Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 85053 dokumen yang sesuai dengan query
cover
Adhitya Wirapraja Sonjaya Putra
"Pulau Jawa merupakan daerah subduksi lempeng tektonik indo-australia terhadap lempeng sunda, hal tersebut membentuk relief rupa bumi Pulau Jawa menjadi persebaran pegunungan dan perbukitan, akibatnya banyak ditemukan lereng-lereng dengan tingkat kemiringan bervariasi dari kemiringan landai hingga kemiringan curam, lereng dengan masa yang tidak stabil dapat menyebabkan terjadinya perpindahan blok massa batuan atau yang biasa disebut pergerakan tanah dalam bentuk tanah longsor. Dampak dari bencana longsor ini dapat menimbulkan banyak kerugian mulai dari korban jiwa, kerusakan properti, rusaknya persawahan dan Perkebunan, akses jalan yang tertutup longsor dan lainya sehingga menyebabkan tanah longsor sebagai salah satu bencana alam yang harus diwaspadai khususnya di wilayah yang rentan terhadap potensi gerakan tanah. Wilayah selatan dari Pulau Jawa merupakan daerah yang rentan terhadap pergerakan tanah, hal tersebut dikarenakan banyaknya persebaran perbukitan dan pegunungan di selatan Pulau Jawa, yang salah satunya adalah Kabupaten Garut yang terletak di bagian selatan Provinsi Jawa Barat. Penelitian ini ditujukan untuk mempelajari potensi pergerakan tanah dari Kabupaten Garut dengan melakukan pemetaan zonasi kerentanan gerakan tanah (ZKGT) dengan menggunakan perhitungan nilai rasio frekuensi (FR) dan analisis pengolahan data menggunakan metode analytical hierarchy process (AHP) sehingga dapat menghasilkan data seakurat mungkin.

Java Island is an area of ​​subduction of the Indo-Australian tectonic plate towards the Sunda plate, this forms the landform relief of Java Island into a distribution of mountains and hills, as a result many slopes are found with varying degrees of slope from gentle slopes to steep slopes, slopes with irregular mass. Stability can cause movement of rock mass blocks or what is usually called ground movement in the form of landslides. The impact of this landslide disaster can cause many losses ranging from loss of life, property damage, damage to rice fields and plantations, road access being blocked by landslides and so on, causing landslides as one of the natural disasters that must be watched out for, especially in areas that are vulnerable to potential ground movements. The southern region of Java Island is an area that is vulnerable to land movement, this is due to the large distribution of hills and mountains in the south of Java Island, one of which is Garut Regency which is located in the southern part of West Java Province. This research is aimed at studying the potential for land movement in Garut Regency by mapping land movement susceptibility zoning (ZKGT) using Frequency Ratio (FR) value calculations and data processing analysis using the analytical hierarchy process (AHP) method so that it can produce as accurate data as possible. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aulya Ulfah Rahmadhani
"Gerakan tanah termasuk bencana geologi yang menimbulkan kerugian besar di Kabupaten Bogor dan Kota Bogor. Untuk meminimalisasi kerugian tersebut, dilakukan prediksi kerentanan bencana gerakan tanah di wilayah tersebut. Dalam penelitian ini, prediksi divisualisasikan dalam bentuk peta kerentanan bencana gerakan tanah. Untuk menghasilkan peta prediksi, digunakan dua metode, yaitu Analytical Hierarchy Process (AHP) dan Frequency Ratio Model (FRM). Sebanyak 71 titik gerakan tanah di daerah penelitian dikumpulkan. Data tersebut bermanfaat dalam pengolahan 17 faktor yang dipertimbangkan dalam memprediksi kerentanan bencana gerakan tanah, diantaranya: kemiringan lereng, bentuk lereng, aspek lereng, topographic wetness index (TWI), stream power index (SPI), elevasi, jarak terhadap sungai, kerapatan sungai, jarak terhadap kelurusan, kerapatan kelurusan, normalized differential vegetation index (NDVI), jenis litologi, jenis tanah, curah hujan, tutupan lahan, jerak terhadap jalan, dan kerapatan bangunan. Setelah didapatkan peta potensi, risiko, dan bencana gerakan tanah di Kabupaten Bogor dan Kota Bogor, dilakukan validasi menggunakan grafik rasio frekuensi dan uji mekanika tanah. Dari hasil validasi, didapatkan peta potensi, risiko, dan bencana gerakan tanah daerah penelitian tervalidasi. Berdasarkan peta tersebut, daerah penelitian memiliki kerentanan terhadap bencana gerakan tanah semakin tinggi dari utara ke selatan. Dari kedua metode, Frequency Ratio Model (FRM) lebih cocok digunakan di daerah penelitian dibandingkan Analytical Hierarchy Process.

