Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 173019 dokumen yang sesuai dengan query
cover
Alfina Azaria
"Pandemi COVID-19 mendorong adanya transformasi kesehatan, terutama dalam praktik kedokteran gigi. Respon terhadap risiko penularan menggiring masyarakat menuju layanan telemedicine, khususnya teledentistry. Fenomena ini menciptakan paradigma baru dalam ortodonti, mendorong perkembangan teleorthodontic. Dukungan teknologi machine learning di bidang ortodonti menawarkan solusi inovatif untuk diagnosis dini dan peningkatan aksesibilitas layanan ortodontik. Penelitian ini akan membandingkan 3 model computer vision yaitu EfficientNet, MobileNet, dan ShuffleNet disertai dengan adanya penambahan model tabular yaitu TabNet. Implementasi model computer vision ini bertujuan untuk dapat memberikan analisis awal bagi pasien ortodonti dan akan dievaluasi menggunakan metrik F1-score dan interpretability ahli dengan bantuan LIME. Berdasarkan penelitian ini, ditemukan bahwa model computer vision ShuffleNet memiliki rata-rata hasil nilai F1-score terbaik diikuti dengan EfficientNet dan terakhir MobileNet. Perbedaan nilai tersebut berkisar antara 1-5% antara EfficientNet dan ShuffleNet namun perbedaan melebar untuk MobileNet dan ShuffleNet yang berkisar antara 3-8%. Selain itu, penambahan TabNet dalam framework memberikan peningkatan rata-rata nilai F1-score sebesar 2.7% hingga 5% dibandingkan model yang tidak menggunakan TabNet.

The COVID-19 pandemic has driven health transformation, especially in dental practice. The response to the risk of transmission leads the public towards telemedicine services, especially teledentistry. This phenomenon creates a new paradigm in orthodontics, encouraging the development of teleorthodontics. The support of machine learning technology in orthodontics offers innovative solutions for early diagnosis and increased accessibility to orthodontic services. This study will compare 3 computer vision models, which are EfficientNet, MobileNet, and ShuffleNet, accompanied by adding a tabular model, which is TabNet. The implementation of this computer vision model aims to provide an initial analysis for orthodontic patients and will be evaluated using the F1-score metric and expert interpretability with the help of LIME. This study found that the ShuffleNet computer vision model has the best average F1-score, followed by EfficientNet, and finally MobileNet. The difference in value ranges between 1-5% between EfficientNet and ShuffleNet, but the difference widens for MobileNet and ShuffleNet, which ranges between 3-8%. In addition, adding TabNet to the framework provides an average increase in F1-score by 2.7% to 5% compared to models that do not use TabNet."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ardhani Dzaky
"Pandemi COVID-19 mendorong adanya transformasi kesehatan, terutama dalam praktik kedokteran gigi. Respon terhadap risiko penularan menggiring masyarakat menuju layanan telemedicine, khususnya teledentistry. Fenomena ini menciptakan paradigma baru dalam ortodonti, mendorong perkembangan teleorthodontic. Dukungan teknologi machine learning di bidang ortodonti menawarkan solusi inovatif untuk diagnosis dini dan peningkatan aksesibilitas layanan ortodontik. Penelitian ini akan membandingkan 3 model computer vision yaitu EfficientNet, MobileNet, dan ShuffleNet disertai dengan adanya penambahan model tabular yaitu TabNet. Implementasi model computer vision ini bertujuan untuk dapat memberikan analisis awal bagi pasien ortodonti dan akan dievaluasi menggunakan metrik F1-score dan interpretability ahli dengan bantuan LIME. Berdasarkan penelitian ini, ditemukan bahwa model computer vision ShuffleNet memiliki rata-rata hasil nilai F1-score terbaik diikuti dengan EfficientNet dan terakhir MobileNet. Perbedaan nilai tersebut berkisar antara 1-5% antara EfficientNet dan ShuffleNet namun perbedaan melebar untuk MobileNet dan ShuffleNet yang berkisar antara 3-8%. Selain itu, penambahan TabNet dalam framework memberikan peningkatan rata-rata nilai F1-score sebesar 2.7% hingga 5% dibandingkan model yang tidak menggunakan TabNet.

