Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 81197 dokumen yang sesuai dengan query
cover
Muhammad Daffa Nurendra Putra
"Penelitian ini membahas tentang kinetika pertumbuhan butir austenite pada baja H13 selama proses austenisasi dengan tujuan untuk menentukan pengaruh suhu austenisasi dan waktu tahan terhadap pertumbuhan butir serta untuk mengembangkan persamaan empiris yang menggambarkan hubungan tersebut. Baja H13 diperlakukan panas pada suhu austenisasi 1020°C, 1100°C, 1200°C, dan 1300°C dengan waktu tahan 0 menit, 30 menit, 60 menit, dan 120 menit. Proses pendinginan dilakukan dengan metode oil quenching untuk menghasilkan struktur martensit pada baja. Ukuran butir austenit prior yang terbentuk pada setiap perlakuan panas dianalisis menggunakan mikroskop optik (OM) dan digunakan untuk mengembangkan persamaan empiris pertumbuhan butir austenite. Persamaan empiris yang diperoleh, dengan nilai eksponen n, konstanta waktu m, dan energi aktivasi Q yang dihitung melalui regresi linier terhadap data eksperimen. Hasil penelitian menunjukkan bahwa suhu austenisasi dan waktu tahan memiliki pengaruh signifikan terhadap ukuran butir austenit, di mana semakin tinggi suhu dan semakin lama waktu tahan, semakin besar ukuran butir yang terbentuk. Persamaan empiris yang diperoleh menunjukkan kesesuaian yang baik dengan data eksperimen, dengan persamaan berikut:
D1,36-D01,36 = (6,98 X 108)t0,73exp(-238698,66/RT)

This study investigates the kinetics of austenite grain growth in H13 steel during the austenitizing process, aiming to determine the effects of austenitizing temperature and holding time on grain growth and to develop an empirical equation that describes the relationship between these factors. H13 steel was subjected to heat treatment at austenitizing temperatures of 1020°C, 1100°C, 1200°C, and 1300°C with holding times of 0 minutes, 30 minutes, 60 minutes, and 120 minutes. The cooling process was carried out using oil quenching to form a martensitic structure in the steel. The prior austenite grain size formed during each heat treatment was analyzed using an optical microscope (OM) and used to develop the empirical equation for austenite grain growth. The empirical equation obtained, with exponent values of n, time constant m, and activation energy Q, was calculated through linear regression on the experimental data. The results showed that austenitizing temperature and holding time significantly affect the austenite grain size, with higher temperatures and longer holding times resulting in larger grain sizes. The obtained empirical equation showed a good fit with the experimental data, represented by the equation:
D1,36-D01,36 = (6,98 X 108)t0,73exp(-238698,66/RT)
"
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Valen Befri Harefa
"Baja perkakas AISI O1 merupakan salah satu jenis baja paduan yang digunakan untuk aplikasi-aplikasi yang membutuhkan kekuatan tinggi. Baja perkakas dapat diproses dengan quenching dan tempering untuk memenuhi kriteria kekuatan dan kekerasan yang dibutuhkan. Sebelum memasuki tahapan quenching, baja perkakas harus diaustenisasi terlebih dahulu. Ukuran butir austenit dapat berubah seiring dengan kenaikan temperatur dan/atau waktu tahan austenisasi, yang dapat mempengaruhi struktur mikro akhir dan sifat mekanis dari baja. Ukuran butir dari fasa austenit akan memengaruhi ukuran struktur mikro akhir, sehingga memengaruhi sifat mekanis akhir dari baja perkakas. Oleh karena itu, diperlukan investigasi pertumbuhan butir austenit dan persamaan empiris untuk memprediksi ukuran butir austenit pada temperatur austenisasi dan waktu tahan yang berbeda pada baja perkakas. Penelitian ini berfokus pada tahapan austenisasi saat perlakuan panas. Austenisasi dilakukan dengan variabel temperatur austenisasi 800°C, 900°C, 1000°C, dan 1100°C dengan waktu tahan masing-masing temperatur selama 0 detik, 1.800 detik, 3.600 detik, dan 7.200 detik yang kemudian didinginkan dengan cepat menggunakan oli. Hasil perlakuan panas dikarakterisasi dengan pengujian metalografi. Pengujian metalografi menghasilkan struktur mikro batas butir prior austenite. Pengukuran besar butir prior austenite dilakukan menggunakan metode intercept berdasarkan ASTM E112. Hasil percobaan menunjukkan bahwa ukuran butir austenit meningkat seiring peningkatan temperatur dan/atau waktu tahan austenisasi. Didapatkan persamaan permodelan pertumbuhan butir austenit berupa D^1,47511 - D0^1,47511 = 4,25866 x 10^8 t^0,68521 exp (-211.903,27229/RT).

