Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 115904 dokumen yang sesuai dengan query
cover
Nadya Fajrin Azzahra
"Neraca Gas Bumi Indonesia 2018-2027 mengidentifikasi bahwa pasokan gas bumi secara alamiah akan cenderung menurun sementara permintaan gas bumi terus meningkat seiring dengan meluasnya penggunaan gas bumi, baik digunakan sebagai bahan baku, proses produksi, maupun sebagai bahan bakar, terutama pada pembangkit listrik yang telah beroperasi dan pembangkit listrik baru yang akan datang. Dengan kondisi tersebut, liquefied natural gas (LNG) memegang peranan penting dalam memenuhi kekurangan antara pasokan dan permintaan gas bumi untuk menjaga keandalan energi. Sehubungan dengan rencana pembatasan ekspor LNG oleh Pemerintah Indonesia untuk memenuhi kebutuhan LNG domestik, kesiapan terminal regasifikasi LNG harus diperhatikan. Investasi tangki penyimpanan LNG sekitar 45% dari total capital expenditure (CAPEX) (Mokhatab, 2014), sehingga perlu mempertimbangkan pemilihan tangki penyimpanan LNG yang optimal untuk terminal LNG. Studi ini bertujuan untuk membahas pemilihan tangki penyimpanan LNG yang optimal dengan mempertimbangkan kriteria teknis dan ekonomis. Jenis tangki penyimpanan LNG yang akan dibahas meliputi opsi flat bottom tank (FBT), vertical bullet tank, dan floating storage unit (FSU). Tesis ini menganalisis aspek teknis dan ekonomi berupa jadwal penyediaan tangki, area tambahan yang dibutuhkan, ketersediaan pasar dan estimasi CAPEX serta operational expenditure (OPEX) untuk menentukan besarnya biaya infrastruktur, untuk pembangunan tangki penyimpanan LNG pada terminal regasifikasi LNG dengan kebutuhan 40 BBTUD dengan proses pengambilan keputusan menggunakan metode analytic hierarchy process (AHP). Hasil analisis menunjukkan bahwa FBT merupakan tangki penyimpanan yang paling sesuai dan optimal untuk dibangun, dengan perkiraan CAPEX terminal secara keseluruhan sekitar 64,5 juta USD dan OPEX sekitar 21 juta USD per tahun. Opsi tangki penyimpanan yang dipilih akan menghasilkan harga infrastruktur untuk terminal LNG tersebut sebesar 1.86 USD/MMBTU.

Indonesia's Natural Gas Balance 2018-2027 identifies that natural gas supply will naturally tend to decrease while natural gas demand continues to increase in line with the widespread use of natural gas, both as a raw material, for production processes, and as a fuel, especially in existing operated and the upcoming new power plants. Following this situation, liquefied natural gas (LNG) is essential in filling the gap between natural gas supply and demand to preserve energy reliability. Concerning the LNG export limitation plans by the indonesian governance to satisfy Indonesia's LNG demand, LNG regasification terminal readiness must be noted. LNG storage tank investment is around 45% of total capital expenditure (CAPEX) (Mokhatab, 2014), so it is necessary to consider the optimal LNG storage tank selection for the LNG terminal. This study aims to discuss the selection of the optimum LNG storage tank by considering technical and economic criteria. The types of LNG storage tanks that will be addressed include flat bottom tank (FBT), bullet tank (Vertical Tank), and floating storage unit (FSU) options. This paper analyzes the technical and economic aspects of the schedule, additional area required, market availability, CAPEX and operational expenditure (OPEX) estimation to determine the infrastructure costs, for the construction of an LNG storage tank at LNG regasification terminal with a demand of 40 BBTUD with a decision-making process using the analytic hierarchy process (AHP) method. The results of the analysis show that the FBT is the most suitable and optimal storage tank to be built, with an estimated overall terminal CAPEX of approximately 64.5 million USD and OPEX of approximately 21 million USD per year. The selected storage tank option will result in an infrastructure price for the LNG terminal of 1.86 USD/MMBTU."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rahmat Wicaksono