The COVID-19 pandemic has driven health transformation, especially in dental practice. The response to the risk of transmission leads the public towards telemedicine services, especially teledentistry. This phenomenon creates a new paradigm in orthodontics, encouraging the development of teleorthodontics. The support of machine learning technology in orthodontics offers innovative solutions for early diagnosis and increased accessibility to orthodontic services. This study will compare 3 computer vision models, which are EfficientNet, MobileNet, and ShuffleNet, accompanied by adding a tabular model, which is TabNet. The implementation of this computer vision model aims to provide an initial analysis for orthodontic patients and will be evaluated using the F1-score metric and expert interpretability with the help of LIME. This study found that the ShuffleNet computer vision model has the best average F1-score, followed by EfficientNet, and finally MobileNet. The difference in value ranges between 1-5% between EfficientNet and ShuffleNet, but the difference widens for MobileNet and ShuffleNet, which ranges between 3-8%. In addition, adding TabNet to the framework provides an average increase in F1-score by 2.7% to 5% compared to models that do not use TabNet."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Karenina Kamila
"Sektor perikanan Indonesia merupakan salah satu sektor penting bagi kemajuan perekonomian Indonesia dikarenakan Indonesia yang memiliki luas laut yang sangat besar dan SDA ikan yang berlimpah. Namun, sampai saat ini perdagangan ikan ilegal masih sering terjadi di kalangan nelayan yang biasanya dilakukan di atas kapal walaupun sudah ada petugas pengawas. Untuk mengatasi masalah ini perlu adanya sistem pengawasan dengan menggunakan kamera CCTV dan artificial intelligence di atas kapal dengan harapan dapat mengurangi resiko kecurangan petugas setempat dan meningkatkan efektivitas pengawasan penangkapan ikan. Penelitian ini berfokus untuk mencari model dengan menyesuaikan beberapa hyperparameter untuk mendapatkan hasil yang terbaik dengan menggunakan algoritma YOLOv6 untuk object detection dan YOLOv8 untuk segmentation. Penelitian ini mendapatkan model terbaik untuk object detection menggunakan YOLOv6 dengan nilai mAP @0,5 sebesar 0,833, mAP @0,5-0,95 sebesar 0,63, F1-score sebesar 0,861 dan FPS 92 dan segmentation menggunakan YOLOv8 menghasilkan nilai mAP mask @0,5 sebesar 0,804, mAP mask @0,5-0,95 sebesar 0,426, mAP box @0,5 sebesar 0,843, dan mAP box @0,5-0,95 sebesar 0,561. Kedua versi YOLO tersebut dapat mengklasifikasi jenis ikan yang ditangkap oleh nelayan dengan harapan dapat mempermudah proses pencatatan dan penyimpanan data hasil penangkapan ikan.

