Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 150150 dokumen yang sesuai dengan query
cover
Ilham Mulya Rafid
"Skripsi ini membahas tentang desain dan pengembangan sistem Fisiognomi otomatis, untuk menentukan kecenderungan kepribadian seseorang berdasarkan fitur yang ada di wajahnya. Fisiognomi adalah metode memprediksi karakteristik seseorang berdasarkan fitur wajah mereka. Setiap fitur wajah memiliki keunikan dan karakteristiknya masing-masing misalkan variasi jarak, bentuk secara keseluruhan, dan ukuran. Arsitektur sistem menggunakan algoritma Active Appearance Model untuk menandai koordinat landmark features/fitur-fitur wajah, dan Convolutional Neural Network untuk memprediksi kecenderungan kepribadian berdasarkan fitur wajah yang telah diekstraksi. Citra wajah digunakan sebagai data masukan yang diproses hingga akhirnya menampilkan kecenderungan kepribadian yang didapatkan. Simulasi menunjukkan bahwa masing-masing algoritma dapat melakukan fungsinya masing-masing dengan baik. Hasil simulasi menunjukan bahwa kombinasi pemrosesan citra menggunakan Active Appearance Model dan klasifikasi menggunakan Convolutional Neural Network menghasilkan jumlah prediksi Personality Traits yang sangat baik yaitu dengan nilai akurasi model sebesar 93.64% - 99,73%. Selain itu, model yang dibuat terbukti menghasilkan performa yang baik untuk proses klasifikasi dengan nilai true positive overall sebesar 88,34% - 100%. Metode ini juga dapat mendeteksi jumlah Personality Traits yang lebih banyak dibandingkan dengan menggunakan metode lain sebelumnya dengan jumlah sebanyak 28 Personality Traits yang dapat terdeteksi.

This bachelor thesis discusses the design and development of an automatic Physiognomy system, to determine a person's tendencies based on the features of its face. Physiognomy itself is a method of predicting a person characteristic based on their facial features. Each facial feature has its uniqueness and characteristics, such as variations in distance, overall shape, and size. The system architecture uses the Active Appearance Model algorithm for marking the coordinates of facial landmark features then, the Convolutional Neural Network to predict the personality traits based on that extracted facial features. The facial image that being used as input data is brought into the every step of the system and finally the system displays the personality of that person that is obtained. Simulations show that each algorithm can perform its respective functions well. The simulation results show that the combination of Image Processing for extracting facial features using the Active Appearance Model and Convolutional Neural Network for solving classification problems produces a very good number of personality traits predictions with a model accuracy value of 93.64% - 99.73%. In addition, the model made proved to produce a good performance for the classification process with a true positive overall value of 88.34% - 100%. This method can also detect a greater number of personality traits than other previous methods with the total of 28 personality traits that can be detected."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sengli Egani
"Kecanggihan dalam bidang pengenalan wajah berbasis deep learning semakin berkembang dan telah menjadikannya salah satu teknik biometrik yang paling dapat diandalkan. Namun, penggunaan masker penutup mulut dan hidung akibat pandemi COVID-19 membuat model pengenalan wajah kehilangan sekitar setengah dari informasi biometrik yang berguna dan mengakibatkan penurunan tingkat akurasi. Penelitian ini bertujuan untuk mengajukan model pengenalan wajah bermasker alternatif berakurasi tinggi. Untuk mengembangkan Convolutional Neural Networks (CNNs) sebagai ekstraktor fitur dari pengenalan wajah bermasker, tiga hal yang paling berkontribusi ialah data latih yang besar, arsitektur jaringan dan fungsi kerugian (loss function). Model yang diajukan berasal dari hasil modifikasi arsitektur ResNet dengan menyisipkan blok RepMLP. Kemudian, membandingkan hasil pelatihan tersebut menggunakan fungsi kerugian terbaik saat ini, ArcFace loss dan CurricularFace loss. Model dilatih menggunakan data latih MS1M-V3. Model terbaik yang dapat diajukan dari penelitian ini berhasil memperoleh nilai akurasi 77,8% saat diuji menggunakan data MFR2. Nilai akurasi tersebut 2,3% lebih tinggi dibandingkan dengan model baseline (ResNet-50) yang digunakan dalam penelitian ini. Selain berhasil memperoleh nilai akurasi yang lebih baik, model yang dijukan memiliki jumlah parameter yang lebih sedikit dibandingkan model baseline.