AISI O1 tool steel is a type of alloy steel used for applications requiring high strength. Tool steel can be processed by quenching and tempering to meet the required strength and hardness criteria. Before entering the quenching stage, the tool steel must undergo trough austenitization stage first. The austenite grain size can change with the increase in austenitization temperature and/or the holding time, which can affect the final microstructure and the mechanical properties of the steel. Austenite grain size will affect the size of the final microstructure, thereby affecting the final mechanical properties of the tool steel. Therefore, it is necessary to investigate the grain growth of austenite and the empirical equations to predict the grain size of austenite at different austenitization temperatures and holding times for tool steels. This research focuses on the austenitization stage during heat treatment. Austenitization was carried out with a variable temperature of 800°C, 900°C, 1000°C, and 1100°C with holding times of 0 second, 1.800 seconds, 3.600 seconds, and 7.200 seconds, respectively, and then quenched with oil. The heat treatment results were characterized by metallographic testing. The microstructure result from metallographic testing was prior austenite. Prior austenite grain size was measured using intercept method based on ASTM E112. The experimental results show that the austenite grain size increases with increasing austenitization temperature and/or holding time. The modeling equation for the growth of austenite grains is D^1,47511 - D0^1,47511 = 4,25866 x 10^8 t^0,68521 exp (-211.903,27229/RT)."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nofri Hasanudin
"Dalam penelitian ini dilakukan pengamatan pertumbuhan butir austenit awal pada proses pemanasan awal (reheating) di bawah pengaruh laju pemanasan (heating rate) dan waktu tahan austenisasi pada baja HSLA-Nb 0.183%. Parameter penelitian yang dipakai dalam penelitian ini berupa tiga laju pemanasan yang berbeda (10°C/menit, 15°C/menit, 20°C/menit) dan tiga waktu tahan austenisasi yang berbeda (20 menit, 50 menit, 80 menit).
Dari hasil penelitian yang ada menunjukkan bahwa semakin besar laju pemanasan (cepat) maka akan dihasilkan butir austenit awal yang lebih besar dibandingkan dengan laju pemanasan yang rendah (lambat). Hasil penelitian juga menunjukkan bahwa tingkat kenaikan pertumbuhan butir meningkat sebesar 45.14% dari laju pemanasan 10°C/menit ke 15°C/menit dan meningkat sebesar 200.98% dari laju pemanasan 15°C/menit ke 20°C/menit pada penahanan austenisasi 50 menit. Didapat persamaan empiris perhitungan besar butir austenit awal sebagai fungsi dari laju pemanasan dan waktu tahan austenisasi.

This research investigated the prior austenite grain growth at reheating process under the influence of heating rate and soaking time on HSLA-Nb steel 0.183 (wt%). The parameter that have been used in this research are three different heating rate (10°C/minutes, 15°C/minute, 20°C/minutes) and three different soaking time (20 minutes, 50 minutes, 80 minutes).
The results of this research shows that the higher heating rate (slow). The result of this research also showsthat the growth of grain increasing by 45.14% from heating rate 10°C/minutes to 15°C/minutes and increasing by 200.98% from heating rate 15°C/minutes to 20°C/minutes at 50 minutes of soaking time. Calculation empirical equation of prior austenite grain size is obtained as a function of heating rate and soaking time.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42943
UI - Skripsi Open  Universitas Indonesia Library
cover
Myrna Ariati Mochtar
"ABSTRAK
Berbagai penelitian dan para peneliti terdahulu terhadap pertumbuhan butir baja terfokus pada kondisi isothermal, sehingga berbagai tinjauan terhadap topik ini terdapat dalam berbagai literatur. Sedangkan berbagai aplikasi proses material, seperti canal panas pengecoran atau tempa berlangsung dalam kondisi non-isoternal. Prediksi pertumbuhan butir mempergunakan persamaan yang didapat secara empris dalam kondisi anil isothermal sehingga terjadi fluktuasi dalam besar butir dan sifat mekanis produk baja.