The Indonesian fisheries sector is one of the important sectors for the progress of the Indonesian economy because Indonesia has a very large sea area and abundant fish resources. However, until now illegal fish trade is still common among fishermen, which is usually carried out on boats even though there are supervisors. To overcome this problem, it is necessary to have a surveillance system using CCTV cameras and artificial intelligence on board so that it will reduce the risk of fraud by local officers and increase the effectiveness of fishing supervision. This research focuses on finding a model by adjusting several hyperparameters to get the best results using the YOLOv6 algorithm for object detection and YOLOv8 for segmentation. This study found the best model for object detection using YOLOv6 with a mAP @0.5 value of 0.833, mAP @0.5-0.95 of 0.63, F1-score of 0.861 and FPS 92 and segmentation using YOLOv8 produces a mAP mask value @0.5 is 0.804, mAP mask @0.5-0.95 is 0.426, mAP box @0.5 is 0.843, and mAP box @0.5-0.95 is 0.561. The two YOLO versions can classify the types of fish caught by fishermen in the hope of facilitating the process of recording and storing data on fishing results.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fitri Yuli Zulkifli
"Indonesia merupakan negara kepulauan terbesar di dunia dengan kegiatan penerbangan yang padat setiap harinya. Dalam hal ini, maka keamanan penerbangan sangat penting diperhatikan oleh berbagai pihak. Salah satu isu utama adalah keamanan pada landasan pacu yang harus terbebas dari berbagai objek (Foreign Object Debris =FOD) yang dapat menimbulkan kecelakaan pada pesawat terbang. Keadaan tersebut berbahaya bagi keselamatan para penumpang dan menimbulkan kerugian bagi operator penerbangan dan pengelola bandara. Adapun teknologi yang dapat digunakan untuk solusi tersebut dengan pendekatan Computer Vision menggunakan kamera long range. Teknologi ini menggunakan deep learning atau biasa dikenal dengan Artificial Intelegent (AI). Sistem deteksi FOD ini telah mampu mendeteksi 13 jenis objek sebagai FOD. Dengan ketinggian kamera kurang lebih 8 meter dari permukaan tanah, sistem dapat mendeteksi FOD sekecil baut mur pada jarak 50 meter, sedangkan pada jarak 200 meter, FOD sebesar botol minum dan kardus masih dapat terdeteksi. Apabila ingin mendeteksi objek yang sangat kecil seperti baut mur pada jarak lebih dari 200 meter maka diperlukan kamera dengan kemampuan perbesaran yang lebih tinggi lagi. Pekerjaan ini telah diselesaikan secara profesional dengan menjalankan prinsip dasar kode etik insinyur dan senantiasa memperhatikan Keamanan, Keselamatan, Kesehatan, dan Lingkungan Hidup (K3L).

Indonesia is the largest archipelagic country in the world with heavy flight activities every day. Therefore, aviation security is very important to be considered by various parties. One of the main issues is security on the runway which must be free from Foreign Object Debris (FOD) that can cause accidents to aircraft. This situation is dangerous for the safety of passengers and causes losses for flight operators and airport managers. The technology proposed for this solution is the Computer Vision approach using a long range camera. This technology uses deep learning as part of Artificial Intelligence (AI). This FOD detection system has been able to detect 13 types of FOD. With a camera placed aproximately 8 meters from the ground, the system can detect FOD as small as a bolt at a distance of 50 meters, while at a distance of 200 meters, FOD as large as a drinking bottle and cardboard can still be detected. If a need to detect very small objects such as bolts at a distance of more than 200 meters, a camera with a higher magnification capability is needed. This work has been completed professionally by carrying out the basic principles of the engineer's code of ethics and always paying attention to Security, Safety, Health and Environment."
Depok: Fakultas Teknik Universitas Indonesia, 2022
PR-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Panggabean, Timothy Christian
"

Salah satu permasalahan utama yang sedang dihadapi oleh Kementrian Kelautan dan Perikanan Republik Indonesia (KKP) adalah maraknya kejadian Illegal, Unreported, and Unregulated (IUU) fishing yang terjadi pada perairan Indonesia. Kejadian ini menimbulkan banyak kerugian bagi Indonesia, terutama dalam aspek sosial, ekologi, dan ekonomi. Untuk mengatasi masalah ini, terutama unreported fishing, dirancanglah sebuah sistem yang dapat digunakan untuk memonitor penangkapan ikan, sekaligus melakukan deteksi dan klasifikasi terhadap jenis ikan hasil tangkapan di atas kapal. Sistem dirancang menggunakan konsep object detection dan instance segmentation, dua bidang dari machine learning, menggunakan model YOLOv5 dan varian-variannya yang merupakan salah satu model dari keluarga YOLO (You Only Look Once) yang paling baik dari segi kecepatan dan akurasi. Dengan adanya sistem tersebut, diharapkan bahwa hasil tangkapan kapal di perairan Indonesia dapat bersifat lebih legal, teratur, dan sesuai dengan yang dilaporkan kepada KKP. Sistem terbaik dari penelitian ini dihasilkan menggunakan model instance segmentation yang mendapatkan nilai mAP50 0,834, mAP50-95 0,544, F1-score 0,848, dan kecepatan inferensi 232,6 fps untuk partisi validation, dan mAP50 0,797, mAP50-95 0,531, F1-score 0,802, dan kecepatan inferensi 250,0 fps untuk partisi testing pada hasil bounding box, serta nilai mAP50 0,739, mAP50-95 0,36, F1-score 0,789, dan kecepatan inferensi 232,6 fps untuk partisi validation, dan mAP50 0,711, mAP50-95 0,335, F1-score 0,746, dan kecepatan inferensi 250,0 fps untuk partisi testing pada hasil segmentation mask. Selain itu, model tersebut juga mendapatkan akurasi 60% pada tahapan perbandingan dengan model object detection.


