Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 139466 dokumen yang sesuai dengan query
cover
Eka Kurnia Sari
"Perkembangan sistem teknologi telekomunikasi yang semakin canggih dan kompleks memicu meningkatnya kegagalan ataupun kesalahan sistem dalam sistem jaringan utama dan sistem pendukung layanan telekomunikasi, serta kesalahan yang terjadi pada bisnis proses dan sumber daya manusia yang terkait. Kegagalan dan kesalahan ini menyembabkan kerugian yang ditanggung perusahaan, kerugian yang ditimbulkan dengan istilah revenue leakage atau kebocoran pendapatan. Revenue Assurance memegang peranan penting dalam pengendalian terhadap resiko revenue leakage dengan membuat kontrol dalam mendeteksi dan mencegah terjadinya kebocoran agar mampu meminimalkan biaya dan memaksimalkan potensi pendapatan. Dalam tesis ini dikembangkan metode untuk menganalisis Big data CDR untuk mengoptimalkan proses analisis pada revenue assurance control dengan menggunakan algoritma K-means Clustering. Algortima ini mengelompokkan obyek pengamatan dalam beberapa kategori yang diindikasikan sebagai titik kebocoran. Hasil kelompok yang dihasilkan dengan kategori yang beresiko tinggi memiliki anggota yang sedikit dengan tingkat nilai evaluasi akurasi cluster, R-Squared, sekitar 90%.

In the telco industry, Revenue Assurance plays an important role to assure the company revenue from leakage. the revenue chain is established across the process and whole sophisticated system that technologically complex to provide the unstoppable services. This case increasing the probability of system or process failure leads to the leakage. Hence necessary the revenue assurance control to detect and prevent it then it can help to minimize cost and maximize revenue. In this thesis, developed the analysis method in big data CDR to optimize analysis process at revenue assurance control using K-means Clustering algorithm. The use of the K-means clustering algorithm method able to group the object areas with high risk indications of leakage. The cluster result of high risk of leakage is having low amount of member, and the cluster evaluation result of R-Squared giving the good value about 90%."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Eka Kurnia Sari
"Perkembangan sistem teknologi telekomunikasi yang semakin canggih dan kompleks memicu meningkatnya kegagalan ataupun kesalahan sistem dalam sistem jaringan utama dan sistem pendukung layanan telekomunikasi, serta kesalahan yang terjadi pada bisnis proses dan sumber daya manusia yang terkait. Kegagalan dan kesalahan ini menyembabkan kerugian yang ditanggung perusahaan, kerugian yang ditimbulkan dengan istilah revenue leakage atau kebocoran pendapatan. Revenue Assurance memegang peranan penting dalam pengendalian terhadap resiko revenue leakage dengan membuat kontrol dalam mendeteksi dan mencegah terjadinya kebocoran agar mampu meminimalkan biaya dan memaksimalkan potensi pendapatan. Dalam tesis ini dikembangkan metode untuk menganalisis Big data CDR untuk mengoptimalkan proses analisis pada revenue assurance control dengan menggunakan algoritma K-means Clustering. Algortima ini mengelompokkan obyek pengamatan dalam beberapa kategori yang diindikasikan sebagai titik kebocoran. Hasil kelompok yang dihasilkan dengan kategori yang beresiko tinggi memiliki anggota yang sedikit dengan tingkat nilai evaluasi akurasi cluster, R-Squared, sekitar 90%.

