Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 173602 dokumen yang sesuai dengan query
cover
Arafa Maulana Abdillah
"Pertumbuhan jumlah kendaraan bermotor di Indonesia menyebabkan peningkatan signifikan terhadap emisi gas rumah kaca dan polutan udara. Studi ini bertujuan mengevaluasi karakteristik pembakaran sistem dual fuel engine yang menggunakan campuran Gasoline–Ethanol–Methanol (GEM) dengan penambahan Dimetil Eter (DME), melalui simulasi ANSYS Forte dan eksperimen pada mesin Yamaha Mio M3 125cc. Variasi komposisi bahan bakar meliputi GEM murni (100%), GEM 73% + DME 27%, GEM 71% + DME 29%, dan GEM 67% + DME 33%. Hasil penelitian menunjukkan bahwa penambahan DME 27% memberikan peningkatan daya optimal pada putaran menengah, sedangkan fraksi DME lebih tinggi menyebabkan penurunan daya akibat pembakaran yang terlalu cepat dan tidak selaras dengan langkah ekspansi piston. Kebisingan mesin menurun secara bertahap seiring kenaikan fraksi DME, dengan tingkat kebisingan terendah pada campuran DME 33%. Temperatur maksimum dalam silinder cenderung menurun karena latent heat DME yang tinggi, sementara temperatur gas buang meningkat pada fraksi DME tinggi sebagai indikasi pembakaran lebih sempurna. Emisi CO, CO₂, dan NOx berkurang signifikan, namun emisi UHC meningkat pada campuran DME 33% akibat pembakaran tidak sempurna. Temuan ini membuktikan bahwa penggunaan campuran GEM–DME berpotensi meningkatkan performa dan efisiensi mesin, namun memerlukan optimasi rasio campuran untuk meminimalkan emisi hidrokarbon tak terbakar.

The growth in the number of motor vehicles in Indonesia has significantly increased greenhouse gas emissions and air pollution. This study aims to evaluate the combustion characteristics of a dual-fuel engine using an alternative fuel blend of Gasoline–Ethanol–Methanol (GEM) with the addition of Dimethyl Ether (DME), through ANSYS Forte simulations and experiments on a Yamaha Mio M3 125cc engine. The fuel composition variations included pure GEM (100%), GEM 73% + DME 27%, GEM 71% + DME 29%, and GEM 67% + DME 33%. Results show that adding 27% DME provided optimal power improvement at medium engine speeds, while higher DME fractions led to reduced power due to overly rapid combustion that was not synchronized with the piston’s expansion stroke. Engine noise progressively decreased with increasing DME proportion, with the lowest noise recorded at 33% DME. The maximum in-cylinder temperature tended to decrease due to DME’s high latent heat, while exhaust gas temperature increased at higher DME levels, indicating more complete combustion. Emissions of CO, CO₂, and NOx were significantly reduced, while UHC emissions increased in the 33% DME blend due to incomplete combustion. These findings demonstrate that GEM–DME fuel blends have the potential to improve engine performance and efficiency but require optimized ratios to minimize unburned hydrocarbon emissions."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yusuf Timothy Turnip
"Penelitian ini menganalisis pengaruh campuran Gasoline–Ethanol–Methanol (GEM) dan Liquified Petroleum Gas (LPG) terhadap performa, konsumsi bahan bakar, temperatur ruang bakar, kebisingan, dan emisi gas buang mesin bensin 125 cc. Eksperimen dilakukan dengan variasi rasio LPG 27%, 29%, dan 33%, serta simulasi pembakaran menggunakan ANSYS Forte untuk memvalidasi tren hasil. Hasil menunjukkan campuran GEM murni menghasilkan daya maksimum tertinggi di seluruh putaran mesin, tetapi memproduksi emisi karbon monoksida (CO) dan unburned hydrocarbon (UHC) tertinggi. Penambahan LPG hingga 29% umumnya menurunkan konsumsi bahan bakar spesifik, emisi CO dan UHC, serta meningkatkan stabilitas pembakaran pada putaran tinggi. Rasio LPG 33% menunjukkan kenaikan daya pada 8000 rpm akibat distribusi campuran lebih homogen, meskipun disertai peningkatan emisi NOx dan konsumsi bahan bakar pada beban parsial. Temperatur ruang bakar lebih rendah pada rasio LPG tinggi, mengurangi risiko knocking tetapi memerlukan kontrol rasio udara–bahan bakar yang presisi. Selain itu, kebisingan mesin lebih tinggi pada GEM murni, sedangkan penggunaan LPG menurunkan lonjakan tekanan dan kebisingan akustik. Rasio LPG 29% dinilai sebagai kompromi terbaik antara performa, efisiensi, dan emisi.