One of the main problems the Indonesian Ministry of Marine Affairs and Fisheries (KKP) is currently facing is the abundance of Illegal, Unreported, and Unregulated (IUU) fishing instances happening in Indonesian waters. This phenomenon creates a lot of problems for Indonesia, mainly in the social, ecological, and economical aspects. To overcome these problems, mainly unreported fishing, a system that can be used to not only monitor the fishing process, but also to detect and classify the types of fish that are caught by that boat was created. This system is based on object detection and instance segmentation, both fields of machine learning, using the YOLOv5 model and its variants, which are some of the fastest and most accurate models from the YOLO (You Only Look Once) family. With this system, it is hoped that fish caught in Indonesian waters can be more legitimate, regulated, and reported correctly to the KKP. The best system from this research is created using an instance segmentation model with mAP50 0.834, mAP50-95 0.544, F1-score 0.848, and inference speed 232.6 fps for validation scores, and mAP50 0.797, mAP50- 95 0.531, F1-score 0.802, and inference speed 250.0 fps for testing scores on the bounding box results, as well as mAP50 0.739, mAP50-95 0.36, F1-score 0.789, and inference speed 232.6 fps for validation scores, and mAP50 0.711, mAP50-95 0.335, F1-score 0.746, and inference speed 250.0 fps on the segmentation mask results. The model also achieved an accuracy of 60% in the comparison phase against the object detection model.

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Rofiqi Rapsanjani
"Pemerintah Indonesia telah menerapkan kebijakan wajib menggunakan masker di ruang publik untuk mencegah penularan Covid-19. Sebagai dukungan terhadap inisiatif ini, petugas bekerja untuk memastikan kepatuhan, terutama di area ramai seperti mal dan gedung perkantoran. Namun, mengandalkan penegakan secara manual menimbulkan tantangan karena potensi kesalahan dan kelalaian manusia. Untuk mengatasi hal ini, penelitian ini berfokus pada pengembangan sistem deteksi masker menggunakan YOLOv5, yang mampu mendeteksi tiga kelas masker yang berbeda. Penulis mengumpulkan dan menyusun dataset dari berbagai sumber, yang terdiri dari total 1500 bounding box, dengan sekitar 500 bounding box per kelas. Selain itu, penulis melakukan perbandingan dengan model CNN sederhana untuk menemukan praktik terbaik sehingga mendapatkan model YOLOv5 yang paling optimal. Melalui berbagai eksperimen dengan parameter yang berbeda, penulis menemukan bahwa hasil terbaik dicapai menggunakan dataset dengan ukuran gambar 640px dan ukuran batch 8. Model menunjukkan nilai precision sebesar 0,864, nilai recall sebesar 0,824, dan nilai mAP50 sebesar 0,877. Penelitian ini memberikan kontribusi dalam upaya kesehatan masyarakat dengan menyediakan sistem deteksi masker otomatis yang dapat membantu pihak berwenang dalam memantau kepatuhan penggunaan masker secara efektif dan efisien, sehingga dapat mengurangi penyebaran Covid-19.