Penelitian ini dilakukan untuk mengevaluasi dan mendapatkan pertumbuhan butir austenit dalam kondisi dimana pertumbuhan butirnya setelah dilakukan deformasi canal satu pass, dalam kondisi pendinginan kontinyu. Pendekatan yang digunakan adalah memberikan regangan deformasi canal panas antara O,3-0,4 dengan temperatur pemanasan awal l200°C, dan temperatur deformasi antara 900-1100C dengan kecepatan pendinginan antara 7-12 C/detik dalam rentang waktu rata-rata 30 detik setelah deformasi, kemudian didinginkan cepat ke temperatur ruang. Kecepatan pendinginan direkayasa dengan memasukkan benda iji ke dalam heating jacket dan pendinginan cepat dilakukan dengan water jetspray.
Hasil eksperimen menunjukkan bahwa pertumbuhan butir austenit baja setelah proses canal panas dapat digambarkan sebagai fungsi kecepatan pendinginan. Besar butir austenit semakin menurun dengan meningkatnya kecepatan pendinginan. Kinetika pertumbuhan butir austenit non-isotermal didapat dengan melakukan modifikasi matematis persamaan pertumbuhan butir isotermal dengan memasukkan faktor inverse kecepatan pendinginan berpangkat m. Model modfikasi ini dilakukan iterasi dengan hasil eksperimen dan didapat model empris dengan nilai amat mendekati hasil eksperimen, dengan hubungan besar butir austenit yang berbanding terbalik dengan kecepatan pendinganan berpangkat m (1/Cr), dan penambahan konstanta B. Didapat konstanta kecepatan pendinginan m hampir tidak terpengaruh oleh komposisi baja yaitu sekitar 12 sedangkan konstanta B meningkat dari 3,0 x10'° sampai 8 x l0'° dengan peningkatan prosentase Nb, C atau N dalam baja. Model ini dievaluasi dengan perhitungan penumbuhan butir austenit hasil perhitugan matematis berdasarkan persamaan isothermal dan metode additivity. Didapati bahwa model modifikasi memilih nilai besar butir austenit yang amat mendekati perhitugan matematis , dengan nilai konstanta yang relatif sama dengan model matematis . Didapat bahwa perhitungan dengan model empiris non isotermal memiliki deviasix rendah terhadap nilai eksperimen (4-l5%). sehingga lebih tepat untuk memprediksi pertumbuhan butir austenit kondisi non-isotermal.

ABSTRACT
Many reviews in the literatures by many previous investigators on the steel grain growth mostly focused for the isothermal condition. At the same time, many of the materials processing such as hot-rolling, casting, and forging take place under non-isothermal conditions. Grain growth prediction uses empirically obtained formula in an isothermal annealing condition; in this instant, there are possibilities that the fluctuation in the predicted grains size and thus in the mechanical properties will occur.
The main purpose of this investigation is to evaluate and to obtain austenite grains growth in a non-isothermal condition. The grain growth of three compositions of HSLA-Nb steel, i.e. 0.019; 0.037; and 0.056 wt.% Nb, was examined after single-pass-hot-rolling process under continuous cooling condition. The materials were hot-rolled about 0.3-0.4 at an initial temperature of 1200C, deformation temperature of 900-1100C, cooling rate of 7-12K/s in an average time period of 30 second after deformation, and the quenched to room temperature. Cooling rate was achieved by putting the specimen into a heating jacket and quenching was performed by using a water jetspray.
The results show that the austenite grain growth was obtained by modifying isothermal grain growth relation with respect to the inverse factor of cooling rate to the power of m. This modification model was irerated by using experimental data and results in an empirical model with the value very close to the experimental data, in which the austenite grain size inversely proportional to the cooling rate power m (1/Cr) and an additional content of B. It was also found that the cooling rate m was almost not affected by steel composition, which is around 12, whereas the constant of B increases from 3.0 x 10 to 8 x 10 with the increase of Nb, C, or N content in the steel. The model was evaluated by using the austenite grain growth calculation based on isothermal and addivity methods. This model results in the same value as the calculation model with the same constant. The austenite grain growth calculated by modified empirical model was found has small deviation compare to the experiments value (4-15%). Hence, the model is appropriates to be applied to predicts the non-isothermal austenite grain growth after deformation in hot rolling process.
