to satabilise the test at a predetermined initial temperatur. All samples were tested at an initial temperatur 40°C, 50°C, 60°C.
Once the system had attained the desired test condition, the nitrogen flow was cut off and airflow was allowed to pass through the coal sample. At the time, the coal will oxidises and its rises the temperatur. Approach adiabtic condition can be made by keeping heat transfer fixed while varying oven temperatur equals to sample temperatur. The application of an adabatic oxidation method is considered more realistic since it would describe coal behavior in the field. From experiments we get the grafic, temperatur rise versus time, Initial Rate Heating (IRH) and Total Temperatur Rise (TTR).
"
Depok: Fakultas Teknik Universitas Indonesia, 2003
S37062
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>