Landslide is one of the geological disasters which causes massive loss in Bogor Regency and Bogor City. To minimize such damage, landslide susceptibility prediction is proposed. In this study, landslide susceptibility prediction visualized as landslide susceptibility maps of Bogor Regency and Bogor City. To obtain that maps, two methods were applied, Analytical Hierarchy Process (AHP) and Frequency Ratio Model (FRM). At least 71 points of landslide were collected. Those data is used in 17 triggering factors processing considered in the prediction. Those are: slope angle, slope curvature, slope aspect, topographic wetness index, stream power index, elevation, distance to drainage, drainage density, distance to lineaments, lineaments density, normalized differential vegetation index, lithology types, soil types, annual rainfall intensity, land use, distance to roads, and building density. After landslide hazard, risk, and susceptibility map in Bogor Regency and Bogor City are made, the next step is to validate those maps using frequency ratio graphic and direct shear test. Based on prediction maps obtained, we can conclude that the landslide susceptibility from the north side to the south side relatively increases. We can also conclude that Frequency Ratio Model (FRM) method is way better than Analytical Hierarchy Process (AHP)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adam Abdullah Adiwijaya
"

Tanah longsor merupakan pergerakan material pembentuk lereng (tanah, batuan, dan campurannya) pada bidang longsor atau lereng yang bergerak secara cepat atau singkat dalam jumlah atau volume yang relatif besar. Selama 10 tahun terakhir telah terjadi lebih dari 125 kasus tanah longsor di Kabupaten Banyumas dan menghasilkan banyak kerugian dan korban. Pembuatan peta kerentanan tanah longsor menjadi salah satu solusi untuk dapat mengurangi kerugian akibat tanah longsor. Penelitian ini bertujuan untuk menentukan zona kerentanan tanah longsor di Kabupaten Banyumas menggunakan metode analysis hierarchy process (AHP) dan metode frequency ratio (FR). Penelitian ini dilakukan menggunakan data kejadian tanah longsor sebanyak 125 titik yang dibagi menjadi 2 set data yaitu training data (70%) dan testing data (30%). Pengolahan dan analisis untuk membuat peta kerentanan terhadap dua metode dilakukan menggunakan training data dengan acuan delapan parameter yang berpengaruh terhadap tanah longsor, yaitu kemiringan lereng, elevasi, arah lereng, litologi, curah hujan, penggunaan lahan, jarak terhadap sungai, dan jarak terhadap sesar. Hasil pengolahan data dan analisis menggunakan kedua metode adalah dua buah peta kerentanan tanah longsor yang masingmasingnya dibagi menjadi empat kelas kerentanan. Peta kerentanan juga divalidasi menggunakan training data (success rate) dan testing data (predictive rate) untuk mengetahui akurasi model yang dibuat. Hasil validasi menunjukkan kedua metode menghasilkan nilai AUC yang cukup baik dan dapat diterima, tetapi metode AHP memiliki nilai AUC yang lebih tinggi dari metode FR.