In the telco industry, Revenue Assurance plays an important role to assure the company revenue from leakage. the revenue chain is established across the process and whole sophisticated system that technologically complex to provide the unstoppable services. This case increasing the probability of system or process failure leads to the leakage. Hence necessary the revenue assurance control to detect and prevent it then it can help to minimize cost and maximize revenue. In this thesis, developed the analysis method in big data CDR to optimize analysis process at revenue assurance control using K-means Clustering algorithm. The use of the K-means clustering algorithm method able to group the object areas with high risk indications of leakage. The cluster result of high risk of leakage is having low amount of member, and the cluster evaluation result of R-Squared giving the good value about 90%. "
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nidaul Muiz Aufa
"Tesis ini membahas penyebaran malware Avalanche pada infrastruktur internet Indonesia. Penelitian dilakukan dengan metode analisis big data dengan menggunakan Algoritma K-mean (k=3). Dataset pada penelitian ini menggunakan dataset yang diperoleh dari CERT-bund. Hasil penelitian ini menggambarkan bahwa infrastruktur internet Indonesia masih terinfeksi malware Avalanche dengan aktivitas sebanyak 44.254.374 sepanjang tahun 2018 dan 2019. Aktivitas ini melibatkan 969 AS Number, 3.173.254 IP Address, dan 26 jenis malware. Hasil Clustering menggunakan Splunk terhadap AS Number dan IP Address menghasilkan masing-masing 3 cluster. Cluster AS Number yang paling produktif
adalah cluster1 yang memiliki populasi 3 AS Number. Sedangkan Cluster IP Address yang paling produktif adalah cluster1 dengan populasi 32.991 IP Address.

This thesis discusses the spread of Avalanche malware on Indonesian internet infrastructure. The research was conducted by using the big data analysis method using the K-mean algorithm (k = 3). The dataset in this study was obtained from the CERT-bund. The results of this study illustrate that Indonesia's cyber infrastructure is still infected with Avalanche malware with a total of 44,254,374 activities throughout 2018 and 2019. This activity involved 969 AS Numbers, 3,173,254 IP Addresses, and 26 types of malware. The results of clustering using Splunk on the AS Number and IP Address resulted in 3 clusters each. The most productive AS Number cluster is cluster1 which has a population of 3 AS Number. Meanwhile, the most productive cluster IP address is cluster1 with a population of 32,991 IP addresses."
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dendy Tryanda
"Produk internet fixed broadband atau produk internet menggunakan kabel merupakan produk yang jarang digunakan oleh masyarakat Indonesia, padahal di era Covid-19 dengan sistem work from home, masyarakat membutuhkan kualitas internet yang baik. Penelitian ini bertujuan untuk membantu PT ABC mendapatkan pelanggan baru dengan melakukan cross-selling produk terhadap pelanggan dari anak perusahaannya yaitu PT XYZ yang juga menggunakan produk internet fixed broadband namun bukan produk dari PT ABC dengan menggunakan metode machine learning jenis unsupervised learning dengan jenis clustering partisi dengan algoritma k-means clustering dengan menggunakan tool KNIME untuk proses k-means clustering dan tool R Programming untuk proses pencarian cluster jumlah optimal. Hasil dari algoritma ini menemukan bahwa terdapat empat jenis cluster pelanggan PT XYZ yang karakteristiknya dapat dilihat dari sisi pendapatan yang didapat dari hasil korelasi data, cluster 2 dan cluster 3 merupakan cluster potensial dengan 2123 pelanggan dan area yang memiliki sedikit pelanggan adalah area 1 dan area 4, lalu estimasi pendapatan minimum yang akan dihasilkan adalah Rp 8.937.830.000.

