Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 135344 dokumen yang sesuai dengan query
cover
Nurdina Widanti
"Rasa nyeri yang kerap kali dirasakan oleh bayi dan sulit dideteksi hal ini dikarenakan metode untuk mendeteksi rasa nyeri bersifat self reporting pada kenyataannya bayi sendiri masih belum mampu menjabarkan rasa nyeri tersebut dengan verbal dengan baik. Secara statistic juga tercatat sekitar 80% dari populasi dunia kurang memperhatikan penilaian rasa nyeri terutama terhadap anak-anak padahal rasa nyeri ini memberi pengalaman yang buruk pada anak, sehingga dapat mengganggu respon nyeri di kemudian hari atau trauma psikis. Berdasarkan permasalahan tersebut maka dibuatlah sebuah prototype system untuk mendeteksi rasa nyeri, di mana dalam proses perjalanan pembuatan dan juga pengujian terciptalah 2 versi prototype yaitu versi 1 dibangun dengan Raspberry pi 4.0, dengan framework tensorflow, keras dan haar cascade untuk face recognition dan versi 2 dibangun menggunakan NVIDIA Jetson Nano Developer Kit dengan framework pytorch dan algoritma YOLO. Di mana untuk kedua versi tersebut dilengkapi dengan 2 parameter tambahan yaitu Galvanic Skin Response (GSR) dan Voice Detector. Hasil menunjukan menggunakan Raspberry nilai presisi sebesar 60%, recall 50% dan f1-score 54%. Menggunakan NVIDIA Jetson Nano dilakukan dengan 300 dataset diperoleh untuk nilai rata-rata Confidence sebesar 53.02%, presisi, recall, f1-score dan akurasi 71,4%, 62,5%,66,6%, 70%. Untuk pengujian dengan 600 dataset diperoleh rata-rata confidence 32.02%, presisi, recall, f1-score dan akurasi 75%,42.9%,54,5%,70%.

Pain in a baby is difficult to detect is because the method for detecting pain is self-reporting, even though babies themselves cannot describe the pain verbally. Statistically, it is also recorded that about 80% of the world's population pays less attention to pain assessment, especially for children, even though this pain gives children a bad experience so that it can interfere with pain responses in the future or psychological trauma. Based on these problems, a prototype system was made to detect pain, the process of making and testing two prototype versions, version 1 was built with Raspberry pi 4.0, with a TensorFlow framework, Keras and Haar cascade for face recognition, and version 2 was built using NVIDIA Jetson Nano Developer Kit with PyTorch framework and YOLO algorithm. Where both versions are equipped with 2 additional parameters, Galvanic Skin Response (GSR) and Voice Detector. The results show that using Raspberry the precision value is 60%, recall is 50% and f1-score is 54%. Using the NVIDIA Jetson Nano with 300 dataset get everage result of confidence is 53.52%, precision, recall, f1-score and accuracy 71,4%, 62,5%,66,6%, 70%. For testing with 600 dataset get everage result of confidence 32.02%, precision, recall, f1-score and accuracy 75%,42.9%,54,5%,70%. "
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Farrel Mahardhika Fajar
"Manusia selalu dipaparkan dengan rangsangan eksternal, baik fisik (langsung) maupun emosional (tidak langsung). Sekresi keringat yang terjadi pada sistem syaraf manusia dapat terjadi sebagai sistem respon. Keberadaan keringat mengubah konduktivitas kulit. Pada skripsi ini sebuah alat dibuat untuk aktivitas konduktivitas kulit ketika rangsangan fisik dan emosional diberikan. Rangsangan fisik merupakan pukulan sedang ke dada, dan ransangan emosional berupa penontonan video kejutan. Pengukuran diberikan waktu diam selama 10 detik agar tubuh beristirahat sebelum menerima rangsangan fisik, dan setelah sepuluh detik selanjutnya, rangsangan emosional diberikan. Jangka waktu percobaan selama 45 detik. Analisis dilakukan untuk membandingkan perubahan konduktivitas pada kulit kering dan kulit basah. Hasil pengukuran memberikan perubahan pada konduktivitas kulit kering lebih terlihat dibandingkan perubahan pada kulit yang berkeringat. Percobaan ini juga menunjukkan adanya jeda waktu 3,05 sampai 5 detik antara rangsangan fisik dan responnya, tetapi pada rangsangan emosional jeda waktu ini tidak ada.

