Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 40544 dokumen yang sesuai dengan query
cover
Aulia Istiqomah
"Di era dengan ketersediaan bahan bakar fosil yang semakin rendah, diperlukan sumber energi terbarukan. Salah satu pembangkit dengan efisiensi optimal adalah pembangkit listrik tenaga nuklir. Badan Energi Atom Jepang (JAEA) memulai proyek HTTR pada tahun 1985 dengan inti prismatik, moderator grafit, dan reaktor berpendingin gas helium. Model matematis dan parameter merupakan acuan yang penting digunakan untuk melakukan suatu desain pengendali. Model kinetik reaktor nuklir yang digunakan terdiri dari model point kinetics, model thermal hydraulic, dan model reaktivitas masukan dan umpan balik ke model point kinetics. Beberapa parameter model pada reaktor nuklir sering kali tidak diketahui, oleh karena itu dilakukan estimasi model parameter menggunakan metode curve fitting nonlinear least squares. Didapatkan model yang telah dioptimasi dengan nilai akurasi dari hasil pada tingkat daya 9, 15 dan 18 MW berturut-turut yaitu sebesar 98.85%, 94.60% dan 97.95% dengan nilai RMSE masing-masing sebesar 0.0778, 0.2366 dan 0.1469. Sudah banyak sekali peneliti yang mengembangkan metode kendali untuk reaktor nuklir. Pada penelitian ini digunakan metode kendali terbaru yaitu Linear Parameter Varying Model Predictive Control (LPV-MPC). Kelebihan pada metode LPV-MPC yaitu model nonlinear dapat dibentuk dari model linear dan nonlinear dengan parameter yang bersifat varying tanpa harus menggunakan linearisasi.

In an era where the availability of fossil fuels is getting lower, renewable energy sources are needed. One of the plants with optimal efficiency is a nuclear power plant. The Japan Atomic Energy Agency (JAEA) started the HTTR project in 1985 with a prismatic core, graphite moderator, and a helium gas-cooled reactor. Mathematical models and parameters are important references used to carry out a controller design. The nuclear reactor kinetic model consists of a point kinetics model, a thermal hydraulic model, and an input reactivity model and feedback to the point kinetics model. Some model parameters in nuclear reactors are often unknown, therefore the parameter model estimation is carried out using the nonlinear least squares curve fitting method. The model has been optimized with accuracy values from the results at power levels of 9, 15 and 18 MW, respectively, 98.85%, 94.60% and 97.95% with RMSE values of 0.0778, 0.2366 and 0.1469, respectively. Many researchers have developed control methods for nuclear reactors. In this study, the latest control method is used, namely Linear Parameter Varying Model Predictive Control (LPV-MPC). The advantage of the LPV-MPC method is that nonlinear models can be formed from linear and nonlinear models with varying parameters without having to use linearization. "
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Aulia Istiqomah
"Di era dengan ketersediaan bahan bakar fosil yang semakin rendah, diperlukan sumber energi terbarukan. Salah satu pembangkit dengan efisiensi optimal adalah pembangkit listrik tenaga nuklir. Badan Energi Atom Jepang (JAEA) memulai proyek HTTR pada tahun 1985 dengan inti prismatik, moderator grafit, dan reaktor berpendingin gas helium. Model matematis dan parameter merupakan acuan yang penting digunakan untuk melakukan suatu desain pengendali. Model kinetik reaktor nuklir yang digunakan terdiri dari model point kinetics, model thermal hydraulic, dan model reaktivitas masukan dan umpan balik ke model point kinetics. Beberapa parameter model pada reaktor nuklir sering kali tidak diketahui, oleh karena itu dilakukan estimasi model parameter menggunakan metode curve fitting nonlinear least squares. Didapatkan model yang telah dioptimasi dengan nilai akurasi dari hasil pada tingkat daya 9, 15 dan 18 MW berturut-turut yaitu sebesar 98.85%, 94.60% dan 97.95% dengan nilai RMSE masing-masing sebesar 0.0778, 0.2366 dan 0.1469. Sudah banyak sekali peneliti yang mengembangkan metode kendali untuk reaktor nuklir. Pada penelitian ini digunakan metode kendali terbaru yaitu Linear Parameter Varying Model Predictive Control (LPV-MPC). Kelebihan pada metode LPV-MPC yaitu model nonlinear dapat dibentuk dari model linear dan nonlinear dengan parameter yang bersifat varying tanpa harus menggunakan linearisasi.

