Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 122530 dokumen yang sesuai dengan query
cover
Sidabutar, Yohana Muriana
"Sistem peringatan dini gempa bumi bertujuan memberikan respons cepat segera setelah terdeteksi gelombang P, sebelum gelombang destruktif mencapai permukaan. Penelitian ini mengembangkan model klasifikasi gempa menggunakan arsitektur Convolutional Neural Network (CNN) 1D berbasis data seismometer dari Stanford Earthquake Dataset (STEAD). Deteksi awal kedatangan gelombang P dilakukan menggunakan metode Short-Term Average/Long-Term Average (STA/LTA), kemudian sinyal dipotong dalam beberapa variasi jendela waktu sebagai input model. Model dikembangkan dengan dua parameter ground motion sebagai label klasifikasi biner, yaitu Peak Ground Velocity (PGV) dan Peak Ground Acceleration (PGA), untuk membedakan gempa besar dan kecil. Hasil evaluasi menunjukkan bahwa jendela 3 detik setelah gelombang P memberikan performa terbaik, dengan akurasi sebesar 95,45% untuk PGV dan 94,95% untuk PGA. PGV menunjukkan stabilitas metrik yang lebih baik, terutama dalam mengenali gempa besar. Penelitian ini menunjukkan bahwa informasi pada fase awal sinyal cukup untuk mendukung klasifikasi cepat dan akurat. Penelitian ini diharapkan dapat memberikan kontribusi terhadap pengembangan sistem peringatan dini gempa bumi berbasis deep learning.

Earthquake early warning systems aim to provide a rapid response immediately after the detection of P-waves, before destructive shaking reaches the surface. This study develops an earthquake classification model using a one-dimensional Convolutional Neural Network (1D CNN) architecture, based on seismometer data from the Stanford Earthquake Dataset (STEAD). The initial detection of P-wave arrivals is performed using the Short-Term Average/Long-Term Average (STA/LTA) method, followed by segmentation of the signal into several time window variations for model input. The model is trained using two ground motion parameters as binary classification labels, namely Peak Ground Velocity (PGV) and Peak Ground Acceleration (PGA), to differentiate between large and small earthquakes. Evaluation results show that the 3-second window after the P-wave arrival yields the best performance, with an accuracy of 95.45% for PGV and 94.95% for PGA. PGV demonstrates better metric stability, particularly in recognizing large earthquakes. These findings suggest that information from the early phase of seismic signals is sufficient to support fast and accurate classification. This study contributes to the advancement of deep learning-based earthquake early warning systems that are both efficient and reliable. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risa Annisa
"Seismometer adalah instrumen penting dalam memantau gempa bumi dan aktivitas seismik lainnya. Namun, kinerjanya dapat menurun seiring waktu karena berbagai faktor, seperti kondisi lingkungan, komponen yang menua, dan gangguan eksternal. Hal ini dapat menyebabkan pengumpulan data yang tidak akurat. Saat ini belum ada metode yang dapat digunakan untuk mengevaluasi kinerja seismometer. Dalam penelitian ini, mengembangkan metode diagnosis kesehatan seismometer yang berbasis pada analisis sinyal seismik.  Metode yang dikembangkan mengunakan model machine learning SVM dan random forest  berdasarkan feature korelasi silang dan  rasio amplitudo,  Metode ini menghasil kan 4 indikator kesehatan yaitu Excellent, Good, Fair dan Poor, Nilai korelasi silang dan rasio amplitudo di dapatkan  melalui korelasi antara 2 jenis sinyal seismik yaitu sinyal seismik target dan beberapa sinyal seismik referensi sehingga dapat diketahui bahwa seismometer yang dalam kondisi sangat bagus memiliki nilai korelasi silang dan rasio amplitudo ± 0.9 – 1. Metode yang digunakan sudah dievaluasi dengan mengunakan 6 event gempa teleseismik : Jepang 2024, Alaska Peninsula 2023, New Caledonia 2023, Turkey 2023, Tongga 2023 dan Solomon 2022 dengan model SVM dan Random Forest untuk mengklasifikasikan kesehatan seismometer didapatkan akurasi 95 % dna 88 %.