Internet fixed broadband products or internet products using cables is a products that are rarely used by Indonesian people, even though in the Covid-19 era with a work from home system, people need a good quality internet. This study aims to help PT ABC get new customers by cross-selling products to customers of its subsidiary PT XYZ who also use internet fixed broadband products, but not products from PT ABC by using the machine learning method unsupervised learning types with partition clustering and the k-means clustering algorithm using the KNIME tool for the k-means clustering process and the R Programming tool for the process of finding the optimal number of clusters. The result of this algorithm finds that there are four types of PT XYZ customer clusters whose characteristics we can see from the revenue side from the results of data correlation, cluster 2 and cluster 3 are potential clusters with 2123 customers and areas that have few customers are area 1 and area 4, then the estimated minimum revenue that will be generated is IDR 8,937,830,000."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bambang Novianto
"Pertumbuhan pemanfaatan internet telah meningkatkan perhatian terhadap keamanan data. Pada tahun 2014, Projek SHINE (SHodan Intelligence Extraction) telah menerbitkan laporan penilaian keamanan skala besar untuk perangkat yang terhubung ke Internet. Namun, berdasarkan laporan tersebut, jumlah informasi mengenai IP address Indonesia yang berhasil didapatkan masih sedikit. Terdapat sebanyak 7.182 IP address dari Indonesia, yaitu sekitar 0,0032% dari total 2.186.971 IP address yang berhasil dikumpulkan oleh Projek SHINE. Dalam penulisan tesis ini, penulis mengajukan inisiatif untuk melakukan analisis kerentanan semua informasi Autonomous System Number (AS Number) di Indonesia dari Shodan. Penulis telah menyusun dataset semua informasi AS Number di Indonesia antara lain 12.787 port, 79 sistem operasi, 409 produk, 3.634 domain, 145.543 IP address, dan 790 organisasi. Penulis menggunakan algoritma K-Means clustering untuk mengelompokkan AS Number ke dalam beberapa kelas sesuai dengan tingkat paparan di shodan. Berdasarkan hasil pengelompokan, penulis mendapatkan 4 kelas AS Number antara lain 1.075 AS Number di kelas: 0 (belum terdapat informasi mengenai AS Number tersebut di Shodan), 614 AS Number di kelas: 1 (tingkat paparan rendah), 9 AS Number di kelas: 2 (tingkat paparan sedang), dan 1 AS Number di kelas: 3 (tingkat paparan tinggi). Informasi ini dapat dimanfaatkan oleh Kementerian yang menangani bidang Teknologi Informasi dan Komunikasi dan Badan yang menangani Keamanan Siber di Indonesia untuk menghimbau organisasi pengelola AS Number agar mewaspadai potensi kerentanan yang dinformasikan oleh Shodan dan dimanfaatkan oleh hacker.

The growth of internet-enabled devices has increased interest in cybersecurity. In 2014, Project SHINE (SHodan INtelligence Extraction) published a report of large-scale security assessments for devices connected to the Internet. However, the number of IP addresses harvested from Indonesia in 2014 is very small. There were 7.182 IP address from Indonesia. It was about 0,0032% from the total 2.186.971 IP addresses. In this paper, we propose an initiative to gather all information for all Autonomous System Number (AS Number) from Indonesia in Shodan. We have gathered a dataset about all information of AS Numbers in Indonesia such as 12.787 unique ports, 79 unique operating systems, 409 unique products, 3.634 unique domains, 145.543 unique IP addresses, and 790 unique organizations. We use the K-Means algorithm to cluster all AS Numbers into several classes according to the exposure level in shodan. Based on the result, we have 4 classes of AS Numbers. There are 1.075 AS Numbers in class:0 (no information in Shodan yet), 614 AS Numbers in class:1 (exposure level = low), 9 AS Numbers in class:2 (exposure level = medium), and 1 AS Number in class:3 (exposure level = high). This information can be used to warn the organizations that manage AS Numbers in Indonesia to be aware of the security and the threats to their systems."
Jakarta: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Wu, Junjie
"This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the "dangerous" uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the "2010 National Excellent Doctoral Dissertation Award", the highest honor for not more than 100 PhD theses per year in China."
Berlin: Springer-Verlag, 2012
e204063793
eBooks  Universitas Indonesia Library
cover
Frisca
"Spectral clustering adalah salah satu algoritma clustering modern yang paling terkenal. Sebagai teknik clustering yang efektif, metode spectral clustering muncul dari konsep teori graf spektral. Metode spectral clustering membutuhkan algoritma partisi. Ada beberapa metode partisi termasuk PAM, SOM, Fuzzy c-means, dan k-means. Berdasarkan penelitian yang telah dilakukan oleh Capital dan Choudhury pada 2013, ketika menggunakan Euclidian distance, k-means memberikan akurasi yang lebih baik dibandingkan dengan algoritma PAM. sehingga, makalah ini menggunakan algoritma k-means. Keuntungan utama dari spectral clustering adalah mengurangi dimensi data, terutama dalam hal ini untuk mengurangi dimensi yang besar dari data microarray.
