Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 163866 dokumen yang sesuai dengan query
cover
Muhammad Reiyan Indra
"Energi surya melalui panel surya merupakan sumber energi terbarukan yang potensial. Namun, kinerjanya sering terganggu oleh kerusakan permukaan, seperti debu dan bayangan, serta kerusakan permanen seperti kerusakan kabel dan penuaan komponen. Berbagai metode inspeksi seperti citra inframerah, uji ultrasonik, teknik optik dan termografi, serta pendekatan machine learning berbasis CNN telah digunakan, namun masih memiliki keterbatasan. Penelitian ini mengusulkan pendekatan deep learning yang menggabungkan segmentasi dan klasifikasi citra untuk mendeteksi kondisi permukaan panel surya. Attention U-Net digunakan untuk segmentasi karena kemampuannya memfokuskan area penting secara spasial, sementara arsitektur Xception digunakan untuk klasifikasi karena efisiensi dan akurasinya. Attention U-Net menghasilkan segmentasi yang lebih bersih, lebih terfokus, dan secara spasial lebih representatif, yang berkontribusi pada kinerja segmentasi yang tinggi, dengan hasil menunjukkan akurasi sebesar 97,5%, Dice coefficient sebesar 90,3%, IoU sebesar 85,7%, dan loss sebesar 9,70%. Model klasifikasi mencapai hasil evaluasi berbobot sebagai berikut: akurasi 98,64%, precision 98,70%, recall 98,60%, dan F1-score 98,60%. Hasil tersebut menunjukkan bahwa pendekatan yang diusulkan efektif dalam menganalisis kerusakan permukaan panel surya.

Solar energy through solar panels is a potential source of renewable energy. However, its performance is often compromised by surface damage, such as dust and shadows, and permanent, such as cable damage and component aging. Various inspection methods such as infrared images, ultrasonic tests, optical and thermographic techniques, and CNN-based machine learning approaches have been used but still have limitations. This research proposes a deep learning approach that combines image segmentation and classification to detect the surface condition of solar panels. Attention U-Net is used for segmentation due to its ability to spatially focus important areas, while Xception architecture is used for classification due to its efficiency and accuracy. Attention U-Net produced cleaner, more focused, and spatially representative segmentations, contributing to high segmentation performance, with results showing 97.5% accuracy, a Dice coefficient of 90.3%, an IoU of 85.7%, and a loss of 9.70%. The classification model achieved the following weighted evaluation metrics results: 98.64% accuracy, 98.70% precision, 98.60% recall, and 98.60% F1-score. These results show that the proposed approach effectively analyzes the surface damage of solar panels."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fathurrahman
"Menjaga keberlanjutan performa maksimal panel surya menjadi tantangan terbesar pembangkit listrik tenaga surya (PLTS) saat ini. Hal ini dikarenakan panel surya rentan terhadap kegagalan yang mengurangi daya keluaran akibat faktor lingkungan. Konsekuensinya, ekspektasi payback period PLTS cukup panjang berpotensi tidak tercapai. Sehingga, operasi pemeliharaan harus rutin dilakukan menggunakan termografi karena beberapa kegagalan tidak terlihat kasat mata. Namun demikian, apabila pemeliharaan dilakukan secara manual untuk PLTS berskala besar berkapasitas diatas 1 MW dengan luas 2,3-2,9 ha, akan menghabiskan banyak waktu dan sumber daya. Metode aerial infrared thermography (AIRT) memberikan operasi pemeliharaan yang cepat dan efisien dengan mengambil citra termal radiometrik secara otomatis berdasarkan pengaturan waypoint pada unmanned aerial vehicle (UAV). Kemudian pendeteksian kegagalan panel surya dilakukan menggunakan algoritma pengolahan citra yang umumnya adalah digital image processing (DIP). Akan tetapi, DIP membutuhkan penyesuaian parameter untuk setiap citra barunya. Oleh karena itu, penelitian ini menggunakan deep learning (DL) untuk mendeteksi setiap jenis kegagalan panel surya monofacial dan bifacial. Himpunan data (dataset) citra termal yang disusun sudah memenuhi standar inspeksi yaitu nilai irradiasi diantara 500-700 W/m2. Lalu, dilakukan skenario deteksi untuk PLTS dengan panel monofacial, bifacial, atau campuran. Hasil evaluasi model DL menunjukkan mean average precision (mAP) setiap skenario bernilai diatas 80% sehingga dapat diaplikasikan pada operasio pemeliharaan PLTS skala besar.