In an era where the availability of fossil fuels is getting lower, renewable energy sources are needed. One of the plants with optimal efficiency is a nuclear power plant. The Japan Atomic Energy Agency (JAEA) started the HTTR project in 1985 with a prismatic core, graphite moderator, and a helium gas-cooled reactor. Mathematical models and parameters are important references used to carry out a controller design. The nuclear reactor kinetic model consists of a point kinetics model, a thermal hydraulic model, and an input reactivity model and feedback to the point kinetics model. Some model parameters in nuclear reactors are often unknown, therefore the parameter model estimation is carried out using the nonlinear least squares curve fitting method. The model has been optimized with accuracy values from the results at power levels of 9, 15 and 18 MW, respectively, 98.85%, 94.60% and 97.95% with RMSE values of 0.0778, 0.2366 and 0.1469, respectively. Many researchers have developed control methods for nuclear reactors. In this study, the latest control method is used, namely Linear Parameter Varying Model Predictive Control (LPV-MPC). The advantage of the LPV-MPC method is that nonlinear models can be formed from linear and nonlinear models with varying parameters without having to use linearization.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mohammad Aditya Rafi Pratama
"Dalam beberapa tahun terakhir, riset dalam bidang keamanan dalam berkendara menjadi sebuah perhatian penting bagi industri otomotif, hal ini disebabkan oleh kecelakaan lalu lintas yang masih marak terjadi. Sudah banyak penelitian mengenai metode pengendali yang dikembangkan untuk mengatasi masalah kestabilan pada kendaraan. Salah satunya adalah metode kendali Linear Parameter Varying Model Predictive Control (LPV-MPC). Kelebihan dari metode LPV-MPC ini adalah model nonlinear dapat diekspresikan sebagai sebuah kombinasi dari model-model linear dengan parameter yang bersifat varying dengan beberapa time varying parameter tanpa harus menggunakan linierisasi. Pada penelitian ini, dikembangkan sebuah sistem Active Safety berbasis LPV-MPC yang berguna untuk menjaga kestabilan kendaraan bus listrik dalam melakukan manuver berkendara seperti manuver Double Lane Change (DLC) dengan tetap pada kecepatan yang ditentukan. Pengendali LPV-MPC mengatur gaya masing-masing roda dan sudut belok roda depan sehingga dapat stabil dalam melewati track acuan yang diberikan. Hasil dari penelitian menunjukkan bahwa metode LPV-MPC mampu untuk menjaga kestabilan bus listrik pada saat melewati track acuan dengan tetap pada kecepatan target yang ditentukan pada penelitian thesis ini. Sehingga dapat disimupulkan kendaraan bus listrik dengan sistem Active Safety berbasis LPV-MPC dapat menjaga kestabilan dalam melakukan manuver berkendara.

In recent years, research in the field of safety in driving has become an important concern for the automotive industry, this is due to traffic accidents that are still rife. There have been many studies on control methods developed to overcome stability problems in vehicles. One of them is the Linear Parameter Varying Model Predictive Control (LPV-MPC) control method. The advantage of this LPV-MPC method is that the nonlinear model can be expressed as a combination of linear models with varying parameters with several time varying parameter without having to use linearization. In this study, an Active Safety system based on LPV-MPC was developed which is useful for maintaining the stability of electric bus vehicles in carrying out driving maneuvers such as the Double Lane Change (DLC) maneuver while remaining at a specified speed. The LPV-MPC controller regulates the force of each wheel and the turning angle of the front wheels so that they can be stable in passing the given reference track. The results of the study indicate that the LPV-MPC method is able to maintain the stability of the electric bus when passing the reference track while remaining at the target speed specified in this thesis research. So it can be concluded that electric bus vehicles with an Active Safety system based on LPV-MPC can maintain stability in driving maneuvers."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mochamad Nurdiansyah
"Energi matahari merupakan sumber energi terbarukan yang paling potensial, disamping mudah didapatkan energi matahari tidak menimbulkan dampak lingkungan dalam pemanfaatannya. Solar thermal plant merupakan salah satu proses untuk mengubah energi matahari menjadi energi panas mekanik oleh media yang dipanaskan berdasarkan proses thermal melalui beberapa peralatan seperti solar collector, thermal energy storage, dan sistem instalasi perpipaan. Pengoperasian solar thermal plant sangat di pengaruhi oleh beberapa faktor antara lain besarnya intensitas radiasi matahari yang selalu mengalami perubahan secara dinamis dan tidak dapat dimanipulasi, adanya faktor disturbance berupa suhu lingkungan yang sangat bergantung pada kondisi cuaca, serta faktor penggunaan beban yang berubah-ubah tergantung dengan kebutuhan pengguna. Oleh karena itu diperlukan sistem kendali yang dapat mengatasi masalah dan dinamika perubahan yang terjadi. Salah satu permasalahan yang dihadapi dalam