Landslides are the rapid or sudden movement of materials forming slopes (soil, rocks, and their mixtures) in large amounts or volumes. Over the past 10 years, there have been more than 200 cases of landslides in Banyumas Regency, resulting in significant losses and casualties. The creation of a landslide vulnerability map is one solution to reduce the damages caused by landslides. This study aims to determine the zone of landslide vulnerability in Banyumas Regency using the Analytic Hierarchy Process (AHP) and Frequency Ratio (FR) methods. The study utilizes data from 100 landslide incidents, divided into two sets: training data (70%) and testing data (30%). Processing and analysis to create vulnerability maps for both methods are carried out using the training data with reference to eight parameters influencing landslides: slope gradient, elevation, slope aspect, lithology, rainfall, land use, distance to rivers, distance to faults, and distance to roads. The processing and analysis results using both methods produce two landslide vulnerability maps, each divided into four vulnerability classes. The vulnerability maps are also validated using the training data (success rate) and testing data (predictive rate) to assess the accuracy of the models created. The validation results indicate different values for the success rate and predictive rate, where the frequency ratio method has a higher success rate, and the AHP method has a higher predictive rate.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Feri Haldi
"Gerakan tanah merupakan bencana alam yang banyak menimbulkan kerugian harta benda, korban jiwa maupun luka-luka, kerusakan properti dan juga infrastruktur. Salah satu cara untuk mengurangi kerugian tersebut adalah dengan melakukan pemetaan potensi bencana gerakan tanah (slide hazard zonation). Pemetaan potensi bencana gerakan tanah dilakukan di Kabupaten Bandung Barat yang merupakan salah satu daerah di Indonesia dengan frekuensi keterjadian gerakan tanah yang tinggi. Metode yang digunakan adalah dengan menggunakan Analytical Hierarchy Process (AHP). Pada penelitian ini digunakan 15 faktor pemicu terjadinya gerakan tanah, yaitu sudut lereng, arah lereng, kelas lereng, elevasi, elevasi relatif, Stream Power Index (SPI), Topographic Wetness Index (TWI), Normalized Differential Vegetation Index (NDVI), kerapatan liniasi, jarak terhadap liniasi, litologi, jenis tanah, curah hujan, kerapatan sungai, dan juga jarak terhadap sungai. Sedangkan faktor risiko gerakan tanah berupa penggunaan lahan, kerapatan bangunan, dan juga jarak terhadap jalan. Kabupaten Bandung Barat secara umum memiliki potensi kerentanan gerakan tanah moderate dengan persentase area sebesar 17,37%. Sedangkan kelas very low menyusun sekitar 15,97% luas daerah penelitian, low 16,96%, moderately high 16,75%, high 16,73%, dan juga very high 16,19%. Sedangkan untuk risiko gerakan tanah Kabupaten Bandung Barat didominasi area dengan tingkat moderately high dengan persentase area sebesar 22,36%. Sedangkan kelas very low menyusun sekitar 15,95% luas daerah penelitian, low 16,79%, moderate 18,70%, high 15,57%, dan juga very high 10,59%. Untuk potensi bencana gerakan tanah, Kabupaten Bandung Barat didominasi oleh tingkat moderate dengan persentase area sebesar 18,41%. Sedangkan kelas very low menyusun sekitar 15,22% luas daerah penelitian, low 15,20%, moderately high 16,88%, high 17,14%, dan juga very high 17,12%.

Landslide is a natural disaster that causes a huge loss in properties, fatalities, and public utilities. One of the ways to decrease those loss is by mapping the landslide susceptibility area (landslide hazard zonation). The landslide susceptibility mapping was applied in West Bandung Regency because the area has high landslide occurence frequency. The method used in this research is the Analytical Hierarchy Process (AHP). There are 15 landslide triggering factors considered in this research, such as: slope angle, slope aspect, slope curvature, elevation, relative elevation, Stream Power Index (SPI), Topographic Wetness Index (TWI), Normalized Differential Vegetation Index (NDVI), lineaments density, distance to lineaments, lithology, soil types, rainfall intensity, drainage density, and distance to drainage. As for the risk triggering factors, there are land use, building density, and distance to roads. In general, landslide hazard in West Bandung Regency is in moderate class with 17,37% total area. The very low class is about 15,97% of total area, low 16,96%, moderately high 16,75%, high 16,73%, and very high 16,19%. Besides, the landslide risk in West Bandung Regency dominated by moderately high class with 22,36% total area. The very low class is about 15,95% total area, low 16,79%, moderately 18,70%, high 15,57%, and very high 10,59%. Finally, the landslide susceptibility in West Bandung Regency dominated by moderate class with 18,41% total area. The very low class is about 15,22% total area, low 16,20%, moderately high 16,88%, high 17,14%, and very high 17,12%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yosua Sigit Wicaksono