Maintaining the maximum performance of solar panels poses the foremost challenge for solar photovoltaic power plants in this era. This is due to panel’s vulnerability to photovoltaic (PV) defect which reduces power output due to environmental factors. Consequently, the expected payback period which has been established for a considerable duration may not be achieved. Therefore, routine maintenance operations using thermography are necessary as certain failures are not visually detectable. Nevertheless, performing these operations manually on large-scale solar power plants with a capacity above 1 MW and an area of 2.3-2.9 ha would consume a significant amount of time and resources. The aerial infrared thermography (AIRT) technique enables fast and efficient maintenance operations by automatically capturing radiometric thermal images utilizing unmanned aerial vehicle (UAV) configured with predefined waypoint settings. Subsequently, the PV defect detection is typically performed using digital image processing (DIP) algorithm. However, DIP requires parameter adjustments for each new image. Hence, this study utilizes deep learning (DL) to detect different types of PV defect for both monofacial and bifacial solar panels. The constructed thermal image dataset adheres to inspection standards, which irradiance values ranging from 500-700 W/m2. Then, detection scenarios were conducted for solar power plants utilizing monofacial, bifacial, or mixed panels. The evaluations results of the DL model yielded mean average precision (mAP) values above 80% for each scenario, confirming its applicability in large-scale solar power plants maintenance activities."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nisrina Dinda Dhamayanti
"Kanker kulit berasal dari lesi kulit yang memiliki penampilan atau pertumbuhan jaringan kulit yang tidak biasa. Melanoma adalah kanker kulit paling berbahaya dan menyebabkan banyak kematian jika tidak terdeteksi sedini mungkin. Pendeteksian sedini mungkin mendesak untuk dilakukan mengingat dapat meningkatkan angka survival rate sebesar 95%. Cara pendeteksiaan saat ini yang menggunakan metode manual masih kurang handal dan memakan banyak waktu. Teknologi deep learning dapat menjadi solusi yang dapat dimanfaatkan untuk melakukan segmentasi lesi kulit. Untuk penelitian ini, penulis mengusulkan penggunaan teknik Residual U-Net berbasis deep-convolutional neural network untuk segmentasi lesi kulit. Teknik Residual U-Net yang diusulkan menggunakan Residual Block, Group Normalization, dan Tversky Loss ke dalam arsitektur berbasis U-Net. Penggunaan Residual Block dapat mengatasi permasalahan error jaringan yang tinggi akibat adanya vanishing gradient serta meningkatkan ekstraksi representasi fitur gambar. Model dilatih dan dievaluasi menggunakan dataset yang berasal dari International Skin Imaging Collaboration (ISIC) 2018. Penelitian ini berhasil meningkatkan kinerja model dalam melakukan segmentasi lesi kulit dengan nilai dice similarity coefficient, jaccard index, accuracy, sensitivity, specificity, dan precision masing-masing, sebesar 0.86, 0.76, 0.93, 0.88, 0.96, dan 0.85.