Seismometers are crucial instruments for monitoring earthquakes and other seismic activities. However, their performance can degrade over time due to various factors such as environmental conditions, aging components, and external disturbances. This can lead to inaccurate data collection. Currently, there is no method available to evaluate the performance of seismometers. In this study, we developed a seismometer health diagnosis method based on seismic signal analysis. The developed method uses SVM and random forest machine learning models based on cross-correlation features and amplitude ratios. This method produces four health indicators: Excellent, Good, Fair, and Poor. The cross-correlation values and amplitude ratios are obtained through the correlation between two types of seismic signals, namely the target seismic signal and several reference seismic signals. It can be known that seismometers in excellent condition have cross-correlation values and amplitude ratios of approximately 0.9 – 1. The method used has been evaluated using six teleseismic earthquake events: Japan 2024, Alaska Peninsula 2023, New Caledonia 2023, Turkey 2023, Tonga 2023, and Solomon 2022. Using SVM and Random Forest machine learning models to classify seismometer health, accuracies of 95% and 88% were obtained respectively."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Syamsul Erisandy Arief
"Hadirnya beragam layanan penyintesis suara manusia di Internet memungkinkan siapa pun untuk melakukan sintesis suara manusia dengan memanfaatkan layanan ini. Di tangan yang salah, teknologi ini dapat merugikan masyarakat awam dan meningkatkan peluang keberhasilan penipuan. Maraknya layanan penyintesis suara manusia yang sudah hampir tidak dapat dibedakan oleh telinga manusia memberikan keluangan untuk menghadirkan sebuah sistem yang dapat membedakan suara manusia dengan suara manusia sintetis. Penelitian ini memanfaatkan teknologi pembelajaran mesin yang berupa Convolutional Neural Networks pada spektogram suara manusia dari himpunan data pelatihan dengan 16 suara manusia yang berisikan 4 suara pria asli, 4 suara pria sintetis, 4 suara wanita asli, dan 4 suara wanita sintetis dengan jumlah 1.008 berkas rekaman suara manusia berformat WAV yang telah dirancang dan dibuat khusus untuk penelitian ini dengan pembagian pelatihan dan validasi sebesar 80% dan 20% secara berurut. Hasil akhir dari penelitian ini memberikan sebuah model CNN dengan bobotnya yang memberikan nilai data loss sekecil 0,00022 dan sebuah sistem yang dapat melakukan deteksi keaslian suara manusia berdasarkan berkas rekaman suara manusia dan model CNN serta bobot yang diberikan.

The presence of human voice synthesis services on the Internet allows everyone to create synthetic human voices by leveraging these services. In the wrong hands, this technology could harm unsuspecting citizens and promote chances of scams. The abundance of human voice synthesis service that is almost indistinguishable by human ears gave presence to a system that could distinguish between real and synthetic human voices. This study leverages machine learning technology in the form of Convolutional Neural Networks on a spectrogram from a training dataset with 16 different human voices consisting 4 authentic men voices, 4 synthetic men voices, 4 authentic women voices, and 4 synthetic women voices with the total of 1,008 WAV formatted human voice recording files that was designed and made specifically for this study with the splitting ratio for training and validation set to 80% and 20% respectively. The end result of this study produces a CNN model and its weights with a data loss score of 0.00022, as well as a system that can perform authenticity detection on a human voice based on the given human voice recording file and the CNN model with its weights."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
DP. Nala Krisnanda
"Mengemudi dalam keadaan mengantuk merupakan salah satu bentuk kelalaian dalam berkendara yang dapat membahayakan. Oleh karena itu, penelitian ini ditujukan untuk merancang dan membangun sebuah sistem pendeteksi kantuk yang mampu memperingatkan pengemudi apabila sudah berada pada kondisi yang memerlukan istirahat. Sistem yang dikembangkan berupa sebuah aplikasi Android yang memanfaatkan tiga jenis sensor yaitu kamera depan sebagai sumber data citra wajah dengan resolusi 480p, perangkat EEG portabel sebagai sumber data gelombang otak dan MiBand sebagai sumber data detak jantung. Data dari ketiga sensor ini selanjutnya akan digunakan sebagai input bagi sebuah model neural network untuk melakukan deteksi kantuk. Dari penelitian ini didapatkan hasil bahwa arsitektur 1D CNN lebih cocok digunakan sebagai model dalam sistem pendeteksi kantuk dibandingkan dengan LSTM. Interval waktu 4 menit digunakan pada sistem pendeteksi kantuk yang dikembangkan karena dinilai paling optimal untuk digunakan. Dengan menggunakan data dari sepuluh partisipan, model mampu mendapatkan validation accuracy sebesar 96.30%. Sedangkan dari 12 kali percobaan pengujian sistem pendeteksi kantuk yang dikembangkan, sistem mampu melakukan klasifikasi kantuk dengan tingkat akurasi sebesar 83.3%