Microarray data adalah chip berukuran kecil yang terbuat dari slide kaca yang berisi ribuan bahkan puluhan ribu jenis gen dalam fragmen DNA yang berasal dari cDNA. Aplikasi data microarray secara luas digunakan untuk mendeteksi kanker, misalnya adalah karsinoma, di mana sel-sel kanker mengekspresikan kelainan pada gen-nya. Proses spectral clustering dimulai dengan pengumpulan data microarray gen karsinoma, preprocessing, menghitung similaritas, menghitung , menghitung nilai eigen dari , membentuk matriks , dan clustering dengan menggunakan k-means. Dari hasil pengelompokan gen karsinoma pada penelitian ini diperoleh dua kelompok dengan nilai rata-rata Silhouette maksimal adalah 0.6336247. Proses clustering pada penelitian ini menggunakan program open source R.

Spectral clustering is one of the most famous modern clustering algorithms. As an effective clustering technique, spectral clustering method emerged from the concepts of spectral graph theory. Spectral clustering method needs partitioning algorithm. There are some partitioning methods including PAM, SOM, Fuzzy c means, and k means. Based on the research that has been done by Capital and Choudhury in 2013, when using Euclidian distance k means algorithm provide better accuracy than PAM algorithm. So in this paper we use k means as our partition algorithm. The major advantage of spectral clustering is in reducing data dimension, especially in this case to reduce the dimension of large microarray dataset.
Microarray data is a small sized chip made of a glass plate containing thousands and even tens of thousands kinds of genes in the DNA fragments derived from doubling cDNA. Application of microarray data is widely used to detect cancer, for the example is carcinoma, in which cancer cells express the abnormalities in his genes. The spectral clustering process is started with collecting microarray data of carcinoma genes, preprocessing, compute similarity matrix, compute , compute eigen value of , compute , clustering using k means algorithm. In this research, Carcinoma microarray data using 7457 genes. The result of partitioning using k means algorithm is two clusters clusters with maximum Silhouette value 0.6336247.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47117
UI - Tesis Membership  Universitas Indonesia Library
cover
Atika Previanti Nabila
"Segmentasi dalam dunia medis sudah menjadi suatu hal yang penting untuk menentukan diagnosa awal dari suatu penyakit, misalnya timbulnya tumor pada organ-organ tubuh yang berukuran kecil dan sulit teramati oleh mata telanjang. Namun, jika segmentasi dilakukan secara manual dan tradisional akan membutuhkan waktu yang banyak serta menyebabkan hasil yang tidak konsisten. Oleh karena itu, dibutuhkannya segmentasi secara otomatis yang dapat membantu dokter tidak hanya dalam mengetahui keberadaan tumor, melainkan juga dapat mengkuantifikasi ukuran tumor. Dalam penelitian ini, segmentasi otomatis dengan machine learning diterapkan menggunakan metode clustering K-Means pada fantom ekuivalen hati berbentuk silinder. Fantom ekuivalen terbuat dari material tepung beras dan lilin, yang kemudian diinjeksikan dengan radioaktivitas 18F-FDG sebesar 1,89 µCi/mL. Pengolahan citra fantom dilakukan dengan pesawat PET/CT Siemens Biograph menggunakan metode rekonstruksi Iterative 3D dan True-X serta 2 filter (Gaussian dan Butterworth). Akurasi deteksi algoritma K-Means menunjukkan bahwa dapat optimal pada tiga tipe pemindaian dengan terdeteksinya seluruh objek pada citra fantom. Namun, hal tersebut terkecualikan pada filter Gaussian dengan metode rekonstruksi Iterative 3D karena algoritma K-Means tidak dapat mendeteksi objek terkecil (4 mm) pada kedua wilayah fantom. Indikasi tidak terdeteksinya objek terkecil, dapat disebabkan oleh kinerja algoritma yang mengelompokkan objek dengan nilai piksel yang sama. Untuk hasil kuantifikasi diameter dengan algoritma K-Means (Dp) menunjukkan bahwa, hasil ukuran diameter lebih besar ±1-3 mm dibandingkan diameter fisis fantom (Dt) pada ketiga pemindaian. Namun, hal tersebut tidak berlaku pada pemindaian filter Gaussian dengan metode rekonstruksi Iterative 3D, yang memiliki kuantifikasi lebih kecil dibandingkan . Berdasarkan hasill kuantifikasi pada keempat pemindaian, ditunjukkan bahwa algoritma K-Means optimal pada filter Butterworth dengan metode rekonstruksi True-X dengan rata-rata RD untuk seluruh objek kurang dari 10%. Sehingga, untuk memvalidasi hal tersebut metode pengukuran K-Means dibandingkan dengan metode pengukuran FWHM dan FWTM dengan merata-ratakan kuantifikasi untuk setiap objek dari semua irisan. Tervalidasi bahwa algoritma K-Means memiliki performa yang optimal, dengan anilai RD yang dihasilkan hampir mendekati 0%.