Humans are continually exposed to external impulses, both physical (direct) and emotional (indirect). Sweat can be secreted by the nervous system as a response system. The presence of sweat changes skin conductivity. For this study a device was developed to measure skin conductivity and its activity when physical and emotional impulses were introduced. The physical impulse was a mild punch to the arm, and the emotional impulse was prompted by watching a video that contained an element of surprise. Measurement was delayed by 10 seconds to let the body rest before receiving the physical impulse, and after another 10 seconds, the emotional impulse was introduced. Total time taken for the measurement was 45 seconds. An analysis was conducted to compare the change in dry skin conductivity with the change in conductivity in skin that was already sweating. Measurement results revealed that changes in dry skin conductivity are more pronounced than changes in sweating skin conductivity. The study also demonstrated that a delay of 3.05 to 5 seconds exists between physical impulse and response, but no delay is present between emotional impulse and response."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gita Rindang Lestari
"Galvanic Skin Response (GSR) adalah perubahan psikologis pada kulit yang dihasilkan dari perubahan aktivitas kelenjar keringat; pada saat itu, kelenjar keringat akan aktif ketika tubuh dalam keadaan sakit. Prototipe ini dibuat untuk mengukur konduktivitas kulit pada bayi berdasarkan injeksi imunisasi pada bagian paha bayi. Pengukuran dilakukan dengan 3 parameter yaitu pre, intra dan post. Total waktu yang diambil untuk pengukuran adalah 6 menit. Prototipe ini menggunakan mikrokontroler Arduino Uno sebagai prosesor sinyal analog ke digital, dan hasilnya akan dikirim ke PC atau smartphone menggunakan Bluetooth HC-05 melalui plotter serial untuk tampilan. Tujuan dari penelitian ini adalah untuk mengembangkan alat deteksi nyeri pada bayi berbasis respon kulit galvanik yang terjangkau, andal dan feasible. Nilai tambahan dari penelitian ini adalah menggunakan Bluetooth sebagai transfer data agar lebih mudah digunakan. Hasil penelitian ini berhasil mengembangkan prototipe respon kulit galvanik portabel untuk sensor nyeri pada bayi yang dapat bekerja dengan baik dan hasil sensitivitasnya dapat terverifikasi. Dari hasil percobaan pengukuran nyeri terhadap bayi maka diperoleh tiga kategori nyeri pada bayi yaitu tidak nyeri dengan tegangan <2, nyeri ringan dengan tegangan 2-4 dan nyeri akut dengan tegangan >4-5 volt.

Galvanic Skin Response (GSR) is a psychological change in the skin resulting from changes in sweat gland activity; at that time, the sweat glands will be active when the body is in pain. This prototype was made to measure skin conductivity in infants based on the injection of immunization on the baby's thigh. Measurements were made with 3 parameters namely pre, intra, and post. The total time taken for measurement is 6 minutes. This prototype uses the Arduino Uno microcontroller as an analog to a digital signal processor, and the results will be sent to a PC or smartphone using Bluetooth HC-05 via a serial plotter for display. This study aims to develop a pain detection tool in neonates based on galvanic skin response that is affordable, reliable, and feasible. The additional value of this research is to use Bluetooth as a data transfer to make it easier to use. The results of this study succeeded in developing a prototype of a portable galvanic skin response for pain sensors in infants that can work well and the sensitivity results can be verified. From the results of experiments measuring pain in infants, three pain categories were obtained in infants, namely no pain with voltage <2, mild pain with voltage 2-4, and acute pain with voltage> 4-5 volts."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rido Dwi Oktanto
"Pada era digital ini, teknologi informasi dan komunikasi berkembang pesat dan berpengaruh signifikan dalam berbagai aspek kehidupan, termasuk keamanan dan pengenalan identitas. Salah satu penerapan teknologi yang menonjol adalah sistem deteksi dan pengenalan wajah yang digunakan di berbagai tempat yang memerlukan keamanan ekstra. Penelitian ini bertujuan untuk mengembangkan sistem deteksi dan pengenalan wajah menggunakan arsitektur ResNet dan perangkat ESP-32, dengan fokus pada implementasi dan evaluasi efektivitas sistem tersebut dalam meningkatkan keamanan.