Skin cancer originates from skin lesions that have an unusual appearance or growth of skin tissue. Melanoma is the most dangerous skin cancer and causes many deaths if not detected early. Early detection is urgent to do considering it can increase the survival rate by 95%. The current detection method using the manual method is still less reliable and takes a lot of time. Deep learning technology can be a solution that can be used to segment skin lesions. For this study, the authors propose the use of a Residual U-Net technique based on a deep-convolutional neural network for segmenting skin lesions. The proposed Residual U-Net technique uses Residual Block, Group Normalization, and Tversky Loss into a U-Net-based architecture. The use of Residual Block can overcome the problem of high network error due to the vanishing gradient and improve the extraction of image feature representation. The model was trained and evaluated using a dataset from the International Skin Imaging Collaboration (ISIC) 2018. This study succeeded in improving the model's performance in segmenting skin lesions with values ​​of dice similarity coefficient, jaccard index, accuracy, sensitivity, specificity, and precision of 0.86, 0.76 , 0.93, 0.88, 0.96, and 0.85.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hajar Indah Fitriasari
"Pencitraan 'X-ray' dapat digunakan sebagai alternatif penunjang diagnostik klinis untuk mendeteksi penyakit COVID-19 pada paru-paru pasien. 'Machine learning' atau 'Deep Learning' akan disematkan pada 'computer-aided-diagnosis' (CAD) untuk meningkatkan efisiensi dan akurasi dalam menangani permasalahan membedakan COVID-19 dengan penyakit lain yang memiliki karakteristik yang serupa. Beberapa sistem kecerdasan buatan berbasis 'Convolutional Neural Network' (CNN) pada penelitian sebelumnya, memiliki akurasi yang menjanjikan dalam mendeteksi COVID-19 menggunakan citra 'X-ray' rongga dada. Dalam penelitian ini, dikembangkan 'classifier' berbasis CNN dengan teknik 'transfer learning', yakni memanfaatkan model CNN pra-terlatih dari ImageNet bernama Xception dan ResNet50V2 yang dikombinasikan agar sistem menjadi lebih akurat dalam kemampuan ekstraksi fitur untuk mendeteksi COVID-19 melalui citra 'X-ray' rongga dada. 'Classifier' yang dikembangkan terdiri dari 2 jenis, yakni 'classifier' yang disusun secara serial dan paralel. Pengujian dilakukan dalam 2 skenario berbeda. Pada skenario 1, digunakan 'dataset' dan pengaturan parameter yang mengacu pada penelitian sebelumnya, sedangkan skenario 2 dilakukan dengan menambahkan sejumlah citra kedalam 'dataset' baru serta pengaturan parameter yang berbeda untuk memperoleh peningkatan akurasi. Dari pengujian untuk kelas COVID-19 pada skenario 1, diperoleh 'classifier' paralel berhasil menggungguli 'classifier' lain dengan mencapai akurasi rata-rata 93,412% serta memperoleh 'precision', 'recall,' dan 'f1-score' masing – masing mencapai 96.8%, 99.6% dan 98%. Pada skenario 2, 'classifier' paralel mencapai akurasi rata-rata yang lebih tinggi, yakni mencapai 96,678% serta memperoleh 'precision', 'recall,' dan 'f1-score' yang cukup tinggi pula, yakni masing – masing mencapai 98.8%, 99.8% dan 99.4% untuk kelas COVID-19. Adanya penambahan jumlah 'dataset' pada skenario 2 dapat meningkatkan akurasi dari 'classifier' yang dikembangkan. Secara keseluruhan, 'classifier' paralel yang dikembangkan dapat direkomendasikan menjadi alat yang dapat membantu praktisi klinis dan ahli radiologi untuk membantu mereka dalam diagnosis, kuantifikasi, dan tindak lanjut kasus COVID-19.

X-ray imaging can be used as an alternative support clinical diagnostics to detect COVID-19 in the patient's lungs. Machine learning or Deep Learning will be embedded in computer-aided diagnosis (CAD) to increase efficiency and accuracy in dealing with problems distinguishing COVID-19 from other diseases that have similar characteristics. Several artificial intelligence systems based on the Convolutional Neural Network (CNN) in previous studies have promising accuracy in detecting COVID-19 using Chest X-ray images. In this study, a CNN-based classifier with transfer learning techniques was developed, which utilizes a pre-trained CNN model from ImageNet named Xception and ResNet50V2 combined that makes the system powerful using multiple feature extraction capabilities to detect COVID-19 through Chest X-ray images. There are 2 types of classifiers developed, classifiers arranged in serial and parallel. The testing in this study was carried out in two different scenarios. In the scenario 1, the dataset and parameter settings are used referring to previous studies, while the scenario 2 was