 


Driving in a drowsy condition is one form of carelessness in driving that can be dangerous. Therefore, this research is intended to design and build a drowsy detection system that can warn the driver when they are in a condition that requires to rest. The system was developed in the form of an Android application that utilizes three types of sensors, which are the front camera as a source of face image with 480p resolution, portable EEG devices as a source of brainwaves data and MiBand as the source of heart rate data. Collected data from these three sensors will then be used as input for a neural network model to detect drowsiness. From this study it was found that the 1D CNN architecture is the most suitable to be used as a model in drowsiness detection systems compared to LSTM. A 4-minute time interval is used in the drowsy detection system that was developed because it was considered as the most optimal. By using data from ten participants, the model was able to get a validation accuracy of 96.30%. While from 12 trials of drowsiness detection system testing that was developed, the system can do drowsiness classification with an accuracy rate of 83.3%

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khalishia Fira Haninda
"Diagnosis dini penyakit Parkinson mempengaruhi lebih dari 10 juta individu di seluruh dunia pada tahun 2020. Penyakit Parkinson sering kali bergantung pada gejala motorik, seperti bradikinesia, tremor saat istirahat, kekakuan, dan gangguan postural. Namun, pendekatan diagnosis klinis penyakit Parkinson memiliki keterbatasan dalam mengidentifikasi perubahan struktural otak pada tahap awal karena bergantung pada penilaian subyektif gejala motorik. Penelitian ini bertujuan untuk mengevaluasi efektivitas algoritma deep learning berbasis Convolutional Neural Network (CNN) dalam membedakan citra MRI otak pasien Parkinson dan pasien normal (control), dengan fokus pada area substantia nigra dengan orientasi sagital. Dataset diperoleh pada penelitian ini bersumber dari PPMI dan terdiri atas citra MRI dari pasien Parkinson dan kontrol sehat, yang diambil menggunakan fabrikasi Siemens AG. Proses pra-pemrosesan meliputi skull-stripping secara manual menggunakan perangkat lunak 3D Slicer dan pembagian data secara patient-wise ke dalam set pelatihan dan pengujian. Transfer learning diterapkan dengan menggunakan dua model arsitektur yaitu VGG-19 dan ResNet-50. Hasil menunjukkan bahwa kedua model mencapai akurasi validasi sebesar 67,07%, dengan irisan terbaik berbeda untuk masing-masing model (irisan 105 untuk VGG-19 dan irisan 36 untuk ResNet-50). Hasil akurasi pelatihan mendekati 100%, yang mengindikasikan overfitting akibat keterbatasan jumlah data. Visualisasi menggunakan metode Gradient-weighted Class Activation Mapping (Grad-CAM) diterapkan pada setiap irisan terbaik beserta lima irisan sebelum dan sesudahnya, yang menunjukkan pola aktivasi konsisten di area otak tengah, khususnya di sekitar substantia nigra. Temuan ini mengkonfirmasi relevansi biomarker struktural dan menunjukkan potensi pendekatan CNN dan Grad-CAM dalam membedakan karakteristik otak pasien penyakit Parkinson. Penelitian ini memperlihatkan bahwa algoritma deep learning per irisan meningkatkan akurasi klasifikasi, membantu dalam identifikasi area otak yang relevan dengan penyakit Parkinson, dan berpotensi mendukung identifikasi biomarker percitraan medis.

