Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 185161 dokumen yang sesuai dengan query
cover
Dzakiyya Yumna Fitrasani
"Sumber panas tingkat rendah dari energi terbarukan dan waste heat dapat dimanfaatkan untuk membangkitkan daya listrik melalui Organic Rankine Cycle (ORC), yaitu modifikasi dari siklus Rankine yang menggunakan fluida kerja bertitik didih rendah, umumnya senyawa hidrokarbon. Penelitian ini mensimulasikan sistem ORC skala kecil dengan konfigurasi single cycle dan dual cycle menggunakan perangkat lunak Cycle- Tempo, serta fluida kerja R134a dan R245fa. Pada konfigurasi dual cycle, topping cycle menggunakan R245fa, sementara bottoming cycle menggunakan R134a. Temperatur sumber panas divariasikan dalam rentang 85–100 °C untuk R134a, 90–120 °C untuk R245fa, dan 90–105 °C untuk konfigurasi dual cycle. Hasil simulasi telah diverifikasi terhadap data eksperimen dengan tingkat error kurang dari 5%. Pada konfigurasi single cycle, R134a menghasilkan daya netto lebih tinggi, sedangkan R245fa menunjukkan efisiensi termal yang lebih baik. Adapun konfigurasi dual cycle memberikan peningkatan signifikan baik pada daya netto maupun efisiensi termal, dengan capaian maksimum sebesar 2,17 kW dan 7,30% pada temperatur sumber panas 105 °C. Pada kondisi optimal, dengan peningkatan efisiensi expander dan pompa, daya netto meningkat menjadi 6,86 kW dengan efisiensi termal 21,87%. Dari sisi ekonomi, pada kondisi aktual, konfigurasi single cycle dengan R134a pada 100 °C menghasilkan net present value (NPV) sebesar US$ 24.930, internal rate of return (IRR) sebesar 9,29%, dan payback period selama 13,64 tahun. Sementara itu, pada kondisi optimal, konfigurasi dual cycle pada 105 °C memberikan NPV tertinggi sebesar US$ 74.452, dengan IRR sebesar 8,81% dan payback period selama 13,93 tahun.

Low-grade heat sources from renewable energy and waste heat can be utilized to generate electricity through the Organic Rankine Cycle (ORC), which is a modification of the Rankine cycle using working fluids with low boiling points, typically hydrocarbon compounds. This study simulates a small-scale ORC system with single cycle and dual cycle configurations using Cycle-Tempo software, employing R134a and R245fa as working fluids. In the dual cycle configuration, the topping cycle uses R245fa, while the bottoming cycle uses R134a. The heat source temperature is varied within the range of 85–100 °C for R134a, 90–120 °C for R245fa, and 90–105 °C for the dual cycle configuration. The simulation results have been validated against experimental data with an error margin of less than 5%. In the single cycle configuration, R134a produces a higher net power output, while R245fa demonstrates better thermal efficiency. The dual cycle configuration provides significant improvements in both net power and thermal efficiency, with maximum outputs of 2.17 kW and 7.30% efficiency at a heat source temperature of 105 °C. Under optimal conditions, with increased expander and pump efficiencies, the net power increases to 6.86 kW with a thermal efficiency of 21.87%. From an economic perspective, under actual conditions, the single cycle configuration with R134a at 100 °C yields a net present value (NPV) of US$ 24,930, an internal rate of return (IRR) of 9.29%, and a payback period of 13.64 years. Meanwhile, under optimal conditions, the dual cycle configuration at 105 °C provides the highest NPV of US$ 74,452, with an IRR of 8.81% and a payback period of 13.93 years."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Mochammad Qardhawi Wicaksono
"Liquified Natural Gas (LNG) merupakan salah satu sumber energi yang menjanjikan dalam upaya transisi menuju energi terbarukan. Namun, terdapat kekurangan pada proses regasifikasi LNG yang disebabkan adanya pemborosan energi dingin yang tidak dimanfaatkan selama proses tersebut berlangsung. Teknologi pembangkit listrik termal memiliki potensi dalam memanfaatkan energi dingin tersebut. Penelitian ini bertujuan untuk mengevaluasi konfigurasi sistem pembangkit daya berupa siklus Brayton terbuka dan Rankine organik yang terintegrasi dengan sistem regasifikasi LNG, menggunakan beberapa varian fluida kerja organik seperti ammonia, propana, dan butana. Penelitian ini meninjau sisi termodinamika dan keekonomian melalui simulasi dan optimasi menggunakan perangkat lunak Aspen HYSYS 12. Analisis ekonomi dilakukan melalui perhitungan total biaya produksi yang melibatkan luas heat exchanger yang dibutuhkan dan analisis sensitivitas terhadap jumlah energi listrik yang dihasilkan. Hasil yang didapatkan menunjukkan penggunaan fluida kerja ammonia memiliki tingkat efisiensi termal dan kapasitas daya tertinggi yaitu 40,4% dan 103,7 MW apabila dibandingkan dengan penggunaan fluida kerja lainnya. Case dengan fluida kerja ammonia memiliki nilai NPV tertinggi yaitu 307,7 trilliun rupiah.