This study analyzes the effects of Gasoline–Ethanol–Methanol (GEM) and Liquefied Petroleum Gas (LPG) blends on the performance, fuel consumption, combustion chamber temperature, noise, and exhaust emissions of a 125 cc gasoline engine. Experiments were conducted with LPG ratios of 27%, 29%, and 33%, and combustion simulations were performed using ANSYS Forte to validate the observed trends. Results showed that pure GEM produced the highest maximum power across all engine speeds but also generated the highest emissions of carbon monoxide (CO) and unburned hydrocarbons (UHC). Adding LPG up to 29% generally reduced specific fuel consumption, CO and UHC emissions, and improved combustion stability at higher engine speeds. The 33% LPG ratio exhibited an increase in power at 8000 rpm due to more homogeneous mixture distribution, although accompanied by higher NOx emissions and fuel consumption under partial loads. Combustion chamber temperatures were lower with higher LPG ratios, reducing knocking risk but requiring precise air–fuel ratio control. Additionally, engine noise was higher with pure GEM, while LPG usage decreased pressure spikes and acoustic noise. Overall, the 29% LPG ratio was considered the best compromise between performance, efficiency, and emissions."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Askar Adika Agama
"Proyeksi kebutuhan energi untuk sector transportasi di Indonesia sampai pada tahun 2025 mencapai 30% dari total energi nasional dan Sebagian besar, asal energi tersebut dari energi fosil. Untuk mengurangi ketergantungan energi fosil tersebut, maka pemerintah Indonesia membuat target penggunaan bioethanol sebagai campuran bahan bakar sebesar 20% pada tahun 2025. Selain itu penggunaan methanol juga sudah banyak diteliti dan memberikan dampak positif. Salah satunya adalah pembuatan methanol dari methana yang berasal dari proses carboncapture. Disisi lain, percampuran gasoline dengan alcohol satu macam memberikan efek COV (Coefficient of Variation) meningkat, sehingga ada kemungkinan penambahan ethanol dalam bahan bakar campuran gasoline-ethanol memberikan dampak pengurangan nilai COV, terutama pada kondisi Lean Combustion, sehingga penelitian ini ingin mengetahui efek penggunaan Gasoline Ethanol Methanol (GEM) dengan variasi campuran bahan bakar dengan udara, ditinjau dari Power, Torsi, SFC, Emisi, Serta COV. Hasilnya, nilai power dan torsi tertinggi berada di variasi λ= 1,1 pada semua GEM, selain itu, SFC terendah diperoleh pada titik E10M10 di putaran mesin 6000 RPM, dilihat dari Emisi menjadi lebih baik saat λ nilainya semakin meningkat, serta nilai COV menjadi Turun dengan penambahan methanol.