Sophistication in deep facial recognition is still growing and has made it one of the most reliable biometric techniques. However, using masks covering the mouth and nose due to the COVID-19 pandemic has caused facial recognition models lose about half of the useful biometric information and decreased the accuracy. This study aims to propose a high-accuracy alternative masked facial recognition model. The success of Convolutional Neural Networks (CNNs) on face recognition mainly contributed by enormous training data, network architectures, and loss functions. The proposed model comes from a modification of the ResNet architecture by inserting RepMLP blocks. Then, compares the training results using the current best loss function, ArcFace loss and CurricularFace loss. The model was trained using the MS1M-V3 training data. The best model that can be proposed from this study managed to obtain an accuracy value of 77.8% when tested using the MFR2 dataset. This accuracy value is 2.3% higher than the baseline model (ResNet-50) which used in this study. Besides being successful in obtaining better accuracy values, the proposed model has fewer parameters than the baseline model."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ikhsan Rahman Hakim
"Film Birdman: The Unexpected Virtue of Ignorance menceritakan tentang Riggan Thompson, seorang aktor tua, membuat pertunjukan teater di Broadway untuk menghidupkan kembali karirnya. Penelitian ini bertujuan untuk mendiskusikan pencarian cinta, rekognisi, dan kekuatan di industri hiburan yang terdapat di film ini. Film Birdman yang dibuat dengan latar belakang budaya industri hiburan, adalah contoh yang dapat digunakan untuk menganalisa orang orang yang berada dalam budaya tersebut.
Penelitian ini mengindikasikan bahwa cinta yang ditunjukkan di film ini adalah cinta amour-propre. Rekognisi dapat berguna untuk mengkonfirmasi keberadaan seseorang, untuk kesehatan psikologis, dan untuk mendapatkan kekuatan. Aspek kekuatan dari rekognisi menyebabkan adanya kekurangan recognisi pada seseorang dan memotivasinya untuk mencari rekognisi. Budaya dalam industry hiburan lahir dari hubungan antara rekognisi dan amour-propre. Budaya ini mendorong pelakunya untuk terus mencari rekognisi.

The movie Birdman The Unexpected Virtue of Ignorance shows how an old actor, Riggan Thompson, tried to revive his career by making a Broadway play. The purpose of my research was to discuss the search of love, recognition, and power in the entertainment industry that was shown in the movie.The movie Birdman that was made within the cultural setting of the entertainment industry provided a sample to be used to further analyzed the culture and the people that were involved in it.
The research indicated that the movie showed the self love of amour propre.Recognition was found to be beneficial to confirm one s existence, to one s psychological longevity, and to struggle for power in society. The aspect of power in recognition caused the lack of recognition in a person that motivated further search for recognition. Through the relation between recognition and amour propre a culture inside the entertainment industry was born. The culture promoted people in the industry to seek other people s recognition that driven people to constantly seek for recognition."
Depok: Fakultas Ilmu Pengetahuan Budaya Universitas Indonesia, 2018
MK-Pdf
UI - Makalah dan Kertas Kerja  Universitas Indonesia Library
cover
Gita Ayu Salsabila
"Selama masa pandemi COVID-19, antarmuka suara menggunakan KWS (keyword spotting) semakin sering digunakan pada berbagai sistem elektronik karena minimnya kontak fisik yang diperlukan antarmuka ini. Salah satu sistem yang dapat menggunakan KWS adalah sistem navigasi lift, di mana KWS pada sistem tersebut akan mengenali kata kunci terkait lantai yang ingin dituju pengguna. Dalam penelitian ini, model KWS untuk sistem navigasi lift dibuat menggunakan CNN (Convolutional Neural Network) dan CRNN (Convolutional Recurrent Neural Network) untuk mengenali enam kata kunci spesifik. Selama proses pembuatannya, berbagai hyperparameter CRNN terkait implementasi GRU, batch normalization, dropout layer, optimizer, kernel size, dan batch size diuji pengaruh variasinya terhadap performa CRNN. Dari pengujian tersebut, ditemukan bahwa CRNN menunjukkan performa paling baik ketika GRU yang digunakan bersifat bidirectional dengan dua layer dan 64 hidden unit, kernel size sebesar 3x3, optimizer Adams, batch size sebesar 163, serta penerapan batch normalization layer sebelum dropout layer. Model CRNN yang diperoleh dari kombinasi hyperparameter terbaik kemudian dibandingkan dengan model CNN untuk dievaluasi performa klasifikasinya saat dijalankan pada Raspberry Pi 4B. Berdasarkan hasil akurasi, persentase penggunaan RAM, dan latensi, model CNN menunjukkan performa yang lebih baik daripada CRNN.