Liquified Natural Gas (LNG) is a promising energy source in the transition to renewable energy. However, there are drawback in the LNG regasification process due to the waste of cold energy that is not utilized during the process. Thermal electricity generation technology has the potential to utilize this cold energy. This research aims to evaluate the power generation system configuration in the form of an open Brayton and organic Rankine cycle integrated with an LNG regasification system, using several variants of organic working fluids such as ammonia, propane and butane. Comparisons will also be carried out to see opportunities from implementing this integrated cycle. This research will review the thermodynamics and economics through simulation and optimization using Aspen HYSYS 12 software. Economic analysis is carried out through calculating total production costs involving the required heat exchange area and sensitivity analysis of the amount and price of electricity produced. The results of the economic analysis will provide a comprehensive comparison of the three working fluids used. The results indicate that using ammonia as a working fluid achieves the highest thermal efficiency and power capacity, at 40.4% and 103.7 MW respectively, compared to other working fluids."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akhmad Syihan Santoso
"Penggunaan Organic Rankine Cycle (ORC) sebagai sumber energi listrik daerah terpencil menjadi salah satu solusi untuk Indonesia, dikarenakan ORC tidak membutuhkan sumber panas yang tinggi. ORC menggunakan refrigeran sebagai fluida kerja. Namun, penggunaan refrigeran halokarbon yang tinggi menyebabkan pemanasan global dan rusaknya lapisan ozone, yang ditandai dengan tingginya nilai Global Warming Potential (GWP) dan Ozone Depletion Potential (ODP) refrigeran halokarbon. Pengembangan refrigeran dilakukan dengan harapan dapat mengurangi efek yang ditimbulkan terhadap lingkungan. Salah satu solusinya adalah penggunaan refrigeran natural. Refrigeran natural memiliki nilai GWP dan ODP yang rendah sehingga tidak menambah efek negatif yang sudah ditimbulkan oleh refrigeran halokarbon. Refrigeran hidrokarbon merupakan salah satu jenis refrigeran natural. Penelitian ini ditujukan untuk mengetahui koefisien perpindahan kalor yang dimiliki, dan memahami faktor-faktor yang mempengaruhi nilai koefisien perpindahan kalor. Koefisien perpindahan kalor akan naik seiring dengan kenaikan dari Heat Flux.Sedangkan nilai koefisien perpindahan kalor akan bervariatif dalam kondisi mass flux rendah dan naik seiring kenaikan mass flux. Kualitas massa uap dan Temperatur saturasi menjadi faktor tambahan yang memiliki pengaruh beragam terhadap nilai koefisien perpindahan kalor.

Organic Rankine Cycle (ORC) is one of the solutions for Indonesia to solve electricity demands at the remote area, because ORC only require low heat source. The working fluid of ORC is refrigerant. However, the use of halocarbon refrigerant is causing global warming anda ozone depletion, that have high value of Global Warming Potential (GWP) and Ozone Depletion Potential (ODP) on the halocarbon refrigerant. The development of refrigerant has to be done to reduce the negative impact to the environment. One among of the solution is natural refrigerant. Natural refrigerant has the lowest number of GWP and ODP. Therefore, it does not add the negative effect caused by halocarbon refrigerant. Hydrocarbon refrigerant is one kind of natural refrigerant. This study aims to the value of heat transfer coefficient and comprehend the factors affecting the value of heat transfer coefficients. Heat transfer coefficient increase with an increase of heat flux. Meanwhile the value of heat transfer coefficients varies in low mass flux conditions and increase with rise of the mass flux. Vapor quality and saturation temperature becomes additional factors affecting to the value of heat transfer coefficient.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Readyas Wibawa
"Siklus rankine organik (ORC) merupakan sebuah sistem pembangkit yang berasal dari sumber energi yang telah diperbaharui. Sumber energi tersebut dapat berasal dari panas matahari, energi biomass, dan energi banyak energi yang dapat diperbaharui lainnya. Siklus rankine organik ini berguna untuk mengkonversikan energi panas yang didapat agar menjadi energi mekanis yang kemudian dikonversikan lagi menjadi energi listrik dengan temperatur rendah yang dihasilkan dari sumber energi. Pada sistem siklus rankine organik digunakan 2 buah alat penukar kalor, dimana masing-masing alat tersebut berfungsi sebagai evaporator dan condenser. Fluida kerja yang digunakan yaitu fluida refrijeran tipe R-22 dengan melting point pada T = -175,42oC, boiling point pada T = -40,7oC dan tekanan vapor pada p = 980 KPa saat T = 20oC . Proses kerja siklus rankine organik dilakukan dengan temperatur dan tekanan tertentu untuk mencapai kondisi yang diinginkan. Hal ini berfungsi agar mengetahui performa putaran turbin yang diaplikasikan dengan turbocharger untuk memutar generator listrik dengan daya 50 KW.