"Tanah Longsor merupakan bencana geologi yang paling banyak dijumpai di Kota dan Kabupaten Bogor. Berdasarkan data yang dirilis oleh Badan Nasional Penanggulangan Bencana (BNPB), pada tahun 2013 – 2018 telah terjadi 44 bencana tanah longsor di Kota Bogor dan 139 bencana tanah longsor di Kabupaten Bogor, mengakibatkan 68 orang meninggal dunia. Penelitian ini bertujuan untuk pengembangan studi bencana tanah longsor di Kota dan Kabupaten Bogor, sehingga dapat bermanfaat untuk meminimalisir jumlah keterjadian dan dampak yang dihasilkan dari bencana longsor didaerah tersebut. Pada penelitian ini, peta kerentanan bencana tanah longsor dari area studi dibuat menggunakan metode analytical hierarchy process (AHP) dan artificial neural network (ANN). Sebanyak 84 titik lokasi keterjadian bencana tanah longsor dan 84 titik lokasi yang tidak mengalami bencana tanah longsor diolah menjadi landslide inventory map. Faktor penyebab bencana tanah longsor yang digunakan dalam penelitian ini berjumlah 17 faktor, yaitu bentuk lereng, kemiringan lereng, topographic wetness index (TWI), aspek lereng, elevasi, stream power index (SPI), jarak terhadap sungai, kerapatan sungai, jarak terhadap kelurusan, kerapatan kelurusan, normalized differential vegetation index (NDVI), jenis litologi, jenis tanah, curah hujan, tutupan lahan, jarak terhadap jalan, dan kerapatan bangunan. Data yang diperlukan untuk membuat peta dari setiap faktor penyebab bencana tanah longsor yaitu, data digital elevation model (DEM), peta rupa bumi Indonesia (RBI), data Citra Landsat 8, peta geologi teknik, data curah hujan, dan peta Jenis Tanah. Landslide inventory map dan peta dari setiap faktor penyebab bencana tanah longsor diolah menjadi peta kerentananan bencana tanah longsor menggunakan kedua metode tersebut. Berdasarkan peta kerentanan bencana tanah longsor yang dihasilkan, wilayah selatan daerah penelitian memiliki tingkat kerentanan bencana tanah longsor yang lebih tinggi dibandingkan wilayah lainnya. Proses validasi dari peta kerentanan bencana tanah longsor yang dihasilkan dilakukan dengan menggunakan kurva receiver operating characteristic (ROC). Nilai area under curve (AUC) untuk tingkat keberhasilan metode AHP dan ANN masing-masing adalah 0,834 dan 0,818, hal tersebut menujukkan bahwa metode AHP lebih unggul dalam menjelaskan hubungan bencana tanah longsor dengan faktor penyebabnya. Kedua metode tersebut menghasilkan peta kerentanan bencana tanah longsor yang baik dengan tingkat akurasi lebih dari 81%.
Landslide is one of the most common disaster in Bogor City and Bogor Regency. BNPB stated that between 2013-2018 there have been 44 landslides in Bogor City and 139 landslides in Bogor Regency with death toll of 68 persons. Therefore, it is important to generate map to identify landslide susceptibility in study area. In this study, landslide susceptibility map of study area was created using analytical hierarchy process (AHP) and artificial neural network (ANN) methods. A total of 84 points of landslide occurrence locations and 84 secure location points of landslides are processed into landslide inventory map. The landslide causative factors in this study amounted to 17 factors, including slope form, slope gradient, topographic wetness index (TWI), slope aspect, elevation, stream power index (SPI), distance to river, river density, distance to lineament, lineament density, normalized differential vegetation index (NDVI), lithology type, soil type, rain intensity, land cover, distance to road, and building density. The data used to create maps of each landslide causative factors, including digital elevation model (DEM), Bakosurtanal Map, Landsat 8 Imagery, engineering geology map, geological map, and soil type map. Landslide inventory map and maps of each landslide causative factors are processed into landslide susceptibility map using both methods. Based on landslide susceptibility maps obtained in this study, the southern region of the study area has a higher level of landslide susceptibility than other regions. To validate the result, Receiver Operating Characteristic (ROC) applied. The areas under the curve (AUC) for the success rate of the AHP and ANN methods were 0,834 and 0,818, respectively, indicating that the AHP method is superior in explaining the relationship of landslide with each causative factors. Both methods produce a good landslide susceptibility map with the accuracy being higher than 81%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fathur Rozik
"Erosi tanah merupakan salah satu bentuk degradasi lahan yang berdampak signifikan terhadap kestabilan lingkungan dan produktivitas lahan. Wilayah Daerah Aliran Sungai (DAS) Kalicilet, yang meliputi Kabupaten Indramayu, Majalengka, dan Sumedang, menjadi area yang rentan terhadap erosi akibat tekanan geomorfik dan antropogenik yang tinggi. Penelitian ini bertujuan untuk mengidentifikasi kawasan rawan erosi tanah dengan pendekatan sistem informasi geografis (SIG) dan metode Analytical Hierarchy Process (AHP). Sebanyak 11 parameter digunakan dalam analisis, yaitu elevasi, kemiringan lereng, bentuk lereng, Topographic Wetness Index (TWI), litologi, jarak ke sungai, curah hujan, NDVI, kerapatan kelurusan, tutupan lahan, dan jenis tanah.