Early diagnosis of Parkinson’s disease affected more than 10 million individuals worldwide in 2020. Parkinson’s disease is often identified based on motor symptoms, such as bradykinesia, resting tremor, rigidity, and postural instability. However, clinical diagnostic approaches have limitations in detecting early structural changes in the brain due to their reliance on the subjective assessment of motor symptoms. This study aims to evaluate the effectiveness of deep learning algorithms based on Convolutional Neural Networks (CNNs) in distinguishing brain MRI images of Parkinson’s patients and healthy controls, with a focus on the substantia nigra area in sagittal orientation. The dataset used in this study was obtained from PPMI and consists of MRI images from Parkinson’s patients and healthy controls, acquired using Siemens AG equipment. The pre-processing stage included manual skull-stripping using 3D Slicer software and patient-wise data splitting into training and testing sets. Transfer learning was applied using two architectural models: VGG-19 and ResNet-50. The results showed that both models achieved a validation accuracy of 67.07%, with different best slice for each model (slice 105 for VGG-19 and slice 36 for ResNet-50). The training accuracy approached 100%, indicating overfitting due to the limited data size. Visualization using the Gradient-weighted Class Activation Mapping (Grad-CAM) method was applied to each best slice along with five slices before and after, showing consistent activation patterns in the midbrain area, particularly around the substantia nigra. These findings confirm the relevance of structural biomarkers and highlight the potential of CNN and Grad-CAM approaches in differentiating brain characteristics in Parkinson’s disease. This study demonstrates that per-slice deep learning algorithms improve classification accuracy, assist in identifying brain regions relevant to Parkinson’s disease, and have the potential to support imaging-based biomarker discovery in medical diagnostics. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amalia Chusna Mohtar
"Penelitian ini bertujuan mengembangkan model prediksi kanker payudara dengan Convolutional Neural Networks (CNN) dan analisis citra medis untuk mendeteksi lesi yang bersifat jinak maupun ganas. Data yang digunakan mencakup citra mamogram dari CBIS-DDSM serta data primer dari rumah sakit. Tahap pertama melibatkan penggunaan algoritma YOLO untuk segmentasi breast tissue, guna menghapus noise latar belakang dan memastikan fokus pada area diagnostik yang relevan. Selanjutnya, diterapkan teknik Contrast Limited Adaptive Histogram Equalization (CLAHE) untuk meningkatkan kontras dan menonjolkan detail struktural. Ekstraksi fitur dari full mammogram dan Region of Interest (ROI) mask kemudian digabungkan dalam arsitektur CNN multi-input untuk klasifikasi biner kanker payudara. Hasil evaluasi menunjukkan bahwa meskipun model mencapai akurasi training yang tinggi (antara 95% hingga 98%), akurasi pada data validasi baru berkisar pada 56% hingga 63%, dengan nilai F1-score masing-masing 0,69 untuk kasus benign dan 0,55 untuk kasus malignant, serta AUC-ROC sebesar 0,57. Temuan ini mengindikasikan adanya tantangan overfitting dan kurang optimalnya pemisahan antara kelas benign dan malignant. Penelitian ini memberikan kontribusi penting sebagai langkah awal dalam pengembangan sistem diagnosis dini yang dapat mendukung proses pengambilan keputusan klinis.

This study aims to develop a breast cancer prediction model using Convolutional Neural Networks (CNN) and medical image analysis to detect both benign and malignant lesions. The data utilized includes mammogram images from CBIS-DDSM and primary data collected from a hospital. The initial stage employs the YOLO algorithm to segment breast tissue, removing background noise and ensuring focus on diagnostically relevant areas. Subsequently, Contrast Limited Adaptive Histogram Equalization (CLAHE) is applied to enhance image contrast and emphasize structural details. Feature extraction from full mammograms and Region of Interest (ROI) masks is then combined in a multi-input CNN architecture for binary breast cancer classification. Evaluation results indicate that although the model achieves high training accuracy (ranging from 95% to 98%), validation accuracy remains between 56% and 63%. The F1-scores are 0.69 for benign cases and 0.55 for malignant cases, with an AUC-ROC of 0.57. These findings highlight challenges related to overfitting and suboptimal class separability between benign and malignant categories. This research serves as an important initial step toward developing an early diagnostic support system to aid clinical decision-making. "
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mila Apriani
"Indonesia memiliki tingkat aktivitas seismik yang tinggi, sehingga penentuan magnitudo gempabumi penting dalam Sistem Peringatan Dini Gempabumi. Dalam Sistem Peringatan Dini Gempabumi, besaran parameter magnitudo gempabumi harus diperkirakan lebih awal, sehingga peringatan dini dapat disebarluaskan sebelum gelombang S dan surface datang. Dalam studi sebelumnya, teknologi Machine learning dapat digunakan untuk mengenali peristiwa gempa bumi dan mengekstrak informasi tersembunyi dengan kumpulan data yang besar. Penelitian ini merupakan penelitian pendahuluan, mengusulkan metode alternatif untuk menghitung magnitudo gempa secepat mungkin, datanya 1 detik sebelum dan 3 detik setelah gelombang P dari data historis raw seismogram stasiun tunggal 3 komponen, stasiun BLJI, Indonesia, serta dikembangkan dengan deep neural network (DNN) tipe regresi dan deep neural network (DNN) tipe klasifikasi. Hasil dari penelitian, penulis menghitung estimasi nilai magnitudo momen broadband di wilayah Indonesia, dan menunjukkan model alternatif terbaik yang dapat digunakan untuk perhitungan magnitudo secara cepat pada stasiun seismik BLJI adalah dengan menggunakan deep neural network regresi dengan akurasi 93.33% dan MAPE 6.67%.