carried out by adding several images to the new dataset and setting different parameters to obtain increased accuracy. From testing of the COVID-19 class in the scenario 1, the parallel classifier succeeded in outperforming other classifiers by achieving an average accuracy in 93.412% and also obtains precision, recall and f1-score, which reached 96.8%, 99.6%, and 98% respectively. In the scenario 2, the parallel classifier achieved a higher average accuracy of 96.678%, and also obtained quite high precision, recall and f1-score, which reached 98.8%, 99.8% and 99.4% for the COVID-19 class, respectively. The addition of the number of datasets in scenario 2 can increase the accuracy of the developed classifier. Overall, the developed parallel classifier can be recommended as a tool that can help clinical practitioners and radiologists to aid them in diagnosis, quantification, and follow-up of COVID-19 cases."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hartina Hiromi Satyanegara
"Serangan MitM ini memiliki dampak yang cukup besar dan dapat membuka jalan untuk serangan selanjutnya, seperti Phishing. Penelitian ini membahas tentang pendekatan metode hybrid deep learning yang dapat membantu pendeteksian serangan MitM secara efektif. Metode hybrid deep learning yang digunakan dalam penelitian ini adalah CNN-MLP dan CNN-LSTM, yaitu merupakan gabungan dari CNN, MLP, dan LSTM. Selain itu, dalam skenario eksperimennya menggunakan berbagai metode feature scaling (StandardScaler, MinMaxScaler, dan MaxAbsScaler) dan tanpa menggunakan metode feature scaling sebelum melakukan pemodelan, yang kemudian akan ditentukan metode hybrid deep learning yang terbaik untuk mendeteksi serangan MitM dengan baik. Dataset yang digunakan dalam penelitian ini yaitu Kitsune Network Attack Dataset (ARP MitM Ettercap). Hasil dari penelitian ini yaitu metode CNN-MLP dengan 10 epoch menggunakan MaxAbsScaler memiliki nilai accuracy tertinggi, yaitu 99.93%. Pada urutan kedua, CNN-MLP dengan 10 epoch menggunakan StandardScaler memiliki nilai accuracy sebesar 99.89%.

Man in the Middle (MitM) has a sizeable impact because it could make the attackers will do another attacks, such as Phishing. This research is discussing about hybrid deep learning methods-approach on detecting MitM attacks effectively. We were used 2 (two) combinations of the Deep Learning methods (CNN, MLP, and LSTM), which are CNN-MLP and CNN-LSTM. Besides that, in the experiment scenarios, we also used various Feature Scaling methods (StandardScaler, MinMaxScaler, and MaxAbsScaler) and without using any Feature Scaling methods before building the models and will determine the better hybrid Deep Learning methods for detecting MitM attack. Kitsune Network Attack Dataset (ARP MitM Ettercap) is the dataset used in this study. The results of this research proves that CNN-MLP that with 10 epoch using MaxAbsScaler has the highest accuracy rate of 99.93%. In second place, CNN-MLP with 10 epoch using StandardScaler has the accuracy rate of 99.89%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Cressia Nauli Agustin
"Permasalahan penumpukan sampah menjadi isu global yang mendesak, memerlukan solusi inovatif untuk deteksi dan klasifikasi yang efisien. Dalam konteks ini, deteksi objek sampah menggunakan deep learning menawarkan potensi besar. Namun, pengembangan model neural network tunggal yang kompleks seringkali menghadapi tantangan keterbatasan kinerja, terutama ketika dihadapkan pada dataset yang terbatas. Penelitian ini bertujuan untuk mengembangkan model deep learning yang robust untuk deteksi objek sampah pada dataset terbatas (TrashNet) dengan memanfaatkan metode ensemble. Pendekatan ensemble, khususnya strategi weighted average, diimplementasikan untuk mengkombinasikan prediksi dari beberapa arsitektur Convolutional Neural Network (CNN) yang berbeda, seperti Xception, ResNet, dan VGG. Model-model dasar ini dilatih secara independen dan bobot optimal untuk setiap model ditentukan melalui proses validasi silang untuk memaksimalkan akurasi. Hasil eksperimen menunjukkan bahwa model ensemble dengan weighted average secara signifikan meningkatkan performa deteksi objek sampah dibandingkan dengan model tunggal. Peningkatan ini ditunjukkan melalui metrik evaluasi seperti akurasi, presisi, recall, dan F1-score yang lebih tinggi. Analisis mendalam mengungkapkan bahwa metode ensemble efektif dalam mengatasi bias dan variasi yang mungkin ada pada model individual, menghasilkan prediksi yang lebih stabil dan akurat pada dataset terbatas. Studi ini menunjukkan bahwa pendekatan ensemble meningkatkan akurasi klasifikasi menjadi 83.27%, atau meningkat ³ 3.35%.