"ABSTRAK
Berdasarkan data dari kementrian ESDM, pada tahun 2013-2028 terdapat ketidakseimbangan antara supply dan demand gas bumi, khususnya di regional Jawa Timur dan Bali. Untuk itu perlu dilakukan penambahan infrastruktur gas berupa pembangunan terminal penerima LNG. Salah satu lokasi yang dipilih untuk direncanakan dibangun terminal penerima LNG adalah di Gresik Jawa Timur. Dalam pembangunan terminal penerima LNG diperlukan pemilihan teknologi agar sesuai dengan kondisi di tempat tersebut dan diharapkan dapat memberikan manfaat finansial. Tujuan dari penulisan tesis ini adalah untuk mendapatkan teknologi yang paling sesuai untuk diaplikasikan di terminal penerima LNG di Jawa Timur dengan mempertimbangkan aspek teknis dan keekonomian. Pada penelitian ini akan dilakukan pemilihan teknologi terminal penerima LNG berbasis lokasi dan pemilihan teknologi regasifikasi menggunakan metode Analytical Hierarchy Process. Selain itu juga dilakukan perhitungan keekonomian dan sensitivitas. Hasil dari penelitian ini adalah diperoleh bahwa jenis terminal LNG yang paling sesuai di Gresik Jawa Timur adalah Land Based Terminal LNG dengan menggunakan teknologi regasifikasi Shell and Tube Vaporizer.Pembangunan land based terminal LNG di Gresik Jawa Timur layak untuk dilaksanakan karena biaya regasifikasi 0,468 USD/MMBTU, NPV 31.943.500 USD, IRR 19,25 , BC Ratio 1,23 dan PBP 3,4 tahun. Faktor throughput untuk pembangkit memiliki sensitivitas terbesar terhadap IRR.

ABSTRACT
Based on data from the Ministry of Energy and Mineral Resources, in the year 2013 2028 there is an imbalance between supply and demand of natural gas, especially in East Java and Bali. For that we need to add gas infrastructure in the form of construction of LNG receiving terminal. The planned LNG receiving terminal is located in Gresik, East Java. The purpose of this thesis is to obtain the most suitable technology to be applied at the LNG receiving terminal in East Java by considering the technical and economic aspects. In this research would be selected LNG receiving technology based on terminal location and selection of regasification technology using Analytical Hierarchy Process method. Economical analysis and sensitivity test were also done. The result of this research shows that the most suitable LNG terminal in Gresik East Java is Land Based LNG Terminal by using Shell and Tube Vaporizer regasification technology. The construction of a ground based LNG terminal in Gresik East Java is feasible to be implemented due to regasification costs of 0.468 USD MMBTU, NPV 31,943,500 USD, IRR 19.25 , BC Ratio 1.23 and PBP 3.4 years. The throughput factor for the power plant has the greatest sensitivity to IRR."
2018
T50712
UI - Tesis Membership  Universitas Indonesia Library
cover
Ayyi Husbani
"Industri aluminium di Kuala Tanjung membutuhkan listrik 2 × 350 MW untuk mendukung peningkatkan produksi. Gas bumi adalah salah satu pilihan bahan bakar untuk memenuhi kebutuhan listrik.  Saat ini, pipa transmisi gas menuju Kuala Tanjung belum bisa memenuhi kebutuhan bahan bakar gas untuk industri Aluminium tersebut. Suplai LNG dari daerah lain menjadi alternatif. Untuk menerima kiriman LNG, industri Alumunium membutuhkan pembangunan terminal penerima LNG. Seleksi pemilihan tangki penyimpanan dan teknologi regasifikasi dibahas secara kualitatif. Hasil seleksi terminal penerima LNG onshore menyatakan bahwa tipe tangki penyimpanan yang terseleksi adalah  full containment dan teknologi regasifikasi adalah Open Rack Vaporizer (ORV). Sedangkan hasil perhitungan keekonomian dengan formula harga untuk 13,5%ICP adalah IRR yang dicapai sebesar 13,5% dan NPV $70.448.815. Perubahan IRR dari kedua variabel yaitu kenaikan capex dan penurunan ICP menunjukkan bahwa penurunan ICP lebih sensitif dibanding kenaikan capex. Hal ini terjadi karena dengan perubahan ICP dan capex masing-masing sebesar 10%, IRR pada penurunan ICP turun menjadi 12,54%. Sedangkan IRR pada kenaikan capex, turun menjadi 13,07%.