Metode yang digunakan dalam penelitian ini meliputi penggunaan ResNet-50 untuk pengenalan wajah dan Cascade Classifier untuk deteksi wajah. Data yang digunakan untuk pelatihan model diperoleh melalui proses augmentasi data untuk meningkatkan variasi dan jumlah sampel. Sistem ini diimplementasikan menggunakan perangkat keras ESP-32 dan perangkat lunak MATLAB, serta diuji pada lingkungan nyata untuk mengevaluasi kinerjanya.
Hasil penelitian menunjukkan bahwa sistem yang dikembangkan mampu mendeteksi dan mengenali wajah dengan akurasi tinggi. Integrasi sistem dengan infrastruktur keamanan yang ada juga memungkinkan peningkatan perlindungan terhadap data dan perangkat keras. Dengan demikian, penelitian ini berhasil menunjukkan bahwa teknologi deteksi dan pengenalan wajah dapat memberikan solusi efektif untuk meningkatkan keamanan di berbagai tempat.

In this digital era, information and communication technology has developed rapidly, significantly impacting various aspects of life, including security and identity recognition. One notable application of this technology is the facial detection and recognition system used in various high-security areas. This research aims to develop a facial detection and recognition system using ResNet architecture and ESP-32, focusing on the implementation and evaluation of the system's effectiveness in enhancing security.
The methods used in this study include employing ResNet-50 for facial recognition and Cascade Classifier for facial detection. The data used for model training were obtained through data augmentation processes to increase the variation and number of samples. The system was implemented using ESP-32 hardware and MATLAB software, and tested in real-world environments to evaluate its performance.
The results of the study indicate that the developed system can detect and recognize faces with high accuracy. The system's integration with existing security infrastructure also allows for enhanced protection of data and hardware. Thus, this research successfully demonstrates that facial detection and recognition technology can provide effective solutions for improving security in various locations.
"
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Theresia Diah Kusumaningrum
"ABSTRAK
Deteksi dan pengenalan wajah merupakan salah satu pengolah citra yang dapat digunakan untuk surveillance pada UAV. Namun kasus pengenalan wajah dan deteksi wajah ini merupakan pekerjaan yang sangat sulit dilakukan karena komputer harus dapat melakukan lokalisasi wajah dengan baik kemudian melakukan klasifikasi wajah. Tesis ini membahas penelitian metode deep learning yaitu deteksi wajah dengan menggunakan metode RCNN dan pengenalan wajah dengan menggunakan metode CNN. Eksperimen dengan menggunakan variasi sudut wajah dan jarak wajah terhadap kamera dilakukan untuk mengamati pengaruh parameter terhadap performa model. Hasil penelitian menunjukkan bahwa model RCNN dengan menggunakan satu wajah subjek dapat digunakan untuk melakukan deteksi wajah pada subjek dengan recognition rate sebesar 74% pada parameter IoU > 0.5. Nilai recognition rate pada sistem terintegrasi deteksi dan
pengenalan wajah sangat tergantung dari hasil prediksi area wajah yang dihasilkan dari model RCNN. Percobaan membuktikan bahwa jarak subjek kamera mempengaruhi recognition rate dari model deteksi wajah.