The escalating problem of waste accumulation presents a pressing global issue, demanding innovative solutions for efficient detection and classification. In this context, waste object detection using deep learning offers significant potential. However, developing complex single neural network modelsnetworks often faces performance limitations, especially when confronted with limited datasets. This research aims to develop a robust deep-learning model for waste object detection on limited datasets (TrashNet) by leveraging an ensemble method. The ensemble approach, specifically the weighted average strategy, is implemented to combine predictions from several different Convolutional Neural Network (CNN) architectures, such as Xception, ResNet, and VGG. These base models are trained independently, and optimal weights for each model are determined through a cross-validation process to maximize accuracy. Experimental results demonstrate that the ensemble model with weighted averaging significantly improves waste object detection performance compared to single models. This improvement is shown through higher evaluation metrics such as accuracy, precision, recall, and F1-score. In-depth analysis reveals that the ensemble method is effective in mitigating biases and variations that may exist in individual models, leading to more stable and accurate predictions on limited datasets. This study demonstrates that the ensemble approach improves the classification accuracy to 83.27%, or an increase of ³ 3.35%."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bella Septina Ika Hartanti
"Bencana banjir merupakan salah satu peristiwa alam yang sering terjadi di dunia, termasuk Indonesia, dan terjadi ketika aliran air yang berlebihan menggenangi daratan dalam jangka waktu tertentu. Perubahan iklim, cuaca ekstrem, urbanisasi yang tidak terkendali, dan kondisi geografis yang kompleks telah berkontribusi terhadap peningkatan frekuensi dan intensitas banjir, terutama di daerah perkotaan. Analisis banjir otomatis dan deteksi citra dapat memberikan panduan dan informasi yang berguna dalam membuat keputusan untuk mengurangi dampak destruktif seperti korban jiwa dan ekonomi, salah satunya dengan melakukan segmentasi untuk membantu proses pembuatan peta kerawanan banjir. Namun, sejumlah kecil data beresolusi tinggi dan berlabel yang tersedia membuat proses segmentasi sulit untuk dilakukan. Oleh karena itu, penulis mengusulkan pendekatan semi-supervised yaitu mean teacher dengan memanfaatkan teknik deep learning. Adapun dataset yang digunakan adalah citra SAR Sentinel-1 C-band yang telah diolah sebelumnya. Hasil penelitian menunjukkan bahwa model usulan memberikan kenaikan performa yang cukup signifikan pada metrik IoU sebesar 5% terhadap baseline yang mengimplementasikan teknik pseudo-labeling.

Floods are one of the natural disaster events that occur in the world. Floods happen when excessive water flows and submerges land for a certain period of time. Climate change, extreme weather, uncontrolled urbanization, and complex geographical conditions have contributed to the increase in the frequency and intensity of floods, especially in urban areas. Automatic flood analysis and detection of imagery can provide useful guidance and information in making decisions to reduce destructive impacts such as loss of life and economy. However, the small amount of high-resolution and labeled data available makes the segmentation process difficult for flood detection. Therefore, the author proposes a semi-supervised approach, namely mean teacher by utilizing the deep learning architecture. The dataset used is the SAR image of Sentinel-1 C-band which has been processed. The results show that the proposed model provides a significant increase in performance on the IoU metric by 5% against the baseline that implements the pseudo-labeling technique."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Lunnardo Soekarno Lukias
"