Indonesia has a high level of seismic activity, so determining earthquake magnitudo is important in the Earthquake Early Warning System. In the Earthquake Early Warning System, the magnitudo of the parameter magnitudo must be estimated earlier, so that warnings can be issued before the S waves and the surface arrive. In previous studies, machine learning technology could be used to recognize earthquake events and extract hidden information with large data sets. This research was a preliminary study, proposing an alternative method to calculate the earthquake magnitudo as quickly as possible, the data was 1 second before and 3 seconds after the P wave from historical data of raw seismograms for single 3-component stations, BLJI stations, Indonesia, and developed with regression and classification type deep neural network (DNN). The results of the research, were an estimated magnitudo value of the moment of broadband in the territory of Indonesia, and shows the best alternative model that can be used for rapid magnitude at the BLJI seismic station was deep neural network regression with an accuracy of 93.33% and MAPE 6.67%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rizki Laksmana Pratama
"Turbiditas merupakan salah satu indikator yang dapat digunakan untuk menilai kualitas air. Turbiditas dapat diukur menggunakan instrumen konvensional seperti turbidimeter, spektrofotometer, dan nefelometri visual. Namun, semua instrumen tersebut memiliki kekurangannya masing-masing, seperti biaya yang relatif tinggi dan kurang efisien. Pada penelitian ini diusulkan metode pengukuran yang lebih terjangkau dan efisien dengan memanfaatkan kamera ponsel, serta model regresi support vector regression dan EfficientNet-B0 berbasis convolutional neural network sebagai instrumen pengukuran. Akuisisi citra dilakukan di dua lingkungan. Lingkungan 1 didefinisikan sebagai lingkungan dengan cahaya langsung yang menyinari sampel, mengikuti prinsip turbidimetri, sedangkan lingkungan 2 didefinisikan sebagai lingkungan dengan pencahayaan yang bergantung hanya kepada cahaya sekitar dengan intensitas cahaya yang tak tentu. Citra yang telah diakuisisi oleh ponsel melalui berbagai proses prapengolahan data seperti segmentasi, augmentasi, penerapan filter Gaussian, dan ekstraksi fitur saturasi dan tekstur sebelum diteruskan ke model regresi. Dari hasil evaluasi didapatkan kesimpulan bahwa model EfficientNet-B0 lebih unggul dibandingkan dengan support vector regresssion dengan fitur saturasi, tekstur maupun gabungan. Model EfficientNet-B0 mendapatkan nilai R2 sebesar 0.992, MAE sebesar 2.474 dan MSE sebesar 10.669 untuk citra lingkungan 1, dan nilai R2 sebesar 0.97, MAE sebesar 3.333 dan MSE sebesar 29.137 untuk citra lingkungan 2.