ABSTRACT
Face detection and recognition is an image processor that can be used for surveillance on UAVs. However, the case of face recognition and face detection is a very difficult job to do because the computer must be able to do localization of the face well then do face classification. This thesis discusses the research of deep learning methods, namely face detection using the RCNN method and face recognition using the CNN method. Experiments using variations in face angle and face distance to the camera were conducted to observe the effect of parameters on the performance of the model. The results showed that the RCNN model using one subject's face could be used to detect faces on subjects with a recognition rate of 74% on the IoU parameter > 0.5. The value of recognition rate in the integrated detection and face recognition system is highly dependent on the results of the prediction of face areas generated from the RCNN model. Experiments prove that the distance of the camera subject affects the recognition rate of the face detection model."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Praseyawidi Indrawan
"Identitas diri seseorang dalam jejaring sosial menjadi hal penting terutama ketika ingin mengenali siapa sebenarnya orang tersebut. Pencarian identitas diri dapat dengan mudah dilakukan melalui pencarian dalam situs search engine ataupun situs jejaring sosial yang ada pada komputer atau laptop. Metode ini sepertinya bukan merupakan hal yang efektif dan praktis seiring berkembangnya perangkat mobile dalam masyarakat seperti smartphone dan tablet. Untuk itu, dirancang sebuah sistem pengenalan wajah pada perangkat mobile. Sistem ini dirancang dalam bentuk aplikasi yang dikembangkan pada perangkat mobile Android.
Penggunaan Android Face Detector API akan bertindak sebagai pustaka dalam proses deteksi wajah pada perangkat mobile sebelum melakukan proses offloading ke layanan komputasi awan. Hasil implementasi berupa modul deteksi wajah pada perangkat mobile dan modul pengenalan wajah (offloading) yang memanfaatkan layanan komputasi awan dengan bantuan komunikasi Representational State Transfer (REST). Hasil pengujian sistem pada perangkat mobile menunjukkan bahwa total waktu pengenalan wajah sebesar 7,45 detik dengan waktu deteksi wajah (onloading) 0,45 detik dan waktu proses offloading 7 detik.

The identity of a person in social networking becomes very important especially when we want to identify a person. Search for detailed-identity can be easily conducted through searching using the search engine sites or existing social networking website using computer or laptop. This method is not effective and practical when we consider the development of mobile device technology in the community such as smartphone and tablet. Therefore, designed a face recognition system on mobile devices. The system is designed in the form of an application developed on Android mobile devices.
The use of Android Face Detector API will act as libraries in the process of face detection before performing the offloading stage. This paper describes the implementation of the facial detection module on mobile device and face recognition module (offloading) using cloud computing service with REST communication. The result of testing on mobile device indicates that total computation time for face recognition system reached 7,45 seconds with the onloading process 0,45 seconds and the offloading process 7 seconds.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42172
UI - Skripsi Open  Universitas Indonesia Library
cover
Yuni Arti
"Sistem pengenalan wajah dapat memberikan hasil yang tepat pada kondisi wajah normal, tetapi dalam lingkungan yang tidak dibatasi menyebabkan hasil pengenalan wajah menjadi tidak akurat, baik pada verifikasi maupun identifikasi. Salah satu masalah yang sering ditemui dalam sistem pengenalan wajah dan terkait dengan sifat intra-class variance pada wajah adalah pose. Penelitian ini bertujuan untuk melakukan pengenalan wajah berdasarkan pose invariant dengan mengimplementasikan Spatial Transformer Netwok (STN) pada arsitektur jaringan ringan MobileFaceNet. STN digunakan sebagai metode penyelarasan wajah untuk menangani variasi pose pada citra input. Berdasarkan evaluasi model, model Single-STN MobileFaceNet memberikan akurasi, AUC dan EER berturut-turut 73.64%, 