"
Depok: Fakultas Teknik Universitas Indonesiaa, 2010
D1168
UI - Disertasi Open  Universitas Indonesia Library
cover
Ronaldus Caesariano Ekaputra
"Seiring dengan meningkatnya investasi di sektor infratruktur, gedung-gedung pencakar langit, dan proyek otomotif berbanding lurus dengan permintaan pasar global akan baja perkakasdengan nilai USD 5.7 miliar di tahun 2023. Salah satu tipe baja perkakas yang umum digunakan di dunia industri sebagai pisau pemotong adalah baja AISI D2.Material ini dapat ditingkatkan kekuatan dan kekerasannya melalui proses perlakuan panas. Perlakuan panas dilakukan untuk mentransformasi fasa austenit menjadi martensit. Fasa austenit yang merupakan fasa induk memiliki peran penting dalam menghasilkan fasa akhir dengan sifat mekanis yang optimal oleh karena itu penelitian terkait fenomena penghalusan austenit atau yang dikenal dengan sebutan prior austenite grain (PAG) terus dikembangkan. Salah satu metode penghalusan butir austenit dilakukan dengan kombinasi dari proses deformasi plastis (canai dingin) sebelum dilakukan perlakuan panas.Dengan diterapkannya deformasi plastis, maka akan menghasilkan lebih banyak cacat kristal sebagai area nukleasi atau pengintian fasa austenit pada saat proses pemanasan serta lebih banyak energi yang tersimpan sebagai pendorong (driving force) proses pengintian. Penelitian ini berfokus pada analisa ukuran prior austenit grain (PAG) yang berdampak terhadap sifat mekanis dari baja perkakas AISI D2, terutama kekerasan dan ketahanan aus hasil dari proses deformasi sebelum perlakuan panas serta efek dari waktu tahan pada temperatur austenitisasi. Spesimen baja AISI D2 dengan kombinasi deformasi paling tinggi (24.6%) dengan waktu tahan pada temperatur austenitisasi 600s ternyata memiliki ukuran rata-rata PAG paling halus yakni 4.182 µm. Ukuran PAG yang halus berpengaruh terhadap nilai kekerasan dan ketahanan aus (nilai kehilangan volume) material yang paling tinggi yaitu 63.26 HRC dan 0.120mm3 yang turut dikonfirmasi melalui pengujian kekerasanRockwell C dan ketahanan aus metode abrasif. Dari penelitian ini dapat disimpulkan bahwa dengan meningkatnya persentasi deformasi maka terdapat kecenderungan untuk menghasilkan ukuran PAG yang semakin halus yang berdampak pada meningkatnya kekerasan dan ketahanan aus material.

Along with the increasing of investment in infrastructure, skycrapers, and automotive project, significantly increasing global market demand for tool steel with total value of USD 5.7 billion in 2023. One of the popular type of tool steel which have been used as cutting tool is AISI D2. This material is heat treatable to improve its strength and hardness. Heat treatment is conducted to transform austenite phase become martensite.Austenit as parent phase has primary role in resulting final phase with optimum mechanical properties, in which research that related with autenite or known as prior austenite grain (PAG) continuously developed. PAG refinement method in this research is a combination of plastic deformation (cold rolling) before heat treatment, which the greater deformation percentage, the more crystal defect formed as austenite nucleation area during heating also store the energy as nucleation driving force. The focus of this research will be the analysis of prior austenite grain (PAG) which affecting it mechanical properties, especially for hardness and wear resistance resulting for plastic deformation before heat treatment and the effect of austenitizatin soaking time.Specimen with combination of deformation percentage of 24.6% with austenitization soaking time 600s has the finest PAG with 4.182 µm. PAG size has effect on material’s highest hardness and wear resistance (volume loss) which is 63.26 HRC and  0.120mm3 which confirmed by Rockwell C hardness testing and abrasive wear resistance testing. From this research, it can be concluded that the higher deformation percentage has tendency in resulting to produce finer PAG size which affecting in improving material’s hardness and wear resistance."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
M. Zainal Abidin