The projected energy demand for the transportation sector in Indonesia until 2025 reaches 30% of the total national energy and most of this energy comes from fossil energy. To reduce dependence on fossil energy, the Indonesian government has made a target of using bioethanol as a fuel mixture by 20% by 2025. In addition, the use of methanol has also been widely studied and has had a positive impact. One of them is the manufacture of methanol from methane which comes from the carbon capture process. On the other hand, mixing gasoline with one type of alcohol has an increased COV (Coefficient of Variation) effect, so there is a possibility that the addition of ethanol in a gasoline-ethanol fuel mixture will reduce the COV value, especially in Lean Combustion conditions, so this study wants to know the effect of using Gasoline Ethanol Methanol (GEM) with variations in the mixture of fuel and air, in terms of Power, Torque, SFC, Emissions, and COV. As a result, the highest power and torque values are at a variation of λ = 1.1 for all GEMs, in addition, the lowest SFC is obtained at point E10M10 at 6000 RPM engine speed, seen from Emissions that get better when λ increase, and COV values decrease with the addition of methanol."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Riesta Anggarani
"

Dimethyl Ether (DME) adalah energi alternatif yang memiliki sifat dan karakteristik mirip dengan Liquefied Petroleum Gas (LPG) yang telah banyak diteliti sebagai bahan bakar untuk berbagai aplikasi. Dalam kaitannya dengan kondisi di Indonesia dimana saat ini impor LPG telah meningkat sangat pesat terutama untuk memenuhi kebutuhan sektor rumah tangga, penelitian untuk mengetahui karakteristik pembakaran terutama pada pembakaran difusi DME dibandingkan dengan LPG menjadi sangat penting. Penelitian yang dilakukan ini bertujuan untuk membandingkan karakteristik nyala api difusi terutama Wobbe Index, stabilitas nyala api, Tinggi Api (Flame Height , FH) dan Beban Pembakaran (Burning Load, BL) yang dihasilkan oleh bahan bakar DME serta campuran LPG-DME dibandingkan dengan LPG, serta pengaruh parameter jet velocity aliran bahan bakar. Eksperimen yang dilakukan menggunakan burner yang didesain khusus untuk memperoleh variasi kecepatan jet dan pengaruh bahan bakar yang digunakan. Uji kinerja menggunakan kompor mini juga dilakukan untuk membandingkan FH, temperatur nyala api, dan efisiensi penggunaan bahan bakar DME terhadap LPG. Hasil yang dicapai yaitu perbedaan karakter pembakaran LPG dan DME terutama untuk parameter Wobbe Index dan stabilitas nyala api yaitu Blow Out dan Lift Off dapat didekati dengan pencampuran DME ke dalam LPG hingga maksimum komposisi DME 23% massa dan pada rentang fuel jet velocity 10 m/s – 34 m/s. Nilai optimum ini diperoleh pada kondisi eksperimen dengan burner tipe cylindrical dan pada diameter nosel  2,5 mm. FH  yang setara antara DME dengan LPG dicapai pada rentang uf  = 3,5 m/s – 6,3 m/s saat df  = 4,5 mm untuk DME dan df  = 2,5 mm untuk LPG, serta pada rentang uf  = 5,3 m/s – 10,8 m/s saat df  = 5,0 mm untuk DME dan df  = 3,0 mm untuk LPG. BL yang setara antara DME dengan LPG dicapai pada uf lebih kecil dari 0,5 m/s untuk semua diameter nosel. Uji kinerja pada kompor mini menghasilkan efisiensi penggunaan bahan bakar DME yang lebih tinggi, yaitu ketika pengatur air entrainment pada posisi close 1 sebesar 64,5% dan close 2 sebesar  67,9%, dibandingkan dengan LPG pada posisi open sebesar 62,5%. 


Dimethyl Ether is one of the promising alternative energy to substitute Liquefied Petroleum Gas (LPG) considering its similarity on properties and behavior to LPG. Indonesia currently import huge amount of LPG, mainly for energy in household purpose. Considering the potentiality of DME to substitute LPG especially for household purposes which basically works in atmospheric diffusion combustion, it is very important to study the comparison of LPG and DME in the field of diffusion combustion characteristics. This study aim to compare diffusion flame characteristics of DME, LPG, and the blends of DME mixed LPG with DME composition of 10%, 20%, 30%, 40% and 50%. The characteristics being investigated are Wobbe Index, flame