82.18%, dan 0.2636. Kenaikannya sebesar 1.21% untuk akurasi, 1.56% untuk AUC dan untuk EER turun sebesar 0.0121 dari model Baseline. Penambahan STN pada jaringan ringan MobileFaceNet mempengaruhi hasil verifikasi wajah, tetapi kurang signifikan. Akan tetapi, berdasarkan hasil uji signifikansi McNemar, tidak ada perbedaan yang signifikan dengan adanya metode penyelarasan wajah STN pada model Single-STN MobileFaceNet. Terdapat beberapa kasus pose yang tidak dapat ditangani dengan baik oleh model, seperti pose menengadah atau menengok ke kanan/kiri. Berdasarkan evaluasi robustness model, nilai akurasi, AUC dan EER yang dihasilkan model Single-STN MobileFaceNet berturut-turut 96.86%, 98.51%, 0.0314. Model Single-STN MobileFaceNet termasuk model yang memiliki kinerja baik dalam pengenalan wajah, model mampu membedakan pasangan citra match dan non-match dengan baik pada dataset CFP

The face recognition system can give precise results in normal facial conditions, but in an unconstrained environment it can result inaccurate face recognition, both in verification and identification. One of the problems that are often encountered in face recognition system and related to intra-class variance on the face is pose. This study aims to perform face recognition based on pose invariant by implementing Spatial Transformer Netwok (STN) on MobileFaceNet lightweight network architecture. STN is used as a face alignment method to handle pose variations in the input image. Based on the evaluation of the model, the Single-STN MobileFaceNet model provides accuracy, AUC and EER of 73.64%, 82.18%, and 0.2636, respectively. The increase is 1.21% for accuracy, 1.56% for AUC and for EER it is down by 0.0121 from the Baseline model. The addition of STN to the MobileFaceNet lightweight network affects the face verification results, but is less significant. However, based on the results of the McNemar significance test, there is no significant difference with the STN face alignment method in the Single-STN MobileFaceNet model. There are some cases of poses that cannot be handled well by the model, such as looking up or looking to the right/left. Based on the evaluation of the robustness of the model, the values ​​of accuracy, AUC and EER generated by the Single-STN MobileFaceNet model are 96.86%, 98.51%, 0.0314, respectively. The Single-STN MobileFaceNet model includes a model that has good performance in face recognition. This model is able to distinguish match and non-match image well on the CFP dataset."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Alzy Maulana Bermanto
"Sistem pengenalan wajah (face recognition system) merupakan salah satu sistem yang dibangun berdasarkan pre-trained model. Sistem ini memanfaatkan teknik biometrik yang menggunakan wajah sebagai pengenalan atau identifikasi seseorang. Implementasi sistem pengenalan wajah dapat diaplikasikan dalam berbagai macam aplikasi seperti sistem absensi untuk mengecek kehadiran, sistem monitoring pengunjung di tempat wisata ataupun tempat-tempat publik, hingga dapat digunakan untuk mengenali tingkah laku seseorang untuk analisis-analisis yang dibutuhkan di berbagai bidang. Dalam penelitian ini, akan diimplementasikan sistem pengenalan wajah untuk sistem absensi menggunakan metode pembelajaran deep learning. Proses training data dan validasi hasil pengenalan wajah akan dibandingkan antara model CNN (Convolutional Neural Network) berarsitektur ResNet-50 dengan VGG16 yang telah dilatih sebelumnya menggunakan dataset Open Data Science (ODSC) untuk mendapatkan model perancangan sistem wajah terbaik. Simulasi real-time dilakukan dengan menggunakan model latih dengan validasi akurasi tertinggi sebesar 98.2%. Model latih yang digunakan dalam simulasi adalah ResNet-50 dengan dataset B sebagai data training serta learning rate sebesar 0.01. Hasil analisis menunjukkan bahwa proses training menggunakan model ResNet-50 jauh lebih ringan dan memberikan hasil model pelatihan dengan validasi akurasi yang lebih tinggi dibanding dengan model VGG16 yang membutuhkan banyak resource selama proses training berlangsung. Pengujian real-time yang dilakukan menunjukkan bahwa model ResNet-50 akan akurat jika memperhatikan beberapa kondisi yang diperlukan seperti jarak deteksi harus 50 hingga 100 cm dari kamera deteksi dan posisi wajah harus lurus menghadap kamera deteksi.