Depok: Fakultas Teknik Universitas Indonesia, 2000
S41613
UI - Skripsi Membership  Universitas Indonesia Library
cover
Myrna Ariati Mochtar
"Berbagai penelitian dari para peneliti terdahulii terhadap pertumbuhan butir baja terfokus pada kondisi isothermal, seliingga berbagai tinjauan terhadap topik ini terdapat dalam berbagai literatur. Sedangkan berbagai aplikasi proses material , seperti canai panas, pengecoran atau tempa berlangsung dalam kondisi non-isotermal. Prediksi pertumbuhan butir mempergunakan persamaan yang didapat secara empiris dalam kondisi anil isothermal, seliingga terjadi fluktuasi dalam besar butir dan sifat mekanis produk baja. Penelitian ini dilakukan untuk mengevaluasi persamaan yang ada dan mendapatkan pertumbuhan butir austenit dalam kondisi non-isotermal. Tiga komposisi baja HSLA-Nb, dengan 0,019, 0,037 dan 0,056% berat Nb diamati pertumbuhan butirnya setelah dilakukan deformasi canai satu pass, dalam kondisi pendinginan kontinyu. Pendekatan yang digunakan adalah memberikan regangan deformasi canai panas antara 0,3-0,4, dengan temperatur pemanasan awal 1200®C, dan temperatur deformasi antara 900- I100°C, dengan kecepatan pendinginan antara 7-l2"C/detik dalam rentang waktu rata-rata 30 detik setelah deformasi, kemudian didinginkan cepat ke temperatur ruang. Kecepatan pendinginan direkayasa dengan memasukkan benda uji ke dalam heating jacket dan pendinginan cepat dilakukan dengan water jetspray. Hasil eksperimen menunjukkan bahwa pertumbuhan butir austenit baja setelah proses canai panas dapat digambarkan sebagai fungsi kecepatan pendinginan. Besar butir austenit semakin menurun dengan meningkatnya kecepatan pendinginan. Kinetika pertumbuhan butir austenit non-isotermal didapat dengan melakukan modifikasi matematis persamaan pertumbuhaii butir isotermal dengan memasukkan faktor inverse kecepatan pendinginan berpangkat m. Model modifikasi ini diiakukan iterasi dengan hasil eksperimen , dan didapat model empiris dengan nilai amat mendekati hasil eksperimen, dengan hubungan besar butir austenit yang berbanding terbalik dengan kecepatan pendinginan berpangkat m (I/Cr'"), dan penambahan konstanta B. Konstanta kecepatan pendinginan m hampir tidak terpengaruh oleh komposisi baja yaitu sekitar 12, sedangkan konstanta B meningkat dari 3,0 xlO'® sampai 8 x 10'° dengan peningkatan prosentase Nb , C atau N dalam baja. Model ini dievaluasi dengan perhitungan pertumbuhan butir austenit hasil perhitungan matematis berdasarkan persamaan isotermal dan metode additivity. Didapat bahwa model non isothermal empirik hasil modifikasi memiliki nilai besar butir austenit yang amat mendekati perhitungan matematis dengan nilai konstanta yang relatif sama. Didapat bahwa nilai besar butir austenit dari perhitungan dengan persamaan modifikasi empirik yang didapat memiliki nilai deviasi rata-rata terhadap hasil eksperimen yang relatif rendah (4-15%), dibanding deviasi rata-rata hasil perhitungan dengan persamaan isothermal. Dapat disimpulkan bahwa model pertumbuhan butir non-isotermal hasil modifikasi yang didapat, dapat dipergunakan untuk memprediksi besar butir austenit setelah canai panas dengan lebih akurat."
Depok: Fakultas Teknik Universitas Indonesia, 2010
D1002
UI - Disertasi Open  Universitas Indonesia Library
cover
Tia Rahmiati
"Perkembangan reknologi dewasa ini, memburuhkan baja yang memiliki kombinasi anlara kekuaran yang tinggi, kelangguhan, tahan korosi dan yang tidak kalah penring adalah lfemampuan unruk mernpertahankan kekuaran pada remperatur tinggi rerutama unluk aplikasi pada femperatur tinggi seperli Steam Reformer, dan lain sebagainya. Jenis baja yang dapa! dipililz adaiah baja Ni-based superalloy dengan menambahkan zmsur Nike! dan Chromium dalarnjumlah yang signyikan. Biasanya komposisi Nike! 34- 70 % dan Chromium 24-35 %, juga dirambah dengan paduan-paduan lain yang kecil jumlahnya seperri Niobiurn, Mofybdenum, dan siiilcon. Kandungan Nike/ yang besar sangar mempengaruhi sgfat mekanis baja ini terulama untuk mendapal/can sy'at mampu tahan terhadap kenaikan femperarur melahzi pengualan presqviral serta penghalusan butir.