The aluminum industry in Kuala Tanjung needs 2 × 350 MW of electricity to support increased production. Natural gas is one of the fuel choices to meet electricity needs. At present, the gas transmission pipeline to Kuala Tanjung has not been able to meet the needs of gas fuel for the Aluminum industry. LNG supply from other regions is an alternative. To receive LNG shipments, the Aluminum industry requires the construction of an LNG receiving terminal. Selection of storage tank selection and regasification technology are discussed qualitatively. The selection results of the onshore LNG receiving terminal stated that the type of storage tank selected was full containment and the regasification technology was the Open Rack Vaporizer (ORV). While the economic calculation results with the price formula for 13.5% ICP are IRR achieved at 13.5% and NPV $ 70,448,815. Changes in IRR of the two variables, namely increases in capex and decreases in ICP indicate that decreases in ICP are more sensitive than increases in capex. This happened because with changes in ICP and capex each by 10%, the IRR on ICP decreased to 12.54%. While IRR on the increase in capital expenditure dropped to 13.07."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T55073
UI - Tesis Membership  Universitas Indonesia Library
cover
Emapatria Chandrayani
"LNG memiliki potensi untuk menjadi pemasok energi untuk menjangkau kepulauan di Indonesia dan telah direncanakan untuk memasok pembangkit listrik di pulau-pulau terpencil. Analisis tekno-ekonomi pembangkit listrik turbin gas terintegrasi dengan unit regasifikasi LNG skala kecil telah dilakukan untuk meningkatkan efisiensi pembangkit listrik dan mengurangi biaya pembangkitan listrik. Analisis dimulai dengan membuat simulasi proses dari sistem yang divalidasi untuk menggambarkan kinerja turbin gas aktual menggunakan simulator proses Aspen Hysys. Kemudian, dilakukan beberapa integrasi seperti penerapan pembangkit uap dalam combined cycle sebagai pembangkit listrik sekunder, pemanfaatan energi dingin dari regasifikasi LNG untuk pendinginan udara masukan kompresor turbin gas, dan pemanasan kembali bahan bakar gas oleh sebagian uap yang dihasilkan. Hasil simulasi memberikan akurasi yang baik dan memungkinkan untuk diintegrasikan dengan proses-proses tersebut. Integrasi gabungan memberikan keuntungan yang lebih tinggi, memberikan kenaikan daya listrik hingga 49,4% serta meningkatkan efisiensi sebesar 44,6% dan menurunkan emisi spesifik CO2 sebanyak 30,9% dibandingkan dengan simple cycle turbin gas. Berdasarkan analisis LCOE, integrasi gabungan memberikan biaya produksi listrik 20,89% lebih rendah daripada simple cycle turbin gas sekitar 14,56 sen/kWh pada faktor kapasitas 80%. Terlebih lagi, integrasi gabungan pembangkit listrik turbin gas selalu memberikan LCOE lebih rendah dibandingkan simple cycle turbin gas dalam berbagai faktor kapasitas, yaitu 21,64% lebih rendah untuk faktor kapasitas tinggi dan setidaknya 7,96% lebih rendah untuk faktor kapasitas kecil. Nilai ini dianggap lebih ekonomis dibandingkan pembangkit listrik berbahan bakar diesel. Optimalisasi upaya integrasi untuk peningkatan efisiensi sistem pembangkit listrik turbin gas dapat meningkatkan kinerja dan menurunkan total biaya pokok pembangkitan listrik.