During the COVID-19 pandemic, voice interfaces using KWS (keyword spotting) are increasingly being used in various electronic systems due to the lack of physical contact required for this interface. One system that can use KWS is an elevator navigation system, where the KWS on the system will recognize keywords related to the floor the user wants to go to. In this study, the KWS model for the elevator navigation system was created using CNN (Convolutional Neural Network) and CRNN (Convolutional Recurrent Neural Network) to identify six specific keywords. During the manufacturing process, various CRNN hyperparameters related to GRU implementation, batch normalization, dropout layer, optimizer, kernel size, and batch size were tested for the effect of their variations on CRNN performance. From these tests, it was found that CRNN showed the best performance when the GRU used bidirectional with two layers and 64 hidden units, kernel size of 3x3, Adams optimizer, batch size of 163, and batch normalization layer applied before dropout layer. The CRNN model obtained from the best combination of hyperparameters is then compared with the CNN model to evaluate its classification performance when run on the Raspberry Pi 4B. Based on the results of accuracy, percentage of RAM usage, and latency, CNN model shows better performance than CRNN."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fahri Alamsyah
"Dunia digital khususnya image processing berkembang seiring waktu berjalan dikarenakan kebutuhan masyarakat dan pentingnya keamanan sistem berbasis digital. Salah satu teknologi yang sangat mengalami kemajuan pesat adalah pengenalan wajah (face recognition) menggunakan artificial intelligence. Wajah seseorang yang sudah terdaftar di dalam database akan dikenali oleh sistem untuk keperluan validasi atau verifikasi. Di dalam penelitian ini dirancang sistem pengenalan wajah (face recognition) menggunakan algoritma machine learning dan Principal Component Analysis (PCA) sebagai pereduksi dimensi. Pengujian dilakukan dengan menggunakan beberapa metode, yakni: Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbour (K- NN), Logistic Regression (LR), Multi-Layer Perceptron (MLP) dan Convolutional Neural network (CNN). CNN berfokus pada layer dan tidak memerlukan reduksi dimensi, sehingga hasilnya lebih akurat. Model machine learning yang digunakan untuk classifier selain CNN adalah standar/default, sedangkan CNN menggunakan arsitektur LeNet-5, dengan dropout rate sebesar 0.25. Training dilakukan selama 60 epoch dengan loss function crosscategorical entropy, optimizer Adam, dan batch size sebesar 20. Data masukan adalah citra wajah berukuran 64 × 64 × 1 yang diperoleh dari dataset olivetti faces. Akurasi tertinggi metode PCA, SVM, maupun LR sebesar 91.25%, sementara akurasi terbaik CNN mencapai 98.75%. Selain akurasi, pemakaian confusion matrix dan classification report digunakan untuk menguji performa metode yang ada melalui evaluasi model klasifikasi.