Organic Rankine Cycle (ORC) is a system of generating energy from sources that have been refurbished. The energy source can be derived from solar heat, biomass energy, and many energy other renewable energy. The organic Rankine cycle is useful for converting heat energy into mechanical energy in order to obtain a longer and then converted into electrical energy with low temperatures resulting from the energy source. In the organic Rankine cycle system used two pieces of equipment heat exchanger, where each device functions as an evaporator and condenser. The working fluid used is the type of fluid refrijeran R-22 with the melting point at T = -175,42oC, boiling point at T = -40,7oC and vapor pressure at p =980 KPa at T = 20oC. Organic Rankine cycle process work done by the temperature and pressure to achieve the desired condition. This works in order to know the performance of spin applied to the turbocharger turbine to rotate the electric generator with a 50 KW power."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42508
UI - Skripsi Open  Universitas Indonesia Library
cover
Dieter Rahmadiawan
"Organic Rankine Cycle ORC pada kondisi temperature rendah yang mana penelitian ini dilakukan berdasarkan kondisi laboratorium. Refrijeran R134a digunakan sebagai fluida kerja pada sistem ini. Prosedur kerja dari sistem ini akan dijelaskan sebagai berikut. Air bertemperatur tinggi dengan range 60C-80C akan digunakan untuk memanaskan refrijeran yang mana terjadi pada plate heat exchanger yang berfungsi sebagai evaporator. Uap panas akan dihasilkan dan ditersukan ke expander yang mana output dari expander ini akan ditersukan ke condensing unit. Sistem pendingin akan bekerja untuk mengubah refrijeran uap menjadi cair dan ditersukan ke Pompa Gear yang mana berfungsi sebagai pemberi tekanan dan mengaliri sistem sehingga siklus termodinamika dapat diulang.

This paper carried out the experimental of the perfomance under laboratory condition of a Low Temperature Organic Rankine Cycle system. The refrigerant R134a used as ORC working fluid for this study. The operation of the system is given briefly below. Hot water at temperature range of 60C ndash 80C were used to heat the refrigerant in plate heat exchanger working as evaporator. This occurence produce the super heated vapour and driven to expander where expander outlet is directed to condensing unit. The cooling system work for the condensing unit to convert into saturated liquid. A gear pump then is used and then the thermodynamic cycle is repeateds. "
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69157
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Zaky Amiyoso
"Organic Rankine Cycle ORC pada kondisi temperature rendah yang mana penelitian ini dilakukan berdasarkan kondisi laboratorium. Refrijeran R134a digunakan sebagai fluida kerja pada sistem ini. Prosedur kerja dari sistem ini akan dijelaskan sebagai berikut. Air bertemperatur tinggi dengan range 40?-80? akan digunakan untuk memanaskan refrijeran yang mana terjadi pada plate heat exchanger yang berfungsi sebagai evaporator. Uap panas akan dihasilkan dan ditersukan ke expander yang mana output dari expander ini akan ditersukan ke condensing unit. Expander disambungkan ke generator dengan sambungan belt. Sistem pendingin akan bekerja untuk mengubah refrijeran uap menjadi cair dan ditersukan ke Pompa Gear yang mana berfungsi sebagai pemberi tekanan dan mengaliri sistem sehingga siklus termodinamika dapat diulang. Mass Flow dari sistem ditetapkan sebesar 0.006 kg.