LNG has a potential to become energy supply across Indonesian archipelago and has been planned to supply power plant in remote islands. A techno-economic analysis of integrated small scale gas turbine power plant and LNG regasification unit has been conducted to increase power plant efficiency and reduce electricity generation cost. The analysis begins with creating process simulation of the system that is validated to represent actual gas turbine performance using Aspen Hysys process simulator. Then several integrations are introduced: combined cycle steam generation as secondary power generation, cold energy utilization from LNG regasification to chill intake air compressor of gas turbine, and fuel gas reheating by a small portion of generated steam. The simulation result provides a good accuracy and enable integration to such processes. The combined integration provides higher advantages, providing extra power output up to 49.4% as well as increasing efficiency up to 44.6% and lowering as much as 30.9% specific CO2 emission than simple cycle gas turbine. Based on LCOE analysis, combined integration provides 20.89% lower cost of electricity production than gas turbine simple cycle around 14.56 cent/kWh at 80% capacity factor. The combined integration of gas turbine power plant always delivers LCOE lower than gas turbine simple cycle in any capacity factors which are 21.64% lower for high-capacity factors and at least 7.96% lower for low-capacity factors. This is considered more economically viable than diesel-fueled power plant. The higher efficiency of integrated power plant-LNG regasification system could better improve performance and further reduce generation cost."
Jakarta: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Gregorius Andrico Hutomo
"Indonesia merupakan negara kepulauan dimana setiap warga disetiap lokasi diwilayah negara berhak atas kebutuhan energi yang cukup untuk keberlangsungan hidup nya. LNG menjadi salah satu sumber energi yang bisa disuplai untuk kebutuhan disetiap wilayah Indonesia karena sifat nya yang mudah di transportasikan. Studi ini membahas pembangunan LNG HUB untuk wilayah distribusi Jawa bagian Timur, Bali dan Nusa Tenggara bagi pembangkit listrik tenaga gas yang saat ini masih menggunakan bahan bakar minyak sebagai sumber energi nya. Volume kapasitas LNG HUB yang akan dibangun didasarkan atas simulasi optimasi distribusi yang dilakukan dengan skema campuran antara hub and spoke serta milkrun. Studi ini menghasilkan perhitungan utilisasi kapal LNG 100% dengan kapasitas minimum LNG HUB 45.884 m³ serta keekonomian yang baik dalam hal ini IRR 24,33% dan NPV serta POT yang positif.

Indonesia is an archipelagic country where each citizen is entitled to sufficient the energy needs for their survival. LNG, for instance, is one of the energy sources which is able to be supplied for the needs in each region of Indonesia as it is transportable. This study will discuss the development of LNG HUB for the distribution in Eastern Java, Bali, and Nusa Tenggara for gas-fired power plants that currently still use fuel oil as their energy source. The volume capacity of LNG HUB construction is based on the optimization simulations that is carried out with a mixed scheme between the hub and spoke as well as the milk run. This research conclude an LNG vessel distribution utilization 100%, a minimum capacity of LNG Hub 45.884 m³, and good economics in IRR 24.33% as well as positive NPV and POT."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Satria Pasthika
"ABSTRAK
Liquefied Natural Gas LNG adalah gas alam yang dicairkan dengan cara didinginkan hingga mencapai suhu -160oC pada tekanan 1 atm. LNG disimpan pada tangki penyimpanan khusus yang kemudian diregasifikasi dari fasa cair ke fasa gas. Di Indonesia terdapat beberapa titik terminal penerimaan dan regasifikasi, salah satunya adalah di perairan Arun, NAD. Selama proses regasifikasi dihasilkan energi dingin dengan suhu yang berbeda-beda yang dapat dimanfaatkan. Salah satu pemanfaatannya adalah sebagai sumber dingin untuk freeze storage hasil perikanan. Perancangan freeze storage dapat dimulai dengan mengetahui beban pendingin serta peralatan yang dibutuhkan. Dengan adanya sistem pemanfaatan energi dingin dari LNG maka akan berpengaruh kepada keekonomian. Langkah yang dilakukan untuk mengkaji kelayakaan keekonomian pembangunan freeze storage ini antara lain menganalisis biaya pembiayaan, penerimaan dan menghitung parameter NPV, IRR, dan PBP. Serta dilakukan uji sensitivitas untuk mendapatkan harga yang lebih rendah dari sistem pada umumnya. Hasil dari analisis keekonomian perancangan freeze storage dengan pemanfaatan energi dingin LNG menunjukkan bahwa proyek ini layak dijalankan dengan NPV sebesar 9.054 USD, IRR sebesar 17,89 terhadap MARR 15,1 dan PBP pada tahun ke 6 umur produktif freeze storage. Nilai tersebut didapatkan dengan harga jual energi dingin sebesar 85 dari harga basis yang merupakan harga tarif dasar listrik.