The Indonesian government has implemented a mandatory mask-wearing policy in public spaces to prevent the transmission of Covid-19. In support of this initiative, officials are working to ensure compliance, particularly in crowded areas such as malls and office buildings. However, relying solely on manual enforcement poses challenges due to the potential for human error and negligence. To address this, this research focuses on developing a mask detection system using YOLOv5, capable of detecting three different classes of masks. We collected and curated a dataset from various sources, comprising a total of 1500 bounding boxes, with approximately 500 bounding boxes per class. In addition, we conducted a comparison with a CNN model to find best practice so as to get the most optimal YOLOv5 model. Through various experiments with different parameters, we found that the best results were achieved using a dataset with 640px image size and a batch size of 8. The model demonstrated a precision value of 0.864, recall value of 0.824, and Map50 value of 0.877. This research contributes to the ongoing efforts in public health by providing an automated mask detection system that can assist authorities in monitoring mask compliance effectively and efficiently, thereby mitigating the spread of Covid-19"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nidya Anifa
"Diagnosis COVID-19 dapat dilakukan dengan berbagai metode, salah satunya dengan interpretasi citra medis rongga dada menggunakan machine learning. Namun, metode ini memiliki memerlukan waktu dan biaya yang besar, tidak ada standar dalam pengambilan gambar citra medis, dan pelindungan privasi pada data pasien. Model yang dilatih dengan dataset publik tidak selalu dapat mempertahankan performanya. Diperlukan metode pengklasifikasi berbasis multicenter yang dapat memiliki performa optimal pada dataset yang berbeda-beda. Skenario pertama dengan melatih model menggunakan arsitektur VGG-19 dan ConvNeXt dengan gabungan seluruh data dan masing-masing data. Lalu dilakukan fine tuning terhadap model yang dilatih pada gabungan seluruh data. Skenario kedua dengan Unsupervised Domain Adaptation berbasis maximum mean discrepancy dengan data publik sebagai source domain dan data privat sebagai target domain. Metode transfer learning dengan fine-tuning model pada arsitektur VGG-19 menaikkan train accuracy pada data Github menjadi 95% serta menaikkan test accuracy pada data Github menjadi 93%, pada data Github menjadi 93%, pada data RSCM menjadi 72%, dan pada data RSUI menjadi 75%. Metode transfer learning dengan fine-tuning model pada arsitektur ConvNeXt menaikkan evaluation accuracy pada data RSCM menjadi 73%. Metode unsupervised domain adaptation (UDA) berbasis maximum mean discrepancy (MMD) memiliki akurasi sebesar 89% pada dataset privat sehingga merupakan metode yang paling baik. Berdasarkan GRAD-CAM, model sudah mampu mendeteksi bagian paru-paru dari citra X-Ray dalam memprediksi kelas yang sesuai.

Diagnosis of COVID-19 can be done using various methods, one of which is by interpreting medical images of the chest using machine learning. However, this method requires a lot of time and money, there is no standard in taking medical images, and protecting patient data privacy. Models that are trained with public datasets do not always maintain their performance. A multicenter-based classification method is needed that can have optimal performance on different datasets. The first scenario is to train the model using the VGG-19 and ConvNeXt architecture by combining all data and each data. Then, the model trained using combined data is fine tuned. The second scenario uses Unsupervised Domain Adaptation based on maximum mean discrepancy with public data as the source domain and private data as the target domain. The transfer learning method with the fine-tuning model on the VGG-19 architecture increases train accuracy on Github data to 95% and increases test accuracy on Github data to 93%, on Github data to 93%, on RSCM data to 72%, and on data RSUI to 75%. The transfer learning method with the fine-tuning model on the ConvNeXt architecture increases the evaluation accuracy of RSCM data to 73%. The unsupervised domain adaptation (UDA) method based on maximum mean discrepancy (MMD) has an accuracy of 89% in private dataset making it the best method. Based on GRAD-CAM, the model has been able to detect parts of the lungs from X-Ray images in predicting the appropriate class."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad As`Ad Muyassir
"