Pembobotan parameter dilakukan melalui AHP berdasarkan hasil perhitungan konsistensi matriks, dengan nilai Consistency Ratio (CR) sebesar 0,09063 yang menunjukkan konsisten karena memiliki nilai < 0,1. Parameter kemiringan lereng (20,50%) dan elevasi (18,01%) menunjukkan kontribusi paling besar terhadap kerawanan erosi. Pemetaan akhir menghasilkan empat kelas kerawanan, dengan dominasi luasan kelas rendah sebesar 39,31% dan kelas tinggi sebesar 30,74%. Validasi model menggunakan Receiver Operating Characteristic (ROC) menghasilkan nilai Area Under Curve (AUC) sebesar 81,04%, yang mengindikasikan akurasi model sangat baik. Hasil penelitian ini diharapkan dapat menjadi dasar pengelolaan dan perencanaan konservasi lahan berkelanjutan di wilayah DAS Kalicilet.

Soil erosion is one of the forms of land degradation that significantly affects environmental stability and land productivity. The Kalicilet watershed area, which includes the regencies of Indramayu, Majalengka, and Sumedang, is highly vulnerable to erosion due to intense geomorphic and anthropogenic pressures. This study aims to identify areas susceptible to soil erosion using a Geographic Information System (GIS)-based approach combined with the Analytical Hierarchy Process (AHP) method. A total of 11 parameters were used in the analysis, including elevation, slope, slope shape, Topographic Wetness Index (TWI), lithology, distance to rivers, rainfall, NDVI, lineament density, land cover, and soil type.
Parameter weighting was conducted through AHP based on matrix consistency calculations, yielding a Consistency Ratio (CR) value of 0.09063, which indicates consistency because the value is < 0,1. The parameters of slope (20.50%) and elevation (18.01%) contributed the most to erosion susceptibility. The final mapping classified the area into four levels of susceptibility, with the low-susceptibility class dominating 39.31% of the area, followed by the high-susceptibility class at 30.74%. Model validation using the Receiver Operating Characteristic (ROC) method produced an Area Under Curve (AUC) value of 81.04%, indicating excellent model accuracy. The results of this study are expected to serve as a basis for sustainable land management and conservation planning in the Kalicilet watershed area
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Syahputra Lingga
"Gerakan Tanah merupakan bencana alam yang paling sering terjadi di Indonesia khususnya di daerah Kabupaten Tasikmalaya, Jawa Barat. BPBD Kabupaten Tasikmalaya, dari Januari hingga September 2021 terdapat 260 kejadian bencana. Dari total kejadian bencana itu, 51 persen atau 133 kejadian di antaranya bencana gerakan tanah. Penelitian ini bertujuan untuk mengetahui zona kerentanan gerakan tanah berdasarkan parameter-parameter yang ada untuk menghasilkan peta persebaran zona kerentanan gerakan tanah di daerah Kabupaten Tasikmalaya dengan bantuan Sistem Informasi Geografis (SIG). Selain itu, penelitian ini juga berfokus pada pengaruh cell size terhadap nilai AUC pada daerah penelitian. Oleh karena itu digunakan beberapa cell size untuk mengetahui pengaruh tersebut. Adapun cell size yang digunakan adalah 15, 20, 25, 30 dan 35. Penelitian ini menggunakan 2 metode dalam menentukan peta zona gerakan gerakan tanah yaitu metode frequency ratio dan logistic regression. Frequency ratio bertujuan untuk mengetahui tingkat signifikan dari setiap kelas faktor. Sementara itu logistic regression menghasilkan nilai probabilitas gerakan tanah dan nilai signifikan dari setiap faktor penyebab gerakan tanah. Nilai probabilitas gerakan tanah bernilai 0 dan 1 semakin mendekati angka satu maka semakin tinggi tingkat zona kerentanannya. Terdapat 125 data kejadian gerakan tanah yang terdapat pada daerah penelitian dimana akan dibagi menjadi 80% data training dan 20% data validasi. Adapun parameter-parameter pendukung pada gerakan tanah adalah litologi, aspek lereng, kemiringan lereng, elevasi, penggunaan lahan, curah hujan, jarak dari kelurusan, jarak dari sungai, kelengkungan (curvature) dan NDVI. Kemudian akan dilakukan uji model. Uji model ini didapatkan dari grafik AUC. Uji ini bertujuan untuk mengetahui apakah peta dapat diterapkan atau tidak. Pada penelitian ini, model pada frequency ratio memiliki nilai AUC berkisar 0,73 – 0,81 sedangkan pada model logistic regression memiliki nilai AUC berkisar 0,58 – 0,85. Dari hasil nilai AUC tersebut model frequency ratio termasuk kedalam model sedang – baik sedangkan pada model logistic regression termasuk kedalam model buruk – sedang. Kedua model ini dapat diterapkan pada daerah penelitian.