perancangan sistem kendali adalah tidak tersedianya model yang dapat merepresentasikan kondisi plant secara real. Pada solar thermal plant sering kali parameter fisik dari model tidak didapatkan karena keterbatasan informasi. Sehingga dibutuhkan proses identifikasi dan pemodelan untuk mendapatkan parameter fisik dari plant. Model solar thermal plant merupakan model dengan karakteristik nonlinear yang cukup kuat dan beroperasi pada range yang cukup lebar yang dipengaruhi oleh faktor eksternal disturbance. Sehingga diperlukan pendekatan yang berbeda untuk dapat merepresentasikan model secara utuh. Pada tesis ini dikembangkan metode pengendalian prediktif berbasis model linear time varying (LPV-MPC) untuk solar thermal plant dengan studi kasus pada sistem pendingin bertenaga surya yang terpasang pada Gedung Mechanical Research Centre FT UI. Optimal setpoint proses dihasilkan secara real time menggunakan dynamic real time optimization (DRTO) berdasarkan informasi keluaran sistem dan disturbance yang terukur. Keterbatasan pengukuran dari plant diatasi dengan merancang nonlinear state estimator berbasis Extended Kalman Filter. Dengan adanya sistem kendali LPV-MPC dengan DRTO berbasis EKF yang telah di uji dan validasi dengan data real plant , sistem kendali yang dirancang dapat membuat temperature keluaran dari plant lebih stabil serta meningkatkan efisiensi dengan meminimalkan penggunaan tenaga listrik pada sistem serta mengoptimalkan penyerapan energi matahari. Berdasarkan hasil simulasi pengendalian yang telah dilakukan selama 4 hari operasional solar thermal plant didapatkan penurunan konsumsi tenaga listrik hingga 32.23% serta peningkatan penyerapan energi matahari hingga 69.38%.

Solar energy is the most potential renewable energy source, besides being easy to obtain, solar energy does not cause environmental impacts in its utilization. The solar thermal plant is one of the processes for converting solar energy into thermal energy by heating fluid based on thermal process through several equipments such as solar collectors, thermal energy storage, and piping systems. The operation of solar thermal plants is strongly influenced by several factors, including the amount of solar radiation intensity which always changes dynamically and can not be manipulated, disturbance factors in the form of environmental temperature which is highly dependent on weather conditions, and the user load that varies depending on the user needs. Therefore, a control system strategy that can overcome these problems is needed. One of the problems that arise in the design of the control system is the unavailability of a plant model that can represent the real condition of the plant. Especially in solar thermal plants, the physical parameters of the model are often unknown due to limited information. Hence identification and modeling process to get the physical parameters of the plant should be done. The solar thermal plant model is a model with strong nonlinear characteristics and operates over a fairly wide range of operating conditions which is influenced by external disturbance factors. Consequently, a different approach to represent the model as a whole is needed. This thesis develops a predictive control method based on a linear time-varying model (LPV-MPC) for a solar thermal plant with a study case on a solar thermal cooling system installed in the Mechanical Research Center Building, FT UI. The optimal setpoint process is generated in real-time using Dynamic Real-Time Optimization (DRTO) based on system output information and measured disturbances. The limitation of plant measurement is overcome by designing a nonlinear state estimator based on the Extended Kalman Filter. By using LPV-MPC integrated with DRTO based on EKF that has been tested and validated with real plant data, the proposed control system strategy are able to achieve a more stable output temperature of the solar thermal plant and increase efficiency by minimizing electricity usage in the system and optimizing solar energy absorption. Based on the simulation results that have been carried out for 4 days of solar thermal plant operation, it is found that there is a decrease in electricity consumption by 32.23% and an increase in solar energy absorption by 69.38%."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
"Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today.
The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance.
The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading."
Switzerland: Birkhäuser Cham, 2019
e20502512
eBooks  Universitas Indonesia Library
cover
Denis Yanuardi
"Kemampuan produksi minyak di Indonesia semakin menurun sejak tahun 1997 hingga sekarang sedangkan kebutuhan produk minyak/ BBM menunjukkan kecenderungan yang semakin meningkat. Maka produk dimetil eter (DME) dapat digunakan sebagai sumber energi alternatif yang lebih ramah lingkungan dan berkelanjutan. Pada pabrik purifikasi DME ini, umpan dengan komposisi DME, metanol dan air akan dipisahkan sehingga diperoleh DME murni dengan konsentrasi 99%. Dalam proses produksinya, unit-unit proses mengalami banyak gangguan yang berdampak pada menurunnya efisiensi dan kestabilan operasi dan juga berpengaruh pada aspek keselamatan.