ABSTRACT
Liquefied Natural Gas LNG is a natural gas that liquified by by cooling it to 160oC at atmospheric pressure 1 atm. LNG stored in special storage tanks, then it is regasificated from liquid phase to gas phase. The regatification process is a process of changing a liquid gas back into a gaseous state by heating the LNG gas temperature. In Indonesia there are several regasification facility, one of them is in Arun, NAD. During the process, cold energy is produced at varying temperature that can be utilized on each level. Utilization can be used for a wide variety of industries, one of them is a source of cold energy for freeze storage of fishery product. The making of freeze storage starts by calculating the cooling load until choosing the right instumentation. The utilization of cold energy of LNG will have an impact to economies of both natural gas sales and the results of the freeze storage itself. Economy feasibility analysis including the calculation of NPV, IRR, and PBP. Sensitivity analysis also done to know how much is the lower price that cold energy can be sold. Result in this research shows that this project is feasible to do with NPV is 9.054 USD, IRR 17,89 to MARR 15,1 and PBP is 6 years of productive age. That value is obtained with selling price of cold energy is 85 of basist price which is basic electricity tariff."
2017
S67800
UI - Skripsi Membership  Universitas Indonesia Library
cover
Desbudiman
"Indonesia sebagai negara penghasil gas, dengan iklim tropis (tidak mengenal empat musim), sangat cocok untuk mengembangkan teknologi pemanfaatan energi dingin LNG, terlebih dengan adanya rencana pembangunan LNG Receiving Terminal di Pulau Jawa. Pada Tesis ini dilakukan analisis aspek teknis dan ekonomi terhadap potensi aplikasi LNG Receiving Terminal yang memanfaatkan energi dingin LNG untuk pembangkit listrik di Pulau Jawa. Kajian teknologi dilakukan dengan melakukan simulasi tiga model proses yaitu; Siklus Rankine, Proses Gabungan, dan Combined Cycle Power Plant. Berbagai parameter proses di tiap alat disimulasikan dan dioptimisasi dengan bantuan perangkat lunak HYSYS. Untuk evaluasi kinerja proses digunakan analisis pinch. Untuk kapasitas LNG Receiving Terminal 1286 MMscfd dengan 50% laju alir LNG di utilisasi, didapat hasil sebagai berikut; Untuk model proses Siklus Rankine dihasilkan listrik sebesar 22 MW untuk DTmin 2,0°C. Model Proses Gabungan dihasilkan listrik 41 MW (31 MW net power) pada DTmin 2,0 °C. Untuk proses Combined Cycle Power Plant, jumlah LNG yang dibakar 50 MMscfd. Total listrik bersih yang dapat dihasilkan dari proses ini adalah sekitar 400 MW, dimana 86 MW merupakan hasil dari pemanfaatan energi dingin LNG. Analisis ekonomi yang dilakukan, secara umum menunjukkan ketiga model proses layak untuk diaplikasikan, kecuali Combined Cycle Power Plant (Desain-3) yang Pay Back Period masih sedikit diatas 8 tahun.