Landslide is the most frequent natural disaster in Indonesia, especially in the Tasikmalaya Regency, West Java. BPBD Tasikmalaya Regency, from January to September 2021 there were 260 disaster events. Of the total disaster events, 51 percent or 133 incidents were landslides. This study aims to determine the vulnerability zones of ground movement based on existing parameters to produce a map of the distribution of ground movement vulnerability zones in the Tasikmalaya Regency area with the help of a Geographic Information System (GIS). In addition, this study also focuses on the effect of cell size on AUC values in the study area. Therefore, several cell sizes are used to determine the effect. The cell sizes used are 15, 20, 25, 30 and 35. This study uses 2 methods in determining the ground motion zone map, namely the frequency ratio method and logistic regression. Frequency ratio aims to determine the significant level of each factor class. Meanwhile, logistic regression produces probability values of ground motion and significant values of each factor causing ground motion. The value of the probability of ground motion is 0 and 1, the closer to number one, the higher the level of the zone of susceptibility. There are 125 data on ground motion events in the research area which will be divided into 80% training data and 20% validation data. The supporting parameters for ground motion are lithology, slope aspect, slope, elevation, land use, rainfall, distance from fault, distance from river, curvature and NDVI. Then a model test will be carried out. This model test is obtained from the AUC graph. This test aims to determine whether the map can be applied or not. In this study, the frequency ratio model has an AUC value ranging from 0.73 to 0.81 while the logistic regression model has an AUC value ranging from 0.58 to 0.85. From the results of the AUC value, the frequency ratio model is included in the medium - good model, while the logistic regression model is included in the bad - medium model. Both of these models can be applied to the research area. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Reza Aditya Nugroho
"Gerakan tanah merupakan bahaya geologi utama di dunia yang menyebabkan tingginya jumlah korban manusia hingga kerugian harta benda yang sangat besar, serta mengakibatkan kerusakan pada sumber daya alam, ekosistem, dan infrastruktur. Selama periode Januari 2020 hingga Desember 2021, bancana gerakan tanah telah menjadi bencana yang paling rawan terjadi di Kabupaten Wonosobo, yakni sebanyak 238 kejadian. Bahkan, beberapa dari kejadian tersebut memakan korban jiwa yakni satu orang meninggal dunia di Kecamatan Kaliwiro, satu orang meninggal dunia di Kecamatan Kepil, dan dua orang meninggal dunia di Kecamatan Watumalang. Oleh karenanya, penelitian ini dilakukan agar dapat menentukan zona kerentanan gerakan tanah yang berguna dalam membantu proses mitigasi risiko sehingga segala bentuk kerugian dapat diminimalisasi. Zona kerentanan gerakan tanah pada Kabupaten Wonosobo divisualisasikan dengan peta kerentanan gerakan tanah. Sebanyak 242 titik gerakan tanah dikumpulkan untuk menghasilkan peta inventori. Titik tersebut kemudian dibagi menjadi 168 (70%) sebagai data training dan 74 (30%) sebagai data testing. Parameter yang dipertimbangkan terdiri dari berbagai parameter penyebab seperti aspek lereng, curvature, elevasi, kemiringan lereng, jarak dari sungai, litologi, tata guna lahan dan satu parameter pemicu, yaitu curah hujan. Selain itu, dilakukan pengurangan resolusi terhadap turunan data DEM seperti aspek lereng, curvature, elevasi, kemiringan lereng menjadi 8, 17, 25, dan 40 m untuk melihat pengaruhnya terhadap akurasi model. Semua parameter diolah menggunakan piranti ArcGIS untuk mengasilkan peta parameter. Peta parameter selanjutnya digabungkan dan dianalisis menggunakan metode frequency ratio dan weight of evidence untuk menghasilkan peta kerentanan gerakan tanah. Hasil penelitian menunjukkan bahwa Kabupaten Wonosobo memiliki kecenderungan terhadap kerentanan gerakan tanah dengan tingkatan rendah, sedang, hingga tinggi. Berdasarkan data resolusi DEM 8 m dan 17 m, tingkatan kerentanan didominasi oleh kelas sedang. Namun pada data resolusi DEM 25 m dan 40 m, tingkatan kerentanan didominasi oleh kelas rendah. Peta kerentanan masing-masing resolusi kemudian diuji nilai AUC nya menggunakan success rate curve untuk melihat keberhasilan model dan prediction rate curve untuk mengukur akurasi prediksi model. Setelah dilakukan validasi, resolusi tinggi ternyata tidak berbanding lurus dengan kualitas akurasi model. Akurasi success rate mengalami puncaknya pada resolusi DEM 25 m sedangkan prediction rate pada resolusi DEM 17 m.