The face recognition system is a system that is built based on a pre-trained model. This system utilizes biometric techniques that use the face as an identification or authentication of a person. The facial recognition system can be applied in various applications such as attendance systems to check attendance, visitor monitoring systems at tourist attractions or public places, and to identify a person's behavior for the analyzes needed in various fields. In this study, a facial recognition system will be implemented for the attendance system using deep learning methods. To obtain the best system design, training, and validation of facial recognition results will be compared between the CNN (Convolutional Neural Network) model with the ResNet-50 and VGG16, which has been previously trained using the Open Data Science (ODSC) dataset. Real-time simulations were carried out using a training model with the highest validation accuracy of 98.2%. The training model used in the simulation is ResNet-50 with dataset B as training data and a learning rate of 0.01. The analysis results show that the training process using the ResNet-50 model is much lighter and provides results with higher accuracy validation than the VGG16 model, which requires a lot of resources during the training process. Real-time testing has shown that the ResNet-50 model will be accurate if it considers several conditions, such as the detection distance must be 50 to 100 cm from the detection camera, and the face position must be in a straight facing towards the detection camera."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sepritahara
"Sistem pengenalan wajah manusia merupakan salah satu bidang yang cukup berkembang dewasa ini, dimana aplikasi dapat diterapkan dalam bidang keamanan (security system) seperti ijin akses masuk ruangan, pengawasan lokasi (surveillance), maupun pencarian identitas individu pada database kepolisian. Tujuan Penulisan laporan tugas akhir ini adalah untuk membangun sebuah perangkat lunak pengenalan citra wajah manusia menggunakan metode Hidden
Markov Models (HMM) dengan input database Pain Ekspression Subset dan database Hasil Foto Sendiri dengan memanfaatkan aplikasi GUI. Hasil pengujian sistem menunjukkan bahwa sistem pengenalan wajah (face recognition) membandingkan percobaan pengenalan sesuai dengan codebook (32, 64,128, 256) dan iterasi (5, 10). Sistem pengenalan wajah manusia menggunakan metode Hidden Markov Models (HMM) mencapai tingkat akurasi pengenalan sebesar
84,28%, dengan database 70 gambar yang terdiri dari 10 individu dengan masing-masing individu memiliki 7 variasi ekspresi yang berbeda.

ABSTRACT
Human face recognition system is one area that is developing now, where applications can be applied in the field of security (security system) such as permit access into the room, monitoring locations (surveillance), or search for individual identity in the police database. Purpose of this final report is to build a software image of human face recognition using Hidden Markov Models method (HMM) with input Pain Ekspression Subset database and Image itself database applications of GUI. Test results show that the system of face recognition systems
trial comparing the introduction according to the codebook (32, 64.128, 256) and iteration (5, 10). Human face recognition system using Hidden Markov Models (HMM) reached the level of recognition accuracy of 84,28%, with 70 database that consists of 10 individuals with each individual has 7 variations of expressions."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1373
UI - Skripsi Open  Universitas Indonesia Library
cover
Supeni
"Proses optimasi pada Probabilistic Neural Network (PNN) dapat dilakukan terhadap nilai smoothing parameter maupun struktur neuron. Setiap permasalahan memiliki nilai smoothing parameter optimal yang berbeda. Optimasi struktur neuron bertujuan untuk mereduksi banyak neuron yang digunakan sehingga dapat mempersingkat waktu komputasi.
Skripsi ini membahas proses pencarian nilai smoothing parameter optimal menggunakan algoritma genetika dan struktur neuron optimal menggunakan algoritma ortogonal dalam sistem pengenal wajah. Terdapat dua jenis teknik optimasi yang akan dibahas, lalu membandingkan hasilnya dengan PNN struktur utuh dan backpropagation. Data wajah yang digunakan berupa foto infra merah dan cahaya tampak.

Optimization of Probabilistic Neural Network (PNN) can be performed to the value of smoothing parameter and neuron structure. Every problem has different value of smoothing parameter. Optimization of neuron structure aims to reduce the number of neurons used, in order to shorten computation time.
This thesis discusses the process of finding the optimal value of smoothing parameter using genetic algorithms and optimal neuron structure using orthogonal algorithms in face recognition system. Two types of optimization techniques which will be discussed, then the results are compared with full structure PNN and backpropagation. Face data used in the form of infrared and visible light images.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1579
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>