stability, Flame Height (FH) and Burning Load (BL) under the effect of fuel jet velocity (uf), which performed by a series of experiments in laboratory. The experiments were done using a specially designed cylindrical burner to get the variation of fuel jet velocity. The results show that the difference of Wobbe Index and flame stability represented by Lift Off (LO) and Blow Off (BO) between DME and LPG can be improved by blending DME into LPG at optimum composition of 23% weight and  is achieved at the range of uf from 10 m/s to 34 m/s. This optimum condition is achieved using cylindrical burner with  nozzle diameter (df) 2.5 mm. The equality of  FH between DME and LPG is achieved at the range of ufrom  3.5 – 6.3 m/s at df = 4.5 mm for DME and df = 2.5 mm for LPG,  and at the range of ufrom 5.3 – 10.8 m/s at df = 5.0 mm for DME and df = 3.0 mm for LPG. The equality of BL between DME and LPG is achieved at uf lower than 0,5 m/s at all nozzle diameter. Performance test on mini stove shows that DME can achieve higher fuel efficiency than LPG at different air entrainment setting, where DME achieved  fuel efficiency of 64.5%, at position of air entrainment close 1 and 67.9% at position of close 2, compare to LPG with fuel efficiency of 62.5% at position of air entrainment open.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Muammar Shaddam Kusnandar
"Penelitian ini bertujuan untuk mengkaji karakteristik pembakaran dari campuran premix bahan bakar yang terdiri dari gasoline, etanol, dan metanol menggunakan simulasi Partially Stirred Reactor (PSR) pada perangkat lunak CHEMKIN yang terintegrasi dalam ANSYS. Dengan meningkatnya kebutuhan akan bahan bakar alternatif yang lebih ramah lingkungan, studi ini berfokus pada pemahaman perilaku pembakaran campuran bahan bakar tersebut dan potensinya untuk mengurangi emisi berbahaya serta meningkatkan efisiensi pembakaran. Metode yang digunakan melibatkan simulasi numerik dengan mengatur berbagai rasio campuran antara gasoline, etanol, dan metanol. Parameter yang dianalisis mencakup temperatur pembakaran, fraksi mol, laju pembentukan, sensitivitas, dan emisi gas buang seperti CO dan CO2. Simulasi dilakukan pada kondisi tekanan tetap dan temperatur yang difokuskan pada temperatur 700-1200 K. Studi ini menyimpulkan bahwa penggunaan campuran premix gasoline, etanol, dan metanol sebagai bahan bakar alternatif dapat memberikan solusi yang lebih ramah lingkungan dengan tetap mempertahankan efisiensi pembakaran yang tinggi. Simulasi PSR CHEMKIN ANSYS terbukti efektif dalam menganalisis karakteristik pembakaran dan memberikan wawasan penting untuk pengembangan bahan bakar campuran yang lebih baik di masa depan.

This study aims to examine the combustion characteristics of a premixed fuel mixture
consisting of gasoline, ethanol, and methanol using Partially Stirred Reactor (PSR) simulation in CHEMKIN software integrated in ANSYS. With the increasing need for alternative fuels that are more environmentally friendly, this study focuses on understanding the combustion behavior of such fuel blends and their potential to reduce harmful emissions and improve combustion efficiency.The method used involved numerical simulations by setting various blend ratios between gasoline, ethanol, and methanol. Parameters analyzed include combustion temperature, mole fraction, formation rate, sensitivity, and exhaust emissions such as CO and CO2. The simulations were conducted under fixed pressure and temperature conditions focusing on 700-1200 K temperatures.This study concludes that the use of premix blends of gasoline, ethanol, and methanol as alternative fuels can provide a more environmentally friendly solution while maintaining high combustion efficiency. The CHEMKIN ANSYS PSR simulation proved to be effective in analyzing the combustion characteristics and provided important insights for the development of better blended fuels in the future.
"
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Faja Taufiqurrahman