The digital world, especially image processing, is evolving due to the needs of society and the importance of digital-based system security. One of the technologies that are rapidly progressing is face recognition using artificial intelligence. The system will recognize a person's face already registered in the database for validation or verification purposes. A face recognition system was designed using machine learning algorithms and Principal Component Analysis (PCA) as dimension reduction in this study. Testing is conducted using several methods: Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbour (K-NN), Logistic Regression (LR), Multi-Layer Perceptron (MLP) and Convolutional Neural network (CNN). CNN focuses on layers and does not require dimensional reduction to increase the accuracy of the result. The machine learning model used for classifiers other than CNN is standard/default settings, while CNN uses the LeNet-5 architecture, with a dropout rate of 0.25. The training was conducted for 60 epochs with loss function cross-categorical entropy, optimizer Adam, and batch size of 20. Input data is a 64 × 64 × 1 facial image obtained from the Olivetti faces database. The highest accuracy of PCA, SVM and LR methods was 91.25%, while CNN's best accuracy reached 98.75%. In addition to accuracy, the use of confusion matrix and classification report is used to test the performance of existing methods through the evaluation of classification models."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hafizh Rifqi Saputra
"Penelitian ini berfokus pada klasifikasi emosi menggunakan jaringan saraf buatan (Deep Learning) dengan memanfaatkan sinyal elektroensefalografi (EEG). Emosi manusia merupakan aspek penting dalam interaksi manusia-komputer, dan pengklasifikasian emosi secara akurat dapat meningkatkan kemampuan penerapan teknologi dalam berbagai aplikasi. Sampel sinyal EEG yang digunakan pada penelitian ini berasal dari dataset  SEED-V.  Sampel data memiliki 62 kanal elektroda dengan 5 jenis klasifikasi emosi yaitu Sedih, Senang, Netral, Jijik, Takut. Sinyal EEG kemudian diolah dan diurai menjadi 5 jenis band yaitu alpa, beta, teta,  delta, dan gamma. Sinyal terdekomposisi akan diolah untuk mengekstrak fitur menggunakan diferensial entropi yang kemudian ditransformasi menjadi data 2 dimensi. Model CNN digunakan sebagai algoritma klasifikasi untuk mendeteksi pola-pola kompleks dalam sinyal EEG. Dilakukan pengaturan beberapa parameter dari model hingga didapatkan hasil pengujian yang optimal. Dari hasil pengujian menunjukkan bahwa model CNN yang dikembangkan mampu mengklasifikasikan emosi dengan tingkat akurasi yang cukup tinggi dibandingkan dengan metode klasifikasi lainnya. Dari hasil evaluasi yang dilakukan model yang dikembangkan memiliki nilai akurasi sebesar 87.5%, tak hanya itu pada penelitian ini menampilkan efek ketidakseimbangan jumlah kelas serta teknik penyeimbangan yang dilakukan.

This research focuses on emotion classification using artificial neural networks (CNNs) utilizing electroencephalography (EEG) signals. Human emotions are an important aspect of human-computer interaction, and accurately classifying emotions can improve the applicability of technology in various applications. The EEG signal samples used in this study come from the SEED-V dataset.  The data sample has 62 electrode channels with 5 types of emotion classifications, namely Sad, Happy, Neutral, Disgust, Fear. The EEG signal is then processed and decomposed into 5 types of bands alpha, beta, theta, delta, and gamma. The decomposed signal will be processed to extract features using Differential Entropy and then transformed into 2-dimensional data. CNN model is used as a classification algorithm to detect complex patterns in EEG signals. Tunning is done for several parameters of the model until optimal test results are obtained. The test results show that the CNN model developed is able to classify emotions with a fairly high level of accuracy compared to other classification methods. From the evaluation results, the developed model has an accuracy value of 87.5%, Furthermore, this study shows the effects of class size imbalance and the balancing techniques used. "
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michael Wijaya
"Skripsi ini membahas penerapan Convolutional Neural Network dalam merancang Sistem Penilaian Esai Otomatis (SIMPLE-O) Berbentuk Gambar. Sistem Penilaian Esai Otomatis (SIMPLE-O) Berbentuk Gambar merupakan perkembangan dari Sistem Penilaian Esai Otomatis atau Simple-O yang telah dikembangkan sebelumnya oleh Departemen Teknik Elektro UI. Tujuan dari dikembangkannya Sistem Penilaian Esai Otomatis (SIMPLE-O) Berbentuk Gambar ini agar dapat menilai sebuah gambar secara otomatis sehingga dapat mempercepat proses penilaian. Rancangan yang dibuat dalam penelitian ini akan memanfaatkan machine learning untuk memprediksi nilai dari gambar yang diuji. Pembelajaran akan dilakukan dengan menggunakan dataset yang memiliki label mulai dari nilai "1" sampai "10". Untuk mendapatkan informasi fitur dari gambar, digunakan algoritma Convolutional Neural Network dimana Neural network ini termasuk ke dalam algoritma Deep Learning. Pada sistem ini sebagian besar bahasa pemrograman yang digunakan adalah Python.