Pada penelitian ini, pengendali Model Predictive Control (MPC) memiliki kinerja yang lebih baik dibanding pengendali PI dalam mengatasi gangguan dengan penurunan integral of absolute error (IAE) sebesar 40,08% hingga 96,26% dari pengendali PI. Parameter penyetelan (tuning) pada pengendali MPC yang berupa sampling time (T), prediction horizon (P), dan control horizon (M) dicari menggunakan metode non-adaptive dan fine tuning. Analisis kelaikan ekonomi pemasangan MPC menunjukkan bahwa payback period adalah sebesar 14,5 tahun dan 13,4 tahun serta net present value (NPV) sebesar -11juta rupiah dan -9,3 juta rupiah pada skenario gangguan umpan 5% dan 8% secara berturut-turut, sehingga penggantian pengendali dari PI menjadi MPC pada pabrik purifikasi DME secara ekonomi tidak menguntungkan.

Oil and gas production in Indonesia always decreasing since 1997 until now, and yet the need of oil and fuel product show increasing trajectory. Dimethyl ether (DME) can be used as altenative energy source, it is environmentally safe and sustainable. In this DME purification plant, feed stream containing DME, methanol, and water mixture is separated to obtain DME with 99% purity. In its production process, process unit in DME plant must get disturbances that will affect to the decreasing of process efficiency, operation stability and even safety aspect.
In this research, Model Predictive Control (MPC) has better performance than PI controller in order to overcome disturbances with error (IAE) reduction ranging from 40,08% up to 96,26% than PI controller. Tuning parameters in MPC controller, which are sampling time (T), prediction horizon (P) and control horizon (M), are estimated by both non-adaptive and fine tuning method. Economic feasibility analysis on MPC controller implementation shows that the payback period is 14,5 years and 14,3 years, then NPV -11 million rupiah and -9,3 million rupiah in disturbance scheme of 5% and 8% respectively . Hence, it is not economically feasible to change PI controller into MPC controller on dimethyl ether purification plant.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S65714
UI - Skripsi Membership  Universitas Indonesia Library
cover
Camacho, Eduardo F.
"Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors"
London: Springer, 2007
629.8 CAM m
Buku Teks SO  Universitas Indonesia Library
cover
Camacho, Eduardo F.
"Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors"
London: Springer, 2007
629.8 CAM m
Buku Teks SO  Universitas Indonesia Library
cover
Antoni Aldila
"Sistem tata udara presisi atau yang lebih dikenal dengan Precision Air Conditioning (PAC) merupakan mesin refrigerasi yang bekerja berdasarkan konsep termodinamika. Sistem tata udara presisi digunakan di ruang pusat data untuk menjaga temperatur dan kelembaban di dalam kabinet agar peralatan IT di dalam kabinet tidak cepat rusak. Temperatur ideal yang harus dicapai di dalam kabinet berkisar antara 20º - 25ºC, sedangkan kelembaban relatif (RH) yang harus dijaga di dalam kabinet berkisar antara 45-55%. Namun untuk mencapai keadaan tersebut, dibutuhkan pengendalian sistem supaya sistem dapat bekerja dengan keluaran seperti yang diinginkan.
Model predictive control merupakan salah satu metode pengendali prediktif yang populer digunakan di dunia indutri. Sistem tata udara presisi yang dikendalikan dalam penelitian ini merupakan sistem multi input single output (MISO) dengan masukan berupa kecepatan putaran kipas kompresor dan kecepatan aliran udara volumetrik, dan keluaran yang dikendalikan adalah suhu keluaran dari kondenser kedua yang menuju kabinet dari sistem tata udara presisi. Diuji tiga model sistem tata udara presisi, model linier, model nonlinier tanpa beban heat sensible peralatan IT, dan model nonlinier dengan beban sensible peralatan IT yang divariasikan dengan pendekatan model linier biasa hasil identifikasi PO-MOESP dan model linier dengan vektor bias hasil identifikasi menggunakan metode kuadrat terkecil.
Hasil pengendalian MPC untuk ketiga plant sistem tata udara presisi menujukkan performa yang baik dalam pengendalian, dilihat dari keluaran sistem yang mengikuti trajektori acuan yang diberikan.