"Penggunaan bahan bakar fosil yang begitu tinggi menjadi masalah bagi seluruh dunia. Akan tetapi, hal ini tidak didukung dengan ketersediaan serta produksi bahan bakar fosil yang cukup. Pemerintah Indonesia dengan ini melalui Peraturan Menteri Energi dan Sumber Daya Mineral (ESDM), mengeluarkan Peraturan Menteri ESDM No. 12 tahun 2015 yang menyebutkan bahwa pemanfaatan Bioetanol (E100) sebagai campuran BBM diproyeksikan akan mencapai 20% pada tahun 2025 khususnya pada sektor transportasi. Namun dalam pelaksanaanya, hal ini sulit untuk dilakukan karena harga bahan baku yang tinggi, dan belum ada jaminan keberlanjutan pasokan. Metanol dapat menjadi pilihan sebagai campuran bahan bakar untuk kendaraan. Penambahan bensin dengan alkohol dapat menjadi solusi permasalahan lingkungan dari bahan bakar fosil sebagai bahan bakar kendaraan terkait emisi gas buang. Penelitian ini bertujuan untuk mengetahui karakteristik dari penambahan metanol dan etanol terhadap bensin RON 90 serta komponen penyusunnya, melakukan perbandingan antara base fuel RON 90 dengan sampel bahan bakar campuran bensin-etanol-metanol pada unjuk kerja dan emisi gas buang, melakukan perbandingan antara pengujian dan perhitungan pada sampel bahan bakar campuran. Pencampuran bahan bakar bensin dengan alkohol digunakan untuk mencapai target iso-stoichiometric dengan E-60. Komposisi bensin-etanol-metanol dihitung menggunakan peramaan stoichiometric air to fuel ratio. Sampel campuran bahan bakar yang telah diperoleh akan diuji berdasarkan karakterisasi, unjuk kerja, dan emisi gas buang. Karakteristik yang diuji pada penelitian ini meliputi densitas (ASTM D4052), angka oktan (ASTM D2699), distilasi (ASTM D86), dan reid vapor pressure (ASTM D5191). Pengujian unjuk kerja dan emisi gas buang menggunakan sepeda motor SI engine 4 stroke 150cc. Unjuk kerja yang diuji pada penelitian ini meliputi torsi (SAE J1349), daya (SAE J1349), air to fuel ratio (SAE J1349), dan konsumsi bahan bakar (SNI 7554). Emisi gas buang yang diuji pada penelitian ini meliputi emisi CO2, CO, dan HC yang mengacu pada standar SNI 19-7118.1. Pengujian daya, torsi, dan AFR dilakukan pada kecepatan 4000-10000 RPM. Berdasarkan hasil pengujian, karakteristik sampel bahan bakar campuran mengalami peningkatan terbesar pada densitas pada sampel 1 sebesar 3,30%, dan pada angka oktan dengan peningkatan terbesar pada sampel 1 sebesar 14,46%. Pada reid vapor pressure mengalami peningkatan terbesar pada sampel 4 sebesar 15,23%. Pada distilasi, sampel yang diuji membuat turun kurva distilasi dari bensin RON 90. Pengujian torsi dan daya mengalami penurunan akibat kondisi mesin belum dilakukan optimasi sehingga mengenali bahan bakar campuran sebagai excess air. Penurunan torsi terbesar terjadi pada RPM 8000 pada sampel keempat sebesar 10,5% dan penurunan daya terbesar terjadi pada RPM 9000 pada sampel keempat sebesar 12,29%. Pengujian AFR mengalami peningkatan terbesar pada RPM 4000 pada sampel 4 sebesar 28,04%. Pengujian konsumsi bahan bakar dilakukan pada 3 variasi kecepatan, yaitu 90 km/jam, 120 km/jam, dan siklus urban, mengalami peningkatan terkecil pada nilai rata-rata sebesar 20,09% pada sampel 3. Pengujian emisi jika dibandingkan antara sampel dengan base fuel RON 90, emisi CO2 mengalami peningkatan terbesar pada sampel 4 sebesar 40,58%, emisi CO mengalami penurunan terbesar pada sampel 4 sebesar 97,19% dan emisi HC mengalami penurunan terbesar pada 73,35%.

The high usage of fossil fuels poses a problem for the entire world. However, this is not supported by sufficient availability and production of fossil fuels. The Indonesian government, through the Ministry of Energy and Mineral Resources (ESDM), issued Ministerial Regulation No. 12 of 2015, stating that the utilization of Bioethanol (E100) as a blend for fuel is projected to reach 20% by 2025, particularly in the transportation sector. However, in practice, this is difficult to achieve due to high raw material costs and the lack of supply sustainability guarantees. Methanol can be an alternative fuel blend option for vehicles. Adding alcohol to gasoline can provide a solution to environmental issues caused by fossil fuels as vehicle fuel regarding exhaust gas emissions. This study aims to determine the characteristics of adding methanol and ethanol to RON 90 gasoline and its components, compare the performance and exhaust gas