Landslide is a major geological hazard in the world that causes a high number of human casualties to enormous property losses, as well as causing damage to natural resources, ecosystems and infrastructure. During the period from January 2020 to December 2021, landslide disasters have become the most prone to disasters in Wonosobo Regency, with 238 incidents. In fact, some of these incidents claimed lives, namely one person died in Kaliwiro District, one person died in Kepil District, and two people died in Watumalang District. Therefore, this research was conducted in order to determine the susceptibility zones of landslide which are useful in assisting the risk mitigation process so that all forms of losses can be minimized. The landslide vulnerability zone in Wonosobo Regency is visualized with a landslide susceptibility map. A total of 242 landslide points were collected to produce an inventory map. These points are then divided into 168 (70%) as training data and 74 (30%) as testing data. The parameters considered consist of various causal parameters such as slope aspect, curvature, elevation, slope, distance from river, lithology, land use and one trigger parameter, namely rainfall. In addition, the resolution of the DEM data derivatives was reduced, such as slope aspects, curvature, elevation, slope to 8, 17, 25, and 40 m to see the effect on model accuracy. All parameters are processed using the ArcGIS tool to produce a parameter map. Then the parameter maps are combined and analyzed using the frequency ratio and weight of evidence methods to produce a landslide susceptibility map. The results of the study show that Wonosobo Regency has a tendency towards low, moderate and high susceptibility to landslide. Based on DEM 8 m and 17 m resolution data, the susceptibility level is dominated by the moderate class. However, in DEM 25 m and 40 m resolution data, the susceptibility level is dominated by the low class. Then the susceptibility map of each resolution is tested for AUC value using a success rate curve to see the success of the model and a prediction rate curve to measure the accuracy of model predictions. After validation, it turns out that high resolution is not directly proportional to the quality of the model accuracy. Success rate accuracy peaks at DEM 25 m resolution while prediction rate at DEM 17 m resolution."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Mushthafa Basyar
"Bencana alam merupakan fenomena alam yang dapat mengakibatkan kerugian. Berdasarkan data IRBI, Kab. Garut berada di posisi ke-12 dari 514 kabupaten/kota dengan indeks risiko tanah longsor tertinggi. Terdapat enam faktor utama penyebab longsor, yaitu curah hujan, kemiringan kelerengan, tanah jenis, jenis tutupan lahan, geologi, dan adanya getaran. penentuan zona patahan yang berpotensi menjadi sumber getaran atau gempa dapat diidentifikasi menggunakan data gravitasi.  Dengan memanfaatkan data gravitasi yang bersumber dari GGMplus, data gravitasi diolah hingga analisis derivatif untuk menentukan zona patahan. Data lain yang juga diolah adalah DEM serta data curah hujan. Peta hasil pengolahan kemudian dilakukan overlay dengan data tutupan lahan, geologi, dan jenis tanah untuk dilakukan pembobotan berdasarkan standar dari DVMBG yang telah dimodifikasi. Keberadaan zona patahan yang banyak terdapat di daerah selatan telah berhasil diidentifikasi dari data gravitasi dan dikonfirmasi dari Peta Geologi Lembar Garut. Hasil dari penelitian menunjukan bahwa daerah utara Kab. Garut memiliki tingkat kerawanan longsor yang lebih rendah dibandingkan daerah selatan dimana zona patahan yang telah teridentifikasi tersebar di bagian selatan Kab. Garut.