Supermarket merupakan tempat pilihan terbaik untuk berbelanja kebutuhan rumah saat ini karena pelanggan dapat memilih produk yang ingin dibelinya tanpa perlu mengantre. Namun untuk melakukan pembayaran saat ini pelanggan masih perlu mengantre di kasir. Oleh karena itu, penelitian ini akan mengimplementasikan sistem cashierless yang dapat melakukan checkout secara otomatis dan efisien sehingga pelanggan tidak perlu mengantre lagi di kasir. Sistem cashierless yang digunakan pada penelitian ini adalah smart trolley, sistem ini dapat melakukan deteksi produk yang masuk atau keluar dari troli pelanggan lalu melakukan checkout secara otomatis saat pelanggan keluar dari supermarket. Untuk dapat melakukan deteksi produk diperlukan model machine learning yang berjenis object detection. Model juga harus dapat diimplementasikan pada edge device karena deteksi akan dilakukan di troli yang memiliki keterbatasan ruang. Maka model yang digunakan adalah YOLOv5 karena memiliki akurasi serta performa tinggi supaya tetap dapat diimplementasikan pada edge device. Hasil pengujian variasi backbone menunjukkan backbone original lebih baik dari backbone Swin Transformer dengan nilai F1-Score sebesar 98.64%, ukuran model sebesar 7.7 MB, dan dapat berjalan dengan 3.87 FPS di komputer pengujian dan 0.74 FPS di Raspberry Pi 4B. Hasil pengujian variasi dataset menunjukkan kombinasi dataset bergerak dengan statis blur dapat menghasilkan model yang memiliki akurasi yang paling baik dengan nilai 99.53% pada fase pelatihan dan 99.44% pada fase testing. Hasil pengujian intensitas cahaya menunjukkan penggunaan lampu untuk meningkatkan pencahayaan di sekitar wilayah deteksi di dalam troli dapat meningkatkan F1-Score hasil deteksi yang dilakukan hingga 63.55%. Hasil pengujian variasi kecepatan produk menunjukkan kecepatan ideal yang dapat digunakan pada saat proses deteksi di komputer pengujian adalah hingga 36 cm/s dan untuk proses yang dilakukan di Raspberry Pi 4B adalah di bawah 7 cm/s. Hasil pengujian dengan penambahan sampling rate dapat mendeteksi produk di komputer pengujian dengan kecepatan hingga 124 cm/s pada produk-produk dengan ukuran yang cukup lebar.


Supermarkets are the best place to shop for home needs today because customers can choose what products they want to buy without the need to queue. However, today customers still need to queue at the cashier to make payments. Therefore, this research will implement a cashier-less system that can do checkout automatically and efficiently so that customers don't have to queue at the cashier anymore. The cashier-less system used in this study is a smart trolley, this system can detect products entering or leaving the customer's trolley and then checkout automatically when the customer leaves the supermarket. To be able to perform product detection, a machine learning model of the object detection type is needed. The model must be able implemented on edge devices because the detection will be done in the cart with limited space. So, the model used is YOLOv5 because it has high accuracy and performance so it can implement on edge devices. The backbone variation test results show that the original backbone is better than the Swin-Transformer backbone with an F1-Score value of 98.64%, a model size of 7.7 MB, and can run with 3.87 FPS on a test computer and 0.74 FPS on a Raspberry Pi 4B. The dataset variation test results show that the combination of moving datasets with static blur can produce a model with the best accuracy of 99.53% in the training phase and 99.44% in the testing phase. The light intensity variation test results show that the use of lamps to increase the lighting around the detection area in the trolley can increase the F1-Score of the detection results made up to 63.55%. The product speed variation results show that the ideal speed that can use during the detection process on the testing computer is up to 36 cm/s and for the process carried out on the Raspberry Pi 4B it is below 7 cm/s. The sampling rate addition results can detect products on the test computer at speeds up to 124 cm/s on products with a wide size

"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Zufar Ashshiddiqqi
"Indonesia merupakan negara maritim terbesar di dunia dengan banyak sekali ikan yang hidup di perairan Indonesia Hal ini membuat sektor perikanan Indonesia memiliki banyak ancaman. Illegal, unreported, unregulated (IUU) fishing adalah salah satu permasalahan yang memiliki dampak yang cukup signifikan karena membuat kerugian yang cukup besar di sektor perikanan Indonesia. Untuk mencegah permasalahan tersebut, sudah banyak solusi yang diajukan, salah satunya adalah penerapan kuota untuk operasi penangkapan ikan serta pemasangan kamera pengawas, namun solusi tersebut belum memiliki dampak yang signifikan dalam mengurangi dan mencegah terjadinya IUU fishing. Oleh karena itu, penelitian ini dilakukan untuk mengembangkan sistem deteksi jenis ikan hasil tangkapan. Sistem dirancang menggunakan konsep object detection dan instance segmentation yang merupakan sebuah bidang dari machine learning, menggunakan toolbox MMDetection dengan algoritma Faster R-CNN dan GFL untuk metode object detection dan algoritma Mask R-CNN untuk metode instance segmentation. Dimana sistem tersebut merupakan model kecerdasan buatan yang dapat melakukan pendeteksian ikan untuk melakukan pengawasan terhadap jumlah ikan yang ditangkap oleh nelayan sehingga IUU fishing dapat berkurang secara signifikan. Sistem terbaik dari penelitian ini dihasilkan menggunakan model instance segmentation yang mendapatkan nilai mAP @50 0,758, besar F1-Score 0,761, dan membutuhkan waktu untuk pelatihan selama 7 jam 32 menit. Selain itu, model tersebut juga mendapatkan akurasi yang lebih baik sebanyak 20% dari perbandingan dengan model object detection.