Turbidity is an indicator that can be used to assess water quality. Turbidity can be measured using conventional instruments such as turbidimeter, spectrophotometer, and visual nephelometry. However, all of these instruments have their respective drawbacks, such as relatively high costs and inefficient. In this study, a more affordable and efficient measurement method is proposed by utilizing a cellphone camera, as well as a support vector regression and EfficientNet-B0 model based on convolutional neural network as a measurement instrument. Image acquisition will be carried out in two environments. Environment 1 is defined as an environment with direct light shining on the sample, following the principle of turbidimetry, while environment 2 is defined as an environment in which the illumination depends on the ambient light with an indeterminate light intensity. The image that has been acquired by the cellphone will go through various data preprocessing processes such as segmentation, augmentation, application of Gaussian filters, and extraction of saturation and texture features before being forwarded to the regression model. From the evaluation results, it can be concluded that the EfficientNet-B0 model is superior to the support vector regression with saturation, texture, or combined features. The EfficientNet-B0 model gets an R2 value of 0.992, an MAE of 2.474 and an MSE of 10,669 for environment 1 image, and an R2 value of 0.97, an MAE of 3.333 and an MSE of 29,137 for environment 2 image."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadhlan Akmal Prasetianto
"Uji kendali mutu pada citra mamografi dengan menggunakan fantom CDMAM merupakan langkah penting dalam memastikan kualitas proses diagnostik pada pesawat mamografi. Namun, untuk mengatasi masalah variabilitas manusia dan meningkatkan efisiensi waktu, penggunaan Convolutional Neural Network (CNN) dapat menjadi solusi yang akurat dalam menganalisis citra fantom CDMAM. Penelitian ini menerapkan arsitektur CNN Resnet50 pada total 1.392 citra fantom CDMAM dengan dan tanpa regularizer L2. Hasil prediksi CNN pada rentang diameter 0,10 hingga 0,20 mm menunjukkan tingkat prediksi dengan tingkat kesalahan relatif di bawah 32% pada prediksi satuan dan di bawah 16% pada rata-rata prediksi dari 16 citra. Dari hasil prediksi yang diperoleh, diperlukan optimasi lebih lanjut untuk mencapai akurasi prediksi yang lebih tinggi.

Quality control testing on mammography images using CDMAM phantoms is an important step in ensuring the quality of the diagnostic process in mammography devices. However, to overcome human variability issues and improve time efficiency, the use of Convolutional Neural Network (CNN) can be an accurate solution for analyzing CDMAM phantom images. This study applied the CNN architecture ResNet50 to a total of 1.392 CDMAM phantom images with and without L2 regularizer. The CNN prediction results for the diameter range of 0,10 to 0,20 mm showed prediction with relative error below 32% for individual predictions and below 16% for average predictions from 16 images. Based on the obtained prediction results, further optimization is needed to achieve higher prediction accuracy.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Luthfi Ramadhan
"Pengawasan distribusi bahan radioaktif atau radionuklida merupakan hal yang penting. Hal ini mengingat bagaimana serangan dan terorisme berbasis radioaktif merupakan ancaman yang nyata. Untuk itu, diperlukan suatu algoritma yang dapat digunakan untuk mendeteksi keberadaan dan jenis dari radionuklida. Algoritma identifikasi radioaktif atau RIID (Radioisotope Identification) telah disusun secara klasik menggunakan metode seperti peak-matching atau ROI (Region of Interest). Akan tetapi, performa dari algoritma tersebut sudah didahului dengan munculnya machine learning. Salah satu subdisiplin dari machine learning, yakni deep learning, melahirkan apa yang dinamakan dengan CNN atau Convolutional Neural Network. Jenis algoritma machine learning ini sudah jamak digunakan untuk permasalahan identifikasi dan pengenalan obyek. Di dalam kerangka RIID sendiri, studi yang membahas mengenai penggunaan CNN sebagai algoritma identifikasi radionuklida sudah tidak dapat dihitung menggunakan jari. Teknik baru seperti transformasi spektrum gamma dari radionuklida menjadi data 2-D seperti suatu citra mulai diperkenalkan beberapa tahun terakhir. Penelitian ini menggabungkan teknik tersebut dengan proses colormapping, yakni ‘pewarnaan’ dari data skalar yang bergantung pada nilai data tersebut. Melalui penggabungan teknik tersebut, model CNN yang disusun pada penelitian ini mampu untuk melakukan identifikasi multikelas radionuklida dengan akurasi di atas 95%.

Monitoring the distribution of radioactive materials or radionuclides is important. This is because radioactive attacks and terrorism are a real threat. To solve this problem, it is imperative to build an algorithm that can be used to detect and identify the presence of radionuclides. Radionuclide identification or (RIID) algorithm has been made classically using methods such as peak-matching or ROI (Region of Interest). However, the performance of these algorithms has been superseded by the emergence of machine learning. One of the sub-disciplines of machine learning, that is deep learning, has given birth to what is called CNN or Convolutional Neural Network. This machine learning algorithm has been used far and wide to solve object detection and identification problems. Within the RIID framework itself, studies discussing the use of CNN as a radionuclide are already plentiful. New techniques such as transforming the gamma spectrum of radionuclides into 2-D data have been introduced in recent years. This study attempts to combine this technique with color mapping, which is the pseudo-coloring of scalar data which depends on the value of the data. Through this combined technique, CNN models that are devised in this study can perform multiclass radionuclide identification with an accuracy higher than 95%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>