Indonesia as LNG producing country, which do not have four season, gas demand in this country does not fluctuate as much as it is in Japan. For these reason Indonesia have good prospect to develop cold energy utilization technology, especially Indonesia had plan to built LNG Receiving Terminal. In this research, technical and economical analysis for application LNG receiving terminal with cryogenic power plant unit, which built in Java Island will be studied. For better utilize LNG's low temperature, pinch analysis will be used for process optimization. Three processes model will be simulated, there are: cryogenic Rankine cycle, combined cryogenic Rankine cycle and direct expansion, combined cycle power plant. LNG receiving terminal with capacity 1286 MMSCFD, 50% of this capacity will be utilized to produced electricity in cryogenic power plant. From cryogenic Rankine cycle, resulting 22 MW electricity at DTmin 2,0°C. Combined cryogenic Rankine cycle and direct expansion, resulting 41 MW (31 MW net power) at DTmin 270°C. Net power which producing from combined cycle power plant is 400 MW, where it is 86 MW come from LNG cold temperature utilization. Analysis are continued with economical aspect analysis and sensitivities analysis. From economical analysis, in general, show that all design that simulated are feasible and applicable."
Depok: Fakultas Teknik Universitas Indonesia, 2004
T14761
UI - Tesis Membership  Universitas Indonesia Library
cover
Siti Agrisylva Shalihati
"Gas alam diubah menjadi LNG (Liquefied Natural Gas) untuk memudahkan dalam pendistribusian gas alam jarak jauh. LNG ini memiliki volume sekitar 1/600 dari volume gas alam sehingga dapat mengangkut jauh lebih banyak dibandingkan pada saat berbentuk gas alam. Sebelum pendistibusiannya ke konsumen, LNG tersebut akan diubah kembali menjadi gas. Proses diubahnya LNG kembali ke bentuk gas disebut sebagai regasifikasi. Pada proses regasifikasi dibutuhkan alat penukar kalor sebagai alat penukar kalor. Penelitian ini bertujuan untuk mendapatkan hasil sebuah rancangan alat penukar kalor pada proses regasifikasi LNG dengan mempertimbangkan aspek termal dan mekanik. Metode yang digunakan untuk aspek termal adalah metode kern sedangkan untuk aspek mekanik menggunakan TEMA (Turbular Exchanger Manufacturer Association) sebagai standar. Pada metode kern akan didapat diameter sebesar 2.03 m dengan panjang dari tube sebesar 6 m, diameter dalam tube 0.037 m dan diameter luar tube 0.04 m berdasarkan standarnya. Selain itu, didapatkan juga besar diameter shell yang akan menjadi acuan pada bagian mekanik menggunakan TEMA sehingga mendapatkan dimensi pada bagian shell seperti ketebalan shell sebesar 2.43 x 10-2 m, ketebalan tube sheet sebesar 0.112 m, diameter nozzle 0.254 m, dan diameter luar shell 2.08 m. Untuk hasil akhir merupakan sebuah design dari alat penukar kalor sesuai dengan metode yang digunakan dengan kapasitas 7 kg/s. "
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Handayani Lulun Lande
"Perencanaan dan pengadaan fasilitas pembangkit listrik berikut fasilitas terminal LNG masih dilakukan terpisah. Dari sudut pandang teori, integrasi sistem pembangkit listrik dengan sistem regasifikasi pada terminal LNG masih belum optimal karena masih terdapat potensi pemanfaatan energi terbuang baik energi panas maupun energi dingin yang merupakan peluang perbaikan untuk meningkatkan efisiensi sistem keseluruhan. Integrasi sistem dapat dilakukan dengan memanfaatkan energi panas pada air pendingin mesin dan pada gas buang dari proses pembangkitan energi listrik, sekaligus memanfaatkan energi dingin dari proses regasifikasi LNG untuk mendinginkan air pendingin mesin. Melalui metode analisis teknis, simulasi rancangan dengan pemanfaatan energi panas dari mesin pembangkit dapat dilakukan pada LNG Vaporizer tipe shell and tube.
Dari hasil simulasi teknis dapat diketahui dengan flow rate LNG sebesar 4 MMSCFD akan menghasilkan daya sebesar 17230 kW dengan efisiensi 35,2%, dimana efisiensi tersebut lebih tinggi apabila dibandingkan dengan efisiensi sistem yang tidak terintegrasi. Dalam analisis ekonomi pada pola pembebanan mesin pembangkit dengan faktor kapasitas 80% dan asumsi harga listrik yang digunakan sebesar cent US$ 12 /kWh, diperoleh nilai IRR 19,7% dimana nilai IRR tersebut lebih besar dari nilai WACC (7,49%) sehingga pengembangan disain integrasi sistem layak untuk dilakukan.