Segmentation in medical, has become an important thing to determine the initial diagnosis of a desease, for example the emergence of tumors in organs that are small and difficult to observe manually. However, if the segmentation in medical is done manually and traditionally it will take a lot of time and cause inconsistant results. Therefore, automatic segmentation is needed which can help doctors not only by knowing the presence of tumors, but also in quantifying tumor size. In this study, automatic segmentation with machine learning was applied using the K-Means clustering algorithm method on the cylindrical liver equivalent phantom. The equivalent phantom was made from rice flour and wax, and the euqivalent phantom was injected with 18F-FDG with radioactivity 1,89 µCi/mL. The image processing was carried put using a PET/CT Siemens Biograph with Iterative 3D and True-X as reconstuction methods and 2 filters (Gaussian and Butterworth). The detection accuracy of the K-Means algorithm shows that it can be optimal in three types of scanning by detecting all objects in the phantom image. However, this is ecluded in the Gaussian filter with Iterative 3D reconstruction method, because the K-Means algorthm cannot detect the smallest object (4 mm) in both phantom regions. Indications for that phenomenon, could be caused by the performance of the algorithm that grouping the cluster with the same pixel value. For diameter quantifications of from K-Means algorithm shows that the diameter ±1-3 mm larger than the pyhsical fantom diameter (Dt). Based on the result of Dp quantification on the for type of scans, it it shown that the optimal K-Means algorithm on the Butterworth filter with the True-X reconstruction method with an average RD for all objects in phantom is less than 10%. So, to validate this result, the K-Means measurement method is compared with the FWHM and FWTM measurements methods by averaging the quantification for each object from all slices. It is validated that, the K-Means algorthm has optimal performance by reffering to the FWTM measurement where RD value is close to 0%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Atina
"Intensitas keabuan yang sangat dekat memungkinkan terjadinya kesalahan dalam menginterpretasikan citra hasil Computed Radiography (CR). Maka diperlukan algoritma yang dapat mempermudah tim medis mendiagnosa kondisi pasien khususnya bagian paru. Penelitian ini menggunakan tingkat keabuan /intensitas citra sebagai dasar clustering dan segmentasi Region of Interest (ROI ) yang akan dilakukan dengan sistem komputerisasi. Sehingga hasil pembacaan lebih akurat dibanding secara manual. Data sampel berupa 100 citra hasil CR pasien paru dewasa Rumah Sakit Pusat Pertamina yaitu 50 citra norma sebagai citra acuan dan 50 citra uji (normal dan abnormal). Pada clustering diuji coba dengan jumlah cluster (k) bervariasi yaitu 3, 4, .., 10. Citra hasil clustering yang terbaik ditunjukkan pada k = 8 karena dapat memvisualisasikan batas warna dengan lebih jelas dibanding dengan k yang lain. Pada segmentasi ROI, citra paru dibagi menjadi 33 daerah sesuai posisi anatomi paru yang terdiri dari 6 daerah apex, 11 daerah hilum dan 16 daerah peripheral. Selanjutnya, masing-masing daerah pembagian diukur intensitasnya. Intensitas citra acuan dijadikan dasar untuk menentukan abnormalitas citra uji, intensitas citra uji yang lebih tinggi dari intensitas citra normal dikategorikan sebagai citra abnormal. Akurasi sistem pada penelitian ini adalah 66%.