Dalam kehidupan kita sehari-hari umumnya banyak barang yang kita butuhkan dan gunakan dalam rumah tangga kita. Mulai dari bahan pangan, minuman, barang untuk membersihkan rumah, barang untuk mencuci pakaian, kudapan, dan lain sebagainya, Pada masyarakat kini banyak barang keperluan sehari-hari tersebut kita beli dan jumpai di berbagai tempat mulai dari warung di dekat rumah, supermarket, toko sembako, dan lain sebagainya. Akhir-akhir ini jumlah supermarket dan minimarket mulai menjamur. Pada tahun 2021 jumlah minimarket di Indonesia mencapai 38.323 gerai yang merupakan peningkatan sebanyak 21,7% dibandingkan pada tahun 2017 yakni hanya sebanyak 31.488 gerai saja. Dengan jumlah gerai yang semakin banyak, banyak masyarakat yang semakin banyak menggunakan jasanya untuk mendapatkan barang-barang kebutuhan sehari-hari mereka. Apalagi bila barang yang dibeli juga cukup banyak sehingga akan sulit untuk mendata barang-barang apa saja yang telah dibeli. Untuk memudahkan hal tersebut, penulis mengajukan sebuah solusi untuk membuat sebuah rancangan sistem yang akan memanfaatkan teknologi Deep Learning untuk mendeteksi tulisan pada struk belanja dari hasil pembelian barang pada minimarket. Hasilnya dari pengujian yang sudah dilakukan pada penelitian ini, masing-masing model Deep Learning memiliki tingkat akurasi mAP50 99,4% dan mAP50:95 72,9% untuk YOLOv5, tingkat akurasi mAP50 99,61% dan mAP50:95 65,19% untuk Faster R-CNN, dan tingkat akurasi mAP50 61,77% dan mAP50:95 98,09% untuk RetinaNet. Dimana YOLOv5 memiliki tingkat akurasi mAP50:95 tertinggi yakni 72,9% dan Faster R-CNN memiliki tingkat akurasi mAP50 tertinggi yakni 99,61%. Dimana pada proses implementasi sistem YOLOv5 dan Faster R-CNN berhasil melakukan proses pengenalan sedangkan RetinaNet gagal untuk melakukannya.


In our daily lives, we generally need and use many items in our households. Starting from food ingredients, drinks, household cleaning items, laundry items, snacks, and so on. Nowadays, many of these daily necessities are bought and found in various places such as small shops near our homes, supermarkets, grocery stores, and so on. Recently, the number of supermarkets and minimarkets has increased. In 2021, the number of minimarkets in Indonesia reached 38,323 branches which is an increase of 21.7% compared to 2017 which was only 31,488 branches. With the increasing number of branches, many people are using their services to obtain their daily necessities. Especially when the purchased items are quite a lot so it will be difficult to record what items have been purchased. To facilitate this matter, the author proposes a solution to create a system design that will utilize Deep Learning technology to detect writing on receipts from purchasing items at minimarkets. The results of testing that have been carried out in this study show that each Deep Learning model has an mAP50 accuracy level of 99.4% and mAP50:95 72.9% for YOLOv5, an mAP50 accuracy level of 99.61% and mAP50:95 65.19% for Faster R-CNN, and an mAP50 accuracy level of 61.77% and mAP50:95 98.09% for RetinaNet. YOLOv5 has the highest mAP50:95 accuracy rate at 72.9%, while Faster R-CNN has the highest mAP50 accuracy rate at 99.61%. Where in the implementation process, YOLOv5 and Faster R-CNN systems were able to perform recognition processes while RetinaNet failed to do so."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jauzak Hussaini Windiatmaja
"Sumber informasi di jejaring berita daring adalah instrumen yang memungkinkan individu membaca berita, menerbitkan berita, dan berkomunikasi. Hal ini sudah menjadi tren dalam masyarakat yang sangat mobile. Oleh karena itu, proses verifikasi fakta suatu pemberitaan menjadi sangat penting. Dengan pertimbangan tersebut, sebuah tools berbasis web service untuk verifikasi fakta menggunakan metode deep learning dengan teknik ensemble dibangun. Penggunaan teknik ensemble pada model deep learning adalah proses beberapa model pembelajaran mesin digabungkan secara strategis untuk menyelesaikan masalah menggunakan lebih dari satu model. Untuk melatih model, dibangun sebuah dataset. Dataset berisi pasangan klaim dan label. Klaim dibangun dengan data crawling di kanal berita berbahasa Indonesia. Tiga model deep learning dibangun dan dilatih menggunakan dataset yang dibuat, dengan arsitektur jaringan dan hyperparameter yang berbeda. Setelah model dilatih menggunakan dataset, ketiga model diagregasikan untuk membentuk sebuah model baru. Untuk memastikan bahwa model agregat berfungsi lebih baik daripada model tunggal, performa model deep learning ensemble dibandingkan dengan model deep learning dasar. Hasil penelitian menunjukkan bahwa model ensemble memiliki akurasi 85,18% sedangkan model tunggal memiliki akurasi 83,9%, 83,19%, dan 81,94%. Hasil ini menunjukkan bahwa model ensemble yang dibangun meningkatkan kinerja verifikasi fakta dari tiga model tunggal. Hasil penelitian juga menunjukkan bahwa metode deep learning mengungguli performa metode machine learning lain seperti naive bayes dan random forest. Untuk memvalidasi kinerja tools yang dibangun, response time dari web service diukur. Hasil pengukuran menunjukkan rata-rata response time 6.447,9 milidetik.