Planning and procurement process of electricity generation facilities and LNG terminal facilities are still carried out separately. From a theoretical point of view, the integration of the power plant system with the regasification system at the LNG terminal is not optimal because there is still potential utilization of wasted energy both heat and cold energy which is an opportunity to improve overall system efficiency. System integration can be done by utilizing heat energy in engine cooling water and exhaust gas from the electricity generation process, while utilizing the cold energy from the LNG regasification process to decrease temperature of engine cooling water. Through a technical analysis method, design simulation with the utilization of heat energy from the gas engine can be carried out on the shell and tube type LNG Vaporizer.
The results of the technical simulation can be seen that the LNG flow rate of 4 MMSCFD will produce power of 17230 kW with an efficiency of 35.2%, where the efficiency is higher compared to the efficiency of a standalone system. In the economic analysis, base on loading profile of gas engine with a capacity factor of 80% and the assumption of the electricity price at cent US $ 12 / kWh, an IRR value of 19.7% was obtained where the IRR value was greater than the WACC value (7.49%), the result shows that development of system integration design is feasible.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T52637
UI - Tesis Membership  Universitas Indonesia Library
cover
Teuku Riefky Harsya
"Pengembangan kilang LNG Arun yang masa pengoperasiannya akan berakhir pada 2014 menjadi terminal penerima gas dapat membantu memenuhi kebutuhan gas di daerah Aceh dan Sumatera Utara. Kilang ini dapat dimodifikasi mejadi terminal penerimaan dan regasifikasi LNG karena sejumlah fasilitas yang tersedia masih baik dan layak untuk digunakan. Untuk mengetahui kelayakan proyek ini, dilakukan kajian keekonomian serta sensitivitas dengan masa pembangunan dan perbaikan selama 2 tahun, operasional selama 20 tahun serta pasokan LNG sebesar 400MMSCFD untuk tahun pertama dan meningkat sebesar 50 MMSCFD setiap tahunnya hingga mencapai 350 MMSCFD sebagai kapasitas produksi maksimum.
Langkah-langkah yang dilakukan untuk mengkaji kelayakan proyek ini antara lain menganalisa kebutuhan peralatan tambahan untuk proses regasifikasi, menghitung kelayakan keekonomian melalui 4 parameter NPV, IRR, PBP, dan BC Ratio, serta uji sensitivitas dengan menggunakan random number generation simulator untuk mengetahui komponen yang paling sensitif terhadap perubahan.
Adapun hasil analisis keekonomian pemanfaatan kilang Arun menjadi receiving gas terminal menunjukkan bahwa proyek ini layak dijalankan dengan NPV sebesar 454.097.000 USD, IRR 15,4% terhadap MARR 15%, BC ratio sebesar 4, dan payback period jatuh pada tahun ke-6 bulan ke-2 pengoperasian. Hasil uji sensitivitas menunjukkan bahwa tax merupakan faktor yang paling mempengaruhi perubahan.

Utilization of LNG Arun refinery plant, which it’s operational contract will end on 2014, as a receiving gas terminal can help meet the needs of gas in Aceh and North Sumatera. This plant can be modified into a receiving gas terminal and LNG regasification because of some of the existing facilities are still in a good condition and ready to use. Economic analysis should be done to know the feasibility of this project with the construction time for 2 years, 20 years of operational, and 150MMSCFD of LNG supply for start up and increased as much as 50 MMSCFD each year until reach 350 MMSCFD as maximum production capacity.
The steps done to know the feasibility of the project are additional equipment for regasification process study, calculate the economic feasibility through 4 parameter of NPV, IRR, PBP and BC ratio, as well as sensitivity analysis using random number generation simulator to determine the component that is most sensitive to change.
The economic analysis result shows that this project is feasible with NPV of 454.097.000USD, 15,4% of IRR with MARR as much as 15%, BC ratio of 4, and the payback period falls on 2nd month of the 5th year of operational. Sensitivtiy analysis result shows that tax is the most influencing factor to change.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T32520
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>