This paper carried out the experimental of the perfomance under laboratory condition of a Low Temperature Organic Rankine Cycle system. The refrigerant R134a used as ORC working fluid for this study. The operation of the system is given briefly below. Hot water at temperature range of 40 ndash 80 were used to heat the refrigerant in plate heat exchanger working as evaporator. This occurence produce the super heated vapour and driven to expander where expander outlet is directed to condensing unit. The expander is connected to a generator with a belt conenction. The cooling system work for the condensing unit to convert into saturated liquid. A gear pump then is used and then the thermodynamic cycle is repeated. The mass flow rate of the system is fixed at 0.006 kg."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69225
UI - Skripsi Membership  Universitas Indonesia Library
cover
Regie Poulanka Tresna Putera
"Organic Rankine cycle (ORC) is a modified rankine cycle with working fluids, of organic material (Refrigerant). Refrigeran pentane has low boiling point, therefore ORC can be used in power plant which uses low temperature resources, such as exhausted gases and geothermal wells. Organic Rankine Cycle (ORC) is used to convert heat energy into mechanical energy or electricity generated by a low temperature of the hot sun. The working fluid used is R-22. Simulations performed with an organic Rankine cycle temperature and pressure with cycle tempo program. By programming the simulation cycle Refrop tempo and got the result on the maximum power a turbine to the conditions of the working fluid R-22 to the input turbine T = 46oC and pressure = 13.6 bar can generate 177.5 KW. Turbocharger is one of the alternatives in the energy conversion of the energy of motion into electrical energy. Turbocharger rotation will be used to turn a generator and converts the energy of motion into electrical energy. Pressure required to run the turbocharger is 8 psig with mass flow rate of 25.8 kg / s."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1934
UI - Skripsi Open  Universitas Indonesia Library
cover
Anugrah Nur Rachman
"Melihat situasi dimana kebutuhan untuk energi yang terus menerus meningkat, penghasilan energi dengan memanfaatkan panas buang sudah banyak diterapkan untuk solusi permasalahan ini. Sistem Organic Rankine Cycle (ORC) ditujukan untuk menghasilkan energi dari panas buang geothermal, biomasa, solar, dan lainnya. Tujuan dari penelitian ini adalah merancang sebuah scroll expander sebagai alat ekspansi pada ORC yang dihubungkan dengan generator untuk mendapatkan energi listrik. Dari penelitian ini didapat tegangan maksimum sebesar 138.58 V pada 2684.6 rpm dengan udara bertekanan 0.8 MPa. Hasil ini menunjukkan bahwa penggunaan scroll expander pada sistem ORC dapat dilakukan.

In the situation where need for energy keeps increasing, energy generation by waste heat recovery has been applied many times to solve this problem. The Organic Rankine System (ORC) is targeted for energy recovery at geothermal plants, biomass, solar, and others. The objective of this research is to design a scroll expander connected to a generator for an ORC system to obtain electricity. From this research it is obtained the maximum voltage of 138.58 V at 2684.6 rpm with air at pressure 0.8 MPa. The results show that using a scroll expander in an ORC system can be done.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59537
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadillah Nurrani
"Proses regasifikasi LNG umumnya terjadi pada terminal penerimaan LNG dimana gas alam yang telah dicairkan hingga temperatur cryogenic akan diubah kembali dalam wujud gas. Salah satu terminal penerimaan LNG berbasis laut (offshore) di Indonesia adalah FSRU yang dikelola oleh PT. PGN Lampung, dimana masih belum di-utilisasi dengan baik. Perancangan sistem pembangkit energi cryogenic yang memanfaatkan cold energy dari proses regasifikasi LNG dapat menjadi salah satu pilihan. Metode yang digunakan adalah direct expansion dengan Organic Rankine Cycle (ORC) sebagai sistem pembangkitnya. Sistem ORC akan menggunakan dua working fluid yakni Propane (R-290) dan Propylene (R-1270) serta komponen sistem meliputi pompa, CFOH (Closed Feed Organic Heater), mixer, evaporator, expander, heater LNG, dan kondensor yang terintegrasi dengan LNG Vaporizer. Kapasitas regasifikasi LNG di FSRU PGN Lampung sebesar 240 MMSCFD (juta kubik kaki per hari) dan work power output dari expander fluida kerja sebesar 3 MW. Hasil penelitian menunjukan sistem regasifikasi LNG yang terintegrasi dengan sistem ORC menggunakan fluida Propane mampu menghasilkan total energi sebesar 14 MW, sedangkan fluida Propylene menghasilkan total energi sebesar 10 MW. Sistem ORC dengan fluida Propane menghasilkan efisiensi thermal sebesar 14.48% dan fluida Propylene sebesar 15.71%

The LNG regasification process generally occurs at the LNG receiving terminal where natural gas that has been liquefied to a cryogenic temperature will be converted back into gas form. One of the offshore LNG receiving terminals in Indonesia is the FSRU which is managed by PT. PGN Lampung, which is still not properly utilized. The design of a cryogenic energy generation system that utilizes cold energy from the LNG regasification process can be an option. The method used is direct expansion with Organic Rankine Cycle (ORC) as the generating system. The ORC system will use two working fluids, namely Propane (R-290) and Propylene (R-1270) and system components include a pump, CFOH (Closed Feed Organic Heater), mixer, evaporator, expander, LNG heater, and a condenser integrated with LNG. Vaporizers. The LNG regasification capacity at the PGN Lampung FSRU is 240 MMSCFD (million cubic feet per day) and the work power output from the working fluid expander is 3 MW. The results showed that the LNG regasification system integrated with the ORC system using Propane fluid was able to produce a total energy of 14 MW, while the Propylene fluid produced a total energy of 10 MW. The ORC system with Propane fluid produces a thermal efficiency of 14.48% and Propylene fluid of 15.71%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>