emissions between base fuel RON 90 and gasoline-ethanol-methanol blend samples, and compare the testing and calculations of the blend fuel samples. Gasoline blending with alcohol is used to achieve the iso-stoichiometric target with E-60. The composition of gasoline-ethanol-methanol is calculated using the stoichiometric air-to-fuel ratio equation. The obtained blend fuel samples will be tested based on characterization, performance, and exhaust gas emissions. The characteristics tested in this study include density (ASTM D4052), octane number (ASTM D2699), distillation (ASTM D86), and Reid vapor pressure (ASTM D5191). Performance and exhaust gas emissions testing will be conducted using a 4-stroke 150cc SI engine motorcycle. The performance tested in this study includes torque (SAE J1349), power (SAE J1349), air-to-fuel ratio (SAE J1349), and fuel consumption (SNI 7554). The exhaust gas emissions tested in this study include CO2, CO, and HC emissions referring to the SNI 19-7118.1 standard. Power, torque, and AFR testing are conducted at speeds of 4000-10000 RPM. Based on the test results, the characteristics of the blend fuel samples showed the largest increase in density in sample 1, at 3.30%, and the highest increase in octane number in sample 1, at 14.46%. The Reid vapor pressure experienced the largest increase in sample 4, at 15.23%. In the distillation test, the samples caused a downward shift in the distillation curve from RON 90 gasoline. Torque and power testing showed a decrease due to the engine conditions not yet optimized, recognizing the blend fuel as excess air. The largest decrease in torque occurred at 8000 RPM in the fourth sample, at 10.5%, and the largest decrease in power occurred at 9000 RPM in the fourth sample, at 12.29%. AFR testing showed the largest increase at 4000 RPM in sample 4, at 28.04%. Fuel consumption testing was performed at 3 different speeds, namely 90 km/h, 120 km/h, and urban cycle, and the smallest increase was found in the average value at 20.09% in sample 3. In terms of exhaust gas emissions, when compared to the base fuel RON 90, CO2 emissions showed the largest increase in sample 4, at 40.58%, CO emissions showed the largest decrease in sample 4, at 97.19%, and HC emissions showed the largest decrease at 73.35%."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ariza Aulia Ghifari
"Penelitian yang berkelanjutan terkait proses pembakaran telah menjadi sorotan utama dalam eksplorasi ilmiah selama berabad-abad, dan pembakar api datar (flat flame burner) muncul sebagai salah satu metode standar yang mendominasi dalam dunia penelitian. Studi ini memiliki fokus dalam mempertimbangkan variasi bahan bakar sebagai elemen sentral. Oleh karena itu, eksperimen dalam riset ini difokuskan untuk merancang, menguji dan mensimulasikan premixed flat flame burner menggunakan variasi bahan bakar campuran Gasoline, Etanol dan Metanol (GEM). Dilakukan uji coba terhadap 6 tipe bahan bakar murni bensin, etanol, metanol serta campuran GEM501535, GEM502525, dan GEM503515 dengan pengambilan sampling data dari kisaran jarak 0 – 10 mm di atas pembakar. Simulasi menggunakan ANSYS Chemkin juga dilakukan dengan menggunakan parameter yang sama dengan eksperimen. Untuk menyederhanakan komposisi dari bensin pada umumnya, digunakan campuran surrogate gasoline berdasarkan studi yang dilakukan Politecnico di Milano [36]. Formulasi bahan bakar ini dapat menyerupai properti fisikal dan kemikal dari gasoline dengan menggunakan komposisi spesies n-heptana ( ), iso-oktan ( ), dan toluene ( ) dengan fraksi mol 63%, 20% dan 17% berturut-turut. Hasil dari perbandingan terhadap temperature Vs. jarak dengan ekuivalen rasio sebesar 0,8, 1,0, dan 1,2 menunjukkan bahwa bensin memiliki suhu yang terpanas dibandingkan alkohol dan campuran. Fraksi mol dari semua bahan bakar hampir tidak memiliki perbedaan, hal ini didukung dengan analisis sensitivitas dan Rate of Production (ROP). Disisi lain, gasoline memiliki fraksi mol CO, dan OH terbesar namun tidak beda jauh dengan campuran GEM. Puncak tertinggi juga di dapatkan pada ketinggian 1,0 – 1,5 mm yang dimana didukung oleh hasil pembentukan dan konsumsi dari spesies reaksi.