This thesis discusses the implementation of Convolutional Neural Network in designing an automated essay grading system in which the essay answer is in the form of an image. This automated essay grading system is based on the Department of Electrical Engineering in University of Indonesia's research called Simple-O. The purpose of this automated essay grading system to be developed is that the images can be graded automatically and accordingly so it will make the grading process more efficient. The design made in this proposal will utilize machine learning to predict the grade for the images inputted. The learning process will be done using a labeled data set from grade "1" to "10". Feature extraction process will be done using Convolutional Neural Network, which is considered a deep learning algorithm. This system will be programmed in Python."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anandwi Ghurran Muhajjalin Arreto
"Artificial Intelligence (AI) telah berkembang sangat pesat sehingga sudah sering terlihat dan digunakan secara umum oleh masyarakat. Salah satu jenis AI yang sering digunakan adalah speech recognition terutama keyword spotting yang disebabkan karena pandemi COVID-19. Implementasi keyword spotting dapat diterapkan pada lift sebagai sistem navigasi agar para pengguna lift tidak perlu melakukan kontak pada tombol, melainkan dapat menggerakkan lift hanya dengan mengucapkan lantai yang dituju. Metode untuk melakukan implementasi keyword spotting pada sistem lift dapat dilakukan dengan banyak metode, namun pada skripsi ini, metode yang diujikan adalah CNN (Convolutional Neural Network) dan MHAtt RNN (Multihead Attention Recurrent Neural Network). Penelitian yang dilakukan memiliki batasan untuk setiap metode agar dapat melakukan klasifikasi enam keyword dan melihat performa kedua metode dalam berbagai skenario yang dapat terjadi dalam lift. Dalam pembentukan model dari MHAtt RNN, dapat diketahui bahwa model memiliki performa terbaik ketika dibentuk dengan jumlah head untuk attention sebesar 8 dan LSTM dengan jumlah unit sebanyak 32. Pelatihan pada model dilakukan menggunakan optimizer Adam dengan learning rate sebesar 0.001 dan decay 0.005 agar pelatihan dapat menghasilkan model yang paling baik. Setelah melakukan pengujian pada berbagai skenario yang dapat terjadi di dalam sebuah lift, didapatkan hasil bahwa secara keseluruhan model CNN memiliki performa yang lebih baik dibandingkan model MHAtt RNN karena memiliki nilai F1-score dan precision yang lebih tinggi.

Artificial Intelligence (AI) has grown so rapidly that it has often been seen and used in general by the public. One type of AI that is often used is speech recognition, especially keyword spotting caused by the COVID-19 pandemic. The implementation of keyword spotting can be applied to elevators as a navigation system so that elevator users do not need to make contact with buttons but can move the elevator just by saying the intended floor. There are many methods to implement keyword spotting in elevator systems, but in this thesis, the methods tested are CNN (Convolutional Neural Network) and MHAtt RNN (Multihead Attention Recurrent Neural Network). The research conducted has limitations for each method in order to be able to classify six keywords and see the performance of both methods in various scenarios that can occur in an elevator. In forming the model from MHAtt RNN, it can be seen that the model has the best performance when it is formed with the number of heads for attention of 8 and the LSTM with the number of units of 32. The training on the model is carried out using the Adam optimizer with a learning rate of 0.001 and a decay of 0.005 so that the training can produce the best models. After testing on various scenarios that can occur in an elevator, the results show that the CNN model overall has better performance than the MHAtt RNN model because it has a higher F1-score and precision."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fajri Rahmadi
"ABSTRAK
Emosi merupakan suatu keadaan psikologis yang dipicu oleh aktivitas sensorik manusia baik secara sadar maupun tidak sadar. Emosi berperan penting dalam kehidupan manusia seperti dalam pengambilan keputusan, dalam mengekspresikan diri, dan lain sebagainya. Emosi dapat dihasilkan menggunakan rangsangan/stimulus tertentu seperti emosi takut dihasilkan menggunakan hal-hal yang menyeramkan seperti gambar pembunuhan, emosi bahagia dapat dipicu menggunakan stimulus gambar-gambar yang menyenangkan seperti gambar pemandangan, emosi sedih dapat dipicu menggunakan musik-musik sendu, menangis, dan hal-hal menyedihkan lainnya, dan emosi jijik dapat dipicu mengunakan stimulus yang menjijikkan seperti kotoran manusia. Beberapa stimulus yang biasa digunakan dalam penelitian adalah gambar, text, audio, atau video. Pada proses penghasilan emosi, terdapat aktivitas elektrik dalam otak manusia yang dapat direkam menggunakan perangkat bernama Elektroensefalografi EEG , rekaman gelombang otak ini juga dapat dilakukan menggunakan perangkat yang bernama neuroheadset. Penelitian ini membahas tentang pengembangan