Information sources on social networks are instruments that allow individuals to read news, publish news, and communicate. This is a trend in a highly mobile society. Therefore, the process of verifying facts is very important. With these considerations, we built a web service-based tool for fact verification using deep learning methods with ensemble technique. The use of ensemble techniques in deep learning models is a process in which several machine learning models are combined to solve problems. To train the model, we created a dataset. Our dataset of Indonesian news contains pairs of claims along with labels. Claims are built by crawling data on Indonesian news channels. Three deep learning models have been built and trained using the previously created dataset with different network architectures and hyperparameters. After the model is trained, three models are aggregated to form a new model. To ensure that the aggregated model performs better than the single model, the deep learning ensemble model is compared to the single models. The results showed that the ensemble model has an accuracy of 85.18% while the single models have an accuracy of 83.9%, 83.19%, and 81.94% consecutively. These results indicate that the ensemble model built improves the fact-verification performance of the three single models. The results also show that by using the same dataset, deep learning methods outperform other machine learning methods such as naive bayes and random forest. To validate the performance of the tools we created, the response time of the web service is measured. The measurement result shows an average response time of 6447.9 milliseconds."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hadi Nursalim
"Salah satu organ tubuh yang paling penting adalah jantung. Darah dapat didistribusikan dengan baik ke seluruh tubuh jika terdapat jantung. Organ lain akan berhenti bekerja dan orang tersebut akan meninggal jika jantung di dalam tubuh tidak berfungsi dengan baik. Salah satu jenis penyakit jantung adalah terjadinya gejala arrhythmia, yaitu suatu bentuk kondisi jantung yang ditandai dengan laju atau irama detak jantung. Detak jantung bisa lebih cepat dari biasanya, atau terlalu lambat, atau bahkan memiliki pola yang tidak teratur. Metode yang paling umum dan banyak digunakan oleh ahli jantung dan praktisi medis untuk memantau dan mendeteksi penyakit atau kelainan pada jantung adalah dengan menggunakan elektrokardiogram (EKG) yang dianalisis secara manual, sehingga dapat memakan waktu yang lama dan rentan terhadap kesalahan. Penerapan Artificial Intelligence diharapkan mampu memberikan peranan penting dalam mempercepat kinerja kardiologi. Dalam penelitian ini digunakan Model CNN dengan Arsitektur ResNet-50 untuk mengklasifikasikan detak jantung normal dan detak jantung beberapa jenis arrhythmia yang akan divisualisasikan dengan algoritma Grad-CAM. Dari hasil eksperimen pengklasifikasian, didapatkan tingkat akurasi rata-rata sebesar 94% dan meningkat menjadi 99% untuk setiap kelas setelah dilakukan visualisasi dengan menggunakan algoritma Grad-CAM.

One of the most important organs of the body is the heart. Blood can be well distributed throughout the body if there is a heart. Other organs will stop working and the person will die if the heart in the body is not functioning properly. One type of heart disease is the occurrence of symptoms of arrhythmia, which is a condition in which the heartbeat rate is too fast, to slow, or irregular. Currently, the most common and widely used method by cardiologists and other medical practitioners to monitor and detect diseases or abnormalities in the heart is to use an electrocardiogram (ECG), which is analyzed manually. where the task can take a long time and is prone to errors. The application of Artificial Intelligence is expected to play an important role in accelerating the performance of cardiologists. In this study, a CNN model with ResNet-50 architecture was used to classify normal heart rates and heart rates of several types of arrhythmia that would be visualized with the Grad-CAM algorithm. From the results of the classification experiment, an average accuracy rate of 94% was obtained and increased to 99% for each class after visualization using the Grad-CAM algorithm."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>