Continuous research into combustion processes has been a major highlight of scientific exploration for centuries, and flat flame burners have emerged as one of the standard methods that dominate the world of research. This study has a focus on considering fuel variations as a central element. Therefore, the experiments in this research aim to design, test, and simulate premixed flat flame burner using a variety of mixed Gasoline, Ethanol and Methanol (GEM) fuels. Tests were carried out on 6 types of pure fuel gasoline, ethanol, methanol, and a mixture of GEM501535, GEM502525, and GEM503515 by taking sampling data from a distance range of 0 – 10 mm above the burner. Simulations using ANSYS Chemkin were also carried out using the same parameters as the experiment. To achieve the composition of gasoline in general, a substitute gasoline mixture was used based on a study conducted by Politecnico di Milano [36]. This fuel formulation can resemble the physical and chemical properties of gasoline by using the species composition of n-heptane ( ), iso-octane ( ), and toluene ( ) with mole fractions of 63%, 20% and 17% respectively. The results of the comparison of temperature Vs. distances with equivalent ratios of 0.8, 1.0, and 1.2 indicate that gasoline has the hottest temperature compared to alcohol and mixtures. The mole fraction of all fuels has almost no difference, this is supported by sensitivity analysis and Rate of Production (ROP). On the other hand, gasoline has the largest mole fractions of CO, and OH but is not much different from the GEM mixture. The highest peak was also obtained at a height of 1.0 – 1.5 mm which was supported by the results of the formation and consumption of the reaction species."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wildan Raafi Utomo
"ABSTRAK
Masalah penurunan produksi minyak bumi di Indonesia telah terjadi sejak tahun 2000. Negara Indonesia telah menjadi importir minyak bumi sejak tahun 2003 dengan nilai impor 100 ribu barel per hari yang terus meningkat dari waktu ke waktu hingga tahun 2014. Hal ini disebabkan oleh kebutuhan untuk energi dan bahan bakar di Indonesia terus meningkat. Masalah ini dapat diatasi dengan menggunakan Dimethyl Ether (DME) sebagai sumber bahan bakar alternatif dengan beberapa manfaat dibandingkan dengan bahan bakar fosil. Penelitian tentang desain pabrik DME terus dilakukan, salah satu studi yang dilakukan berjudul Produksi DME dari Gas Sintetis untuk Aditif Bahan Bakar Mesin Diesel dan Campuran LPG. Namun, hasil desain masih memerlukan kontrol proses untuk mencapai proses produksi yang optimal. Penelitian tentang sistem kontrol proses di pabrik ini telah dilakukan, tetapi masih belum menghasilkan sistem kontrol proses yang optimal. Sistem kontrol Multivariable Model Predictive Control (4x4) dapat diterapkan pada desain pabrik ini. Parameter MMPC (4x4) optimal dalam bentuk T, P, dan M dalam proses pemurnian DME dari campuran metanol secara berurutan adalah 25, 18, dan 41. Parameter ini merupakan hasil kombinasi dari metode Shridhar-Cooper dan fine tuning. Jika dibandingkan dengan MPC, MMPC (4x4) memberikan peningkatan kinerja kontrol dari 15,46% menjadi 94,7% bila dilihat dari IAE dan 10,31% hingga 97,726% bila dilihat dari ISE. Dengan demikian sistem MMPC (4x4) memberikan kinerja kontrol yang lebih baik dibandingkan dengan sistem MPC.

ABSTRACT
The problem of decreasing petroleum production in Indonesia has occurred since 2000. The Indonesian state has been an importer of petroleum since 2003 with an import value of 100,000 barrels per day which continues to increase from time to time until 2014. This is due to the need for energy and fuel in Indonesia continues to increase. This problem can be overcome by using Dimethyl Ether (DME) as an alternative fuel source with several benefits compared to fossil fuels. Research on the design of the DME plant continues to be carried out, one of the studies conducted was entitled Production of DME from Synthetic Gas for Diesel Engine Fuel Additives and LPG Blends. However, the design results still require process control to achieve optimal production processes. Research on the process control system at this plant has been carried out, but it has not yet produced an optimal process control system. The Multivariable Model Predictive Control (4x4) control system can be applied to this factory design. The optimal MMPC (4x4) parameters in the form of T, P, and M in the DME refining process from methanol mixtures respectively are 25, 18, and 41. These parameters are the result of a combination of the Shridhar-Cooper method and fine tuning. When compared to MPC, MMPC (4x4) gives an increase in control performance from 15.46% to 94.7% when viewed from IAE and 10.31% to 97.726% when viewed from ISE. Thus the MMPC system (4x4) provides better control performance compared to the MPC system."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asep Handaya Saputra
"Dimethyl ether (DME) is a type of renewable energy that could replace the use of fossil fuel in Indonesia. Nevertheless, DME can cause degradation of rubber-based materials. Therefore, the performance of rubber that has been degraded by DME must be improved. This research study aims are to determine the degradation characteristics of modified vulcanized natural rubber in a DME environment. The effect of the filler (carbon black) and plasticizer (minarex-B) components of vulcanized natural rubber was examined. The vulcanized rubber samples were comprised of 10, 30, and 60 parts per hundred rubbers (phr) of filler and 0, 10 and 20 phr of plasticizer. The degradation of the mass and mechanical properties of the rubber were investigated. Degradation testing was conducted by immersing the samples inside a pressure vessel that was filled with the liquid phase of DME. The results indicate that the increasing of the filler composition reduces the impact of degradation, while the increasing of the plasticizer composition has the opposite effect. The plasticizer is needed to distribute the filler to all parts of the rubber. Consequently, a filler composition of 30 phr and a plasticizer composition of 10 phr provide a vulcanized natural rubber with optional protection against the degradation caused by DME. The characteristics of natural rubber, as measured by Fourier Transform Infra-Red Spectroscopy (FTIR) proved that DME does not damage the structure of the polymer chains, although DME may react with some ingredients in the rubber that have a similar polarity."