Precision Air Conditioning (PAC) is a refrigerant machine that works based on thermodynamics concept. PAC is in implemented data center in order to stabilize the temperature and the humidity in cabinet in order to prevent IT damage integrated in the cabinet. The desired ideal temperature for the cabinet is from 20oC to 25oC and the desired relative humidity (RH) is from 45-55%. However, to achieve such a state, it takes control of the system so that the system can work with the output as desired.
Model predictive control is a predictive control method which is popularly used in industries world. Precision air conditioning system are controlled in this study is a multi-input single output (MISO) system with input in the form of fan rotation speed of the compressor and the air volumetric flow rate, and the controlled output is the temperature of the output of the second condenser to the cabinet of the precision air conditioning system. Tested three models of precision air conditioning system, linear models, nonlinear models without the burden of sensible heat IT equipment, and nonlinear models with variation of sensible heat IT equipment load with ordinary linear model approach to the identification of PO-MOESP and linear models with bias the results of identification using the method least squares.
MPC control results for the third plant of PAC systems showed good performance in control, viewed from the system output to follow a given reference trajectory.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T36013
UI - Tesis Membership  Universitas Indonesia Library
cover
Hermanto Ang
"Pada sistem kendali konvensional, batasan-batasan seperti amplitudo dan slew rate sinyal kendali tidak diperhitungkan pada proses pengendalian. Hal ini tentu dapat menyebabkan hasil kendali menjadi kurang baik, terutama jika terjadi pemotongan paksa terhadap sinyal kendali sebelum masuk ke plant. Untuk mengatasi hal tersebut dirancanglah suatu pengendali Model Predictive Control (MPC). Dengan MPC, keluaran proses yang akan datang dapat diprediksi dan batasan-batasan yang ada tidak diabaikan sehingga keluaran sistem menjadi bagus. Selain keluaran sistem menjadi bagus, adanya batasan juga dapat membuat kinerja alat menjadi optimal.
Skripsi ini bertujuan untuk merancang jenis pengendali Model PredictiveControl (MPC) yang akan diterapkan pada sebuah sistem nyata Level/Flow and Temperature Process Rig 38-003 dengan metode Quadratic Programming. Dalam merancang pengendali MPC untuk Level/Flow and Temperature Process Rig 38-003 ini, penulis menggunakan model yang berbentuk ruang keadaan yang didapat dengan menggunakan metode Kuadrat Terkecil berdasarkan pada data masukan dan data variabel keadaan alat. Masukan sistem adalah tegangan untuk mengatur kondisi servo valve dan keluran yang akan dikendalikan adalah temperatur air hasil keluaran Heat Exchanger sebelum masuk ke sistem Radiator Cooler.
Dari uji eksperimen terbukti bahwa metode pengendali MPC dengan constraints memberikan hasil yang lebih baik dibandingkan dengan metode pengendali Ruang Keadaan. Hal tersebut dapat dilihat dari tanggapan sistem hasil pengendalian MPC dengan constraints yang lebih halus dibandingkan dengan tanggapan sistem hasil pengendalian dengan metode pengendali Ruang Keadaan. Perubahan sinyal kendali pengendali MPC dengan constraints juga jauh lebih halus dibandingkan dengan perubahan sinyal kendali pengendali Ruang Keadaan. Kondisi ini akan meningkatkan ketahanan fisik sistem selama uji eksperimen.

In conventional control system, some constraints such as amplitude and control signal?s slew rate are not included in the controlling process. So, the result of the control process is not good enough especially if the control signal is forcibly cut before entering the plant. In order to overcome this problem, a Model Predictive Controller is designed. In this MPC control scheme, the few next steps of process output are going to be predicted and some constraints will be ignored so the system output will become precise. In other hand, the occurrence of constraints will improve system?s performance into an optimum condition.
The final purpose of this thesis is to design a Model Predictive Controller (MPC) using Quadratic Programming method which will be applied on a real time system of Level/Flow and Temperature Process Rig 38-003. In designing MPC controller for Level/Flow and Temperature Process Rig 38-003, the writer uses system?s model on state space form which is obtained by using Least Square method in the basis of input and state variables data of the plant. Input for the plant is voltage which will be used to control the position of servo valve whereas the controlled output is water temperature on the pipe that connects Heat Exchanger's output line and Radiator Cooler's input line.
Experiments conducted prove that MPC with constraints controlling scheme will give a better results than State Controller controlling scheme. Generally, it can be seen that system response to MPC controller is much smoother than system response to State Controller. MPC controller also has smoother control signal variance compared to State Controller control signal variance. This condition will actually raise the system's physical reliability during the experiment.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40479
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>