Indonesia, as the world's largest maritime country, is home to a vast variety of fish species in its waters. This reality poses numerous threats to Indonesia's fisheries sector. One significant challenge is illegal, unreported, and unregulated (IUU) fishing, which has considerable detrimental effects and causes substantial losses to the Indonesian fisheries industry. Several solutions have been proposed to address this problem, including the implementation of fishing quotas and the installation of surveillance cameras. However, these solutions have not yielded significant impacts in reducing and preventing IUU fishing. Hence, this research aims to develop a fish species detection system. The system is designed based on the concepts of object detection and instance segmentation, which are subfields of machine learning. The research utilizes the MMDetection toolbox with the Faster R-CNN and GFL algorithms for object detection, as well as the Mask R-CNN algorithm for instance segmentation. This artificial intelligence-based system enables the detection of captured fish to monitor the quantity of fish caught by fishermen, thereby significantly reducing IUU fishing. The research's best-performing system employs the instance segmentation model, achieving an mAP@50 score of 0.758, an F1-Score of 0.761, and requires a training time of 7 hours and 32 minutes. Moreover, this model also demonstrates a 20% improvement in accuracy compared to the object detection model."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahsanu Taqwim Safrudin
"Bencana alam merupakan salah satu ancaman paling serius di Indonesia. Keberadaan dua lempeng gunung aktif membuat ancaman bencana mengintai di Indonesia setiap tahun kedua. Penanggulangan bencana saat ini masih menggunakan cara tradisional yaitu turun ke lapangan dan melihat langsung titik-titik yang terkena bencana alam. Namun, situasi ini sebenarnya cukup berisiko mengingat kondisi lingkungan yang masih belum stabil sehingga cukup berbahaya bagi tim yang sedang mengamati daerah yang terkena bencana alam. Kendaraan udara tak berawak juga bisa disebut drone adalah perangkat yang beroperasi dengan cara diterbangkan secara vertikal. Alat ini sangat mumpuni untuk melewati berbagai rintangan sehingga sangat cocok digunakan sebagai pengamatan daerah yang terkena bencana. Namun, saat ini drone perlu ditingkatkan kemampuannya untuk dapat terbang secara otomatis dan mendekati objek sasaran. SURF sebagai ekstraksi ciri merupakan metode pendeteksian yang cukup ringan. Namun, kondisi bencana yang cukup kompleks memerlukan cara penyederhanaan citra agar mudah dideteksi. Di sini fitur canny edge berfungsi untuk menyederhanakan gambar dan menghasilkan deteksi yang lebih baik dan dapat diimplementasikan secara real time.

Natural disasters are one of the most serious threats in Indonesia. Existence two active mountain plates make a threat of disaster lurking in Indonesia every year the second. Disaster management is currently still using traditional methods to go to the field and see firsthand the points affected by natural disasters. However, this situation is actually quite risky considering the environmental conditions that are still not yet stable so it is quite dangerous for the team that is observing the area affected by natural disasters. Unmanned aerial vehicles can also be called drones is a device that operates by being flown vertically. This tool very qualified to pass through various obstacles so it is suitable for use as an observation of disaster-affected areas. However, currently drones need to be upgraded the ability to be able to fly automatically and approach the target object. SURF as feature extraction is a fairly light detection method. However, disaster conditions that are quite complex require a way to simplify images for easy detection. Here the canny edge feature acts for can simplify images and produce better detection and can implemented in real time.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>