Gray intensity is very close to allow for errors in interpreting the Computed Radiography (CR) image. It would require an algorithm that can facilitate medical team to diagnose the patient's condition especially the lungs. Clustering k-means clustering and segmentation Region of Interest (ROI) will be done by a computerized system based on the image gray level / intensity. 100 CR image used as the sample data from Rumah Sakit Pusat Pertamina, 50 image as references images and 50 images as tested image. On clustering tested by the number of clusters (k) varies the 3, 4, .., 10. The clustering of the best image results are shown in k = 8 because it can visualize the color boundaries more clearly than the other k. At ROI segmentation, lung image is divided into 33 regions corresponding anatomical position lung consist of 6 regional apex, hilum area 11 and 16 peripheral areas. Furthermore, each regional division of the measured intensity. The intensity of the reference image used as the basis for determining abnormality test images, test image intensity higher than normal image intensity categorized as abnormal image. The system accuracy in this study was 66%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T43838
UI - Tesis Membership  Universitas Indonesia Library
cover
Dewi Holilah
"Penyakit Alzheimer merupakan bentuk umum dari gangguan neurodegeneratif yang ditandai dengan rusaknya sel-sel otak, seperti kusutnya neurofibrillary dan adanya plak amiloid yang bersifat progresif. Salah satu ciri fisik seseorang menderita penyakit Alzheimer adalah adanya penyusutan luas daerah hippocampus pada otak. Hippocampus merupakan bagian terkecil dari otak yang berfungsi menyimpan memori. Deteksi penyakit Alzheimer dapat dilakukan dengan menggunakan Magnetic Resonance Image MRI yang merupakan satu teknik non inovasif untuk analisis struktur otak pada penderita Alzheimer.
Pada penelitian ini, digunakan metode K-Means Clustering dan Watershed untuk mensegmentasi daerah hippocampus yang merupakan salah satu bagian otak yang diserang ketika terkena penyakit Alzheimer. Analisis yang dilakukan untuk mendeteksi Alzheimer, yaitu membandingkan nilai threshold dengan jumlah piksel putih pada citra. Data yang digunakan pada penelitian ini yaitu Open Acess Series of Image Studies OASIS database dengan menggunakan citra potongan koronal. Berdasarkan hasil percobaan, antara metode K-Means Clustering dan Watershed keduanya dapat mensegmentasi daerah hippocampus untuk mendeteksi penyakit Alzheimer.

Alzheimer 39s disease is a common form of neurodegenerative disorders characterized by defective brain cells, such as neurofibrillary tangles and amyloid plaque that is progressive. One of the physical characteristics of someone suffering from Alzheimer 39s disease is shrinking of the hippocampus area of the brain. The hippocampus is the smallest part of the brain that serves to save memory. The detection of Alzheimer 39s disease can be done using a Magnetic Resonance Image MRI which is a technique of non inovasif for an analysis of the structure of the brain in the Alzheimer 39s patient.
In this research, K Means Clustering and Watershed method are used to segment the hippocampus area which is one part of the brain that was attacked by Alzheimer 39s disease. The analysis used to detect Alzheimer 39 s is comparing the value of the threshold with the number of white pixels in the images. The data used in this research are Open Access Series of Image Studies OASIS database by using the image of coronal slice. Based on the our experiment result, both K Means Clustering and Watershed method can segment the samehippocampus area to detect Alzheimers disease.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>