Pada penelitian ini alcan diamari perilaku burir ausrenit saat pemanasan isothermal. Benda zg'i yang digunakan ialah baja Ni-based .superalloy dengan kandungan Nike! sebesar 4 - 46 % dan Chromium 30 -- 35 % yang dipanaskan pada remperalur 900 "C dengan wa/du tahan mufai dari 1, 2, 3, 4, sampai 5 jam. Peningkalan waktu tahan pada baja Ni-based superalloy selama pemanasan isothermar' pada remrnperalur 900 "C akan memperbesar ukuran butir ausrenir. Hal ini di/carenalam pada temperatur tersebur, preszpitat karbida dari paduan-paduannya yang b€lj`ll72g.\`f :mink menghamba! perrumbuhan butir austenit telah larur seluruhnya seingga mendapa!/can pertumbuhan bulir normal /continyu dan seragam. Pcningkatan waldu tahan akan meningkarkan migrasi atom-arom pada batas butir melalui proses dyizsi sehingga butir akan bertambah besar.
Energi aklivasi (Qgg) baja Ni-based superalloy, yang dzjpanaskan pada temperatur 900 “C dengan walftu tahan yang berbeda-beda, yailu I , 2, 3, 4, dan 5 jam adolah 440267 J/mol dengan nilai n = 2,805 dan konsranra A = 1,786 x 102). Nilai Qgg, konstanta n dan A yang sesuai akan memperlihatkan predilcsi model yang mendelcati hasi! pengamalan yang dlakukan."
Depok: Fakultas Teknik Universitas Indonesia, 2003
S41310
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anita Juliawatri
"Perkembangan teknologi dewasa ini, membutuhkan baja yang memiliki kombinasi antara kekuatan yang tinggi. Ketangguhan dan kemampuan las yang baik serta biaya produksi yang rendah. Jenis baja yang mampu menjawab tantangan diatas ialah baja HSLA sebab dengan penamhahan sejumlah kecil (<0.15 %) unsur-unsur paduan tertentu atau yang sering disebut Microalloyed, baja ini mampu menghasilkan sifat mekanis yang baik melalui penguatan presipital serta penghalusan butir.
Pada penelitian ini akan diamati perilaku butir austenit prior yang berbeda dengan baja C-Mn biasa, dimana butir austenite prior terbentuk akan menentukan mikrostruktur. Akhir setelah canai panas. Benda uji yang digunakan pada penelitian ini ialah baja H SLA 0.029 % Nb hasil coran kontinu, yang dipanaskan pada temperatur 1250°C dengan waktu tahan yang berbeda-beda, yaitu 1 jam, 1.5 jam, 2 jam, 2.5 jam dan 3 jam.
Peningkatan waktu tahan pada baja HSLA 0,029 % Nb selama pemanasan isothermal temperatur 1250°C akan memperbesar ukuran butir austenit. Hal ini dikarenakan pada temperatur tersebut, presipitat Nb(CN) yang berfungsi menghambat pertumbuhan butir austenit telah larut seluruhnya sehingga terjadi pertumbuhan butir normal yang kontinu dan seragam. Peningkatan waktu tahan akan meningkatkan migrasi atom-atom pada batas melalui proses difusi sehingga butir akan bertambah besar.
Energi aktivasi dari pertumbuhan butir (Qgg) baja HSLA 0,029% Nb hasil coran kontinu, yang dipanaskan pada temperature 1250 °C dengan waktu tahan yang berbeda-beda, yaitu 1 jam, 1.5 jam, 2 jam, 2.5 jam, dan 3 jam adalah 438300 J/mol dengan nilai n= 3,05 dan konstanta A= 8,31.10 20. Nilai Qgg konstanta A dan n yang sesuai akan memperlihatkan prediksi model yang mendekati hasil pengamatan yang dilakukan."
Depok: Fakultas Teknik Universitas Indonesia, 2002
S41443
UI - Skripsi Membership  Universitas Indonesia Library
cover
<<   1 2 3 4 5 6 7 8 9 10   >>