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:4 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Arissa Andam Sari
"Untuk mengantisipasi ketergantungan impor LPG, perlu dilaksanakannya studi pemanfaatan energi alternatif subtitusi LPG. Salah satu alternatif subtitusi LPG adalah Dimetil Eter (DME) yang dapat dihasilkan dari gas alam (CH4). Proses produksi Dimetil Eter (DME) dari gas alam (CH4) dilakukan melalui 3(tiga) tahapan yaitu: sintesis gas, sintesis DME (direct method), dan pemurnian DME. HYSYS process simulation software model-based sebagai representasi pabrik DME digunakan untuk menganalisis 3(tiga) tahapan produksi DME. Teknologi yang diterapkan untuk memproduksi DME ialah teknologi direct method dimana dengan umpan gas alam sebesar 70 MMscfd mampu menghasilkan DME sebesar 658,9 ton/hari dengan tingkat kemurnian 99,99%. Perolehan produksi pabrik DME ini mampu mengurangi ketergantungan impor LPG di Indonesia sebesar 7% pada tahun 2018.
Berdasarkan hasil perhitungan keekonomian diperoleh biaya kapital (CAPEX) pabrik DME sebesar $57.818.702 dan biaya operasional (OPEX) sebesar $148.232.914/tahun. Dengan asumsi harga beli gas $6/MMBtu dan harga jual DME $833/ton (10% dibawah harga jual LPG), maka didapatkan IRR sebesar 44% dan NPV sejumlah $64.012.840 dengan masa pengembalian selama 5 tahun. Dari perolehan IRR dan NPV tersebut dapat disimpulkan bahwa pabrik DME ini layak untuk didirikan dikarenakan nilai IRR (44%) lebih besar dari MARR (20%) dan NPV bernilai positif. Dari analisis sensitivitas diperoleh bahwa parameter harga jual DME bersifat sensitif terhadap NPV, dan parameter harga beli gas bersifat sensitif terhadap IRR dan PBP.

To anticipate the LPG import dependency, required a study to look for an alternative energy as subtitution of LPG. One alternative is substituting LPG with Dimethyl Ether (DME) which can be produced from natural gas (CH4). The production process of Dimethyl Ether (DME) from natural gas (CH4) is done through three stages, namely: synthesis gas, DME synthesis (direct method), and DME purification. HYSYS Process simulation as a representation of the modelbased DME plant is used to analyze 3(three) stages of DME production. The technology applied for DME production are direct method technology where with feed natural gas (CH4) of 70 MMscfd are able to produce DME at 658,9 tonnes/day with a purity level of 99,99%. DME yield from this plant is capable to reduce import dependency of 7% in 2018.
Based on the economical analysis calculation, the total capital expenditure (CAPEX) and operasional expenditure (OPEX) of this DME plant are $57.818.702 and $148.232.914/year respectively. Assuming gas purchase price $6/MMBtu and DME sale price $833/tonnes then obtained an IRR 44% and NPV $64.012.840 with 5 years of payback period. Hence it can be concluded that this DME plant is feasible due to IRR (44%) is greater than MARR (20%) and NPV value is positive. Sensitivity analysis of DME plant showed that DME selling price variable are sensitive NPV. In addition, gas purchased price variable are sensitive to IRR and PBP (Payback Period).
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45635
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>