sistem akuisisi data sinyal otak menggunakan neuroheadset dan menghasilkan database yang digunakan untuk analisis emosi. Dalam penelitian ini digunakan stimulus berupa video yang terdiri dari kumpulan gambar. Setiap gambar dalam video telah melalui proses validasi sesuai dengan kelas emosi yang diinginkan. Kelas emosi yang digunakan dalam penelitian ini yaitu bahagia, jijik, sedih, dan takut. Setiap kelas emosi memiliki empat stimulus video. Proses validasi dilakukan oleh lima orang partisipan dan proses pengambilan data sinyal otak dilakukan terhadap empat orang partisipan. Pengambilan data dilakukan menggunakan perangkat neuroheadset dengan vendor Emotiv tipe Epoc. Hasil rekaman sinyal diproses menggunakan Matlab dan menghasilkan database berukuran 16x14x7680, dimana angka 16 merepresentasikan jumlah stimulus video, 14 merepresentasikan sensor Emotiv Epoc yang digunakan, dan 7680 merupakan data sinyal yang diambil selama 60 detik dengan frekuensi sampling 128 Hertz. Tingkat keberhasilan tertinggi untuk emosi bahagia, jijik, sedih, dan takut secara berurut adalah 75 , 62.5 , 62.5 , dan 75 . Tingkat keberhasilan tertinggi ini dicapai untuk variasi channel frekuensi alpha, sensor yang digunakan yaitu F7, F3, F4, dan F8. Teknik klasifikasi yang digunakan adalah feed-forward backpropagation neural network.

ABSTRACT
Emotion is a psychological state that triggered by human sensory activity both consciously and unconsciously. Emotions play an important role in human life such as decision making, self expression, and others. Emotions can be generated using certain stimuli such as feared emotions generated using scary things like murder images, happy emotions can be triggered by stimuli of fun images such as sight images, sad emotions can be triggered using melodic music, crying, and other sad things, and disgusted emotions can be triggered using disgusting stimuli like human feces. Some of the stimuli commonly used in research are using images, text, audio, or video. In the process of earning emotions, there is electrical activity in the human brain that can be recorded and processed to obtain brain signals using a device called Electroencephalography EEG , these brainwave records can also be recorded using a device called neuroheadset. This study discusses the development of data acquisition system of brain signals using neuroheadset and generate database used for emotion analysis. In this study used a video stimulus consisting of a collection of images. Each image in the video has gone through the validation process according to the desired emotion class. Four kind of emotion used in research that are happy, disgusted, sad, and scared. Each emotional class has four video stimuli. Five participants carried out the validation process and the process of retrieving the brain signals data performed on four participants. Data retrieval performed using a neuroheadset device with Emotiv vendor with Epoc type. The recording of the signal is processed using Matlab and generates a 16x14x7680 database, where the number 16 represents the number of video stimuli, 14 represents the Epoc Emotion sensor used, and 7680 is the signal data taken for 60 seconds with 128 Hertz sampling frequency. The highest recognition rate for happy, disgusted, sad, and fearful emotions are 75 , 62.5 , 62.5 , and 75 . The highest success rate achieved for alpha frequency channel variation the sensors used are F7, F3, F4, and F8. The classification technique used is feed forward backpropagation neural network."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Supeni
"Proses optimasi pada Probabilistic Neural Network (PNN) dapat dilakukan terhadap nilai smoothing parameter maupun struktur neuron. Setiap permasalahan memiliki nilai smoothing parameter optimal yang berbeda. Optimasi struktur neuron bertujuan untuk mereduksi banyak neuron yang digunakan sehingga dapat mempersingkat waktu komputasi.
Skripsi ini membahas proses pencarian nilai smoothing parameter optimal menggunakan algoritma genetika dan struktur neuron optimal menggunakan algoritma ortogonal dalam sistem pengenal wajah. Terdapat dua jenis teknik optimasi yang akan dibahas, lalu membandingkan hasilnya dengan PNN struktur utuh dan backpropagation. Data wajah yang digunakan berupa foto infra merah dan cahaya tampak.

Optimization of Probabilistic Neural Network (PNN) can be performed to the value of smoothing parameter and neuron structure. Every problem has different value of smoothing parameter. Optimization of neuron structure aims to reduce the number of neurons used, in order to shorten computation time.
This thesis discusses the process of finding the optimal value of smoothing parameter using genetic algorithms and optimal neuron structure using orthogonal algorithms in face recognition system. Two types of optimization techniques which will be discussed, then the results are compared with full structure PNN and backpropagation. Face data used in the form of infrared and visible light images.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1579
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>