Natural disasters are natural phenomena that can occur anywhere and anytime, so that they can result in material and non-material losses. Based on IRBI data, Kab. Garut is in the 12th position out of 514 districts/cities with the highest landslide risk index. There are six main factors that cause landslides, rainfall, slope level, soil density, type of land cover, geology, and vibration. the determination of fault zones that have the potential to be a source of vibration or earthquake can be identified using gravity data. By utilizing gravity data sourced from GGMplus, gravity data is processed to derivative analysis to determine fault zones. Other data that is also processed is DEM and rainfall data. The processed map is then overlaid with data on land cover, geology, and soil type for weighting based on the modified DVMBG standard. The existence of a fault zone that is mostly found in the southern area has been identified from the gravity data and confirmed from the Geological Map of the Garut Sheet. The results of the study show that the northern area of ​​Kab. Garut has a lower level of landslide susceptibility than the southern area where the fault zones that have been identified are scattered in the southern part of Kab. Garut."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vido Ghifari
"Longsor merupakan salah satu bencana yang sering terjadi di Indonesia. Pada tahun 2021 wilayah Jawa Barat paling banyak mengalami bencana alam. Oleh karena itu, diperlukan identifikasi terkait dengan zona kerentanan longsoran dalam mitigasi bencana sehingga dapat mengurangi dampak longsoran. Penelitian ini dianalisis menggunakan metode Frequency Ratio (FR) dan Weight of Evidence (WoE). Berdasarkan hasil data yang di peroleh, terdapat 125 titik longsoran. Data tersebut di bagi menjadi dua untuk data train sebanyak 80% (100 titik) dan data testing sebanyak 20% (25 titik). Penelitian ini menggunakan sepuluh parameter, yaitu elevasi, kemiringan lereng, aspek lereng, curvature, NDVI, jarak dari sungai, jarak dari kelurusan, formasi, tutupan lahan, dan curah hujan setiap bulan. Hasil dari analisis tersebut akan menghasilkan peta zona kerentanan longsor setiap bulan yang dibagi atas 4 tingkat kerentanan, yaitu sangat rendah, rendah, menengah, dan tinggi. Model tersebut di validasi menggunakan kurva ROC dan mendapatkan nilai AUC di atas 50%.

Landslide is one of the disasters that often occurs in Indonesia. In 2021 the West Java region experienced the most natural disasters. Therefore, it is necessary to identify the landslide susceptibility mapping in disaster mitigation to reduce the impact of the landslide. This research analyzed using the Frequency Ratio (FR) and Weight of Evidence (WoE) methods. Based on the results of the data obtained, there are 125 landslide points. The data is divided into 80% for training data (100 points) and 20% for testing data (25 points). This study used ten parameters, elevation, slope, slope aspect, curvature, NDVI, distance from river, distance from lineament, lithology (formation), land cover, and rainfall. The results of this analysis will produce a landslide susceptibility zone map every month which is divided into 4 levels of landslide susceptibility class, very low, low, medium, and high. The model was validated using the ROC curve and obtained an AUC value above 50%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>