Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 90979 dokumen yang sesuai dengan query
cover
Lellyana Juliet Wantania
"Penerapan sistem merit telah diamanatkan dalam Undang-undang Nomor 5 Tahun 2014 Tentang Aparatur Sipil Negara yang bertujuan untuk memastikan jabatan pada instansi pemerintah diduduki oleh pegawai dengan persyaratan kualifikasi dan kompetensi terpenuhi. Badan Kepegawaian Daerah Provinsi Sulawesi Utara sebagai instansi yang memiliki kewenangan dibidang kepegawaian, berkewajiban serta bertanggung jawab untuk menciptakan sistem pemerintahan yang bersih termasuk penerapan sistem merit. Pengisian jabatan struktural telah dilakukan sesuai dengan prosedur, namun masih mengalami kesulitan dalam hal pemetaan jabatan. Karenanya penelitian ini dilakukan untuk menentukan pola karier jabatan struktural berbasis kompetensi di lingkungan Pemerintah Provinsi Sulawesi Utara. Metode data mining teknik clustering digunakan pada penelitian ini yaitu dengan menggunakan metode agglomerative hierarchical clustering melalui metode Ward’s dan Orange sebagai perangkat lunaknya. Melalui tahapan Knowledge Discovery in Database (KDD) pengelompokan jabatan dilakukan berdasarkan karakteristik kompetensi teknis sebagai hasil dari standar kompetensi jabatan. Hasil pengelompokan jabatan sebanyak tujuh cluster yang telah divalidasi oleh pejabat terkait. Pola karier yang terbentuk memperlihatkan dua jenis arah pergerakan yaitu arah promosi dan mutasi/rotasi. Arah promosi untuk jabatan dalam satu cluster dengan tingkat jabatan lebih tinggi dari jabatan sebelumnya, sedangkan arah mutasi/rotasi untuk jabatan dalam satu cluster dengan tingkat jabatan yang sama dari jabatan sebelumnya.

The application of the merit system has been mandated in Law Number 5 of 2014 concerning State Civil Apparatus which aims to ensure that positions in government agencies are occupied by employees with the qualification and competency requirements being met. The Regional Civil Service Agency of North Sulawesi Province as an agency that has the authority in the field of personnel, is obliged and responsible for creating a clean government system, including the implementation of a merit system. The filling of structural positions has been carried out in accordance with procedures, but there are still difficulties in terms of position mapping. Therefore, this research was conducted to determine the career pattern of competency-based structural positions within the North Sulawesi Provincial Government. The data mining method of clustering technique used in this study is by using the agglomerative hierarchical clustering method through the Ward's and Orange methods as the software. Through the Knowledge Discovery in Database (KDD) stages, job grouping is carried out based on the characteristics of technical competence as a result of job competency standards. The results of the grouping of positions are seven clusters that have been validated by the relevant officials. The career pattern formed shows two types of movement directions, namely the direction of promotion and transfer/rotation. The direction of promotion for positions in a cluster with a higher level of position than the previous position, while the direction of mutation/rotation for positions in a cluster with the same level of position from the previous position"
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Eryawan Deise Ulul
"[ABSTRAK
Hierarchical clustering merupakan metode yang efektif dalam membentuk pohon
filogenetik dengan mengetahui matriks jarak antar barisan DNA. Salah satu cara
untuk membuat matriks jarak yaitu dengan cara menggunakan metode -mer.
Kelebihan dari metode -mer yaitu lebih efisien dalam segi waktu. Langkahlangkah
dalam membuat matriks jarak dengan metode -mer dimulai dengan
membentuk -mer sparse matrix dari masing barisan DNA. Selanjutnya,
membentuk -mer singular value vector. Pada tahap akhir yaitu menghitung jarak
antar vektor. Pada tesis ini akan dilakukan analisis terhadap barisan DNA MERSCoV
dengan mengimplementasi Hierarchical clustering menggunakan -mers
sparse matrix sehingga dapat diketahui leluhur dari masing-masing barisan DNA
MERS-CoV.

ABSTRACT
Hierarchical clustering is an effective method in creating phylogenetic by
knowing the distance matrix between DNA sequence. One of methods to make the
distance matrix use -mer method. -mer is more efficient than others. The steps
to make distance matrix using -mer method starts from creating -mer sparse
matrix. Then, creating -mer singular value vector. The last steps is counting
distance each vectors. This thesis will analyze the sequence of DNA MERS-CoV
by implementing Hierarchical clustering using k-mers sparse matrix so that will
be known the ancestor of each sequence of DNA MERS-CoV., Hierarchical clustering is an effective method in creating phylogenetic by
knowing the distance matrix between DNA sequence. One of methods to make the
distance matrix use -mer method. -mer is more efficient than others. The steps
to make distance matrix using -mer method starts from creating -mer sparse
matrix. Then, creating -mer singular value vector. The last steps is counting
distance each vectors. This thesis will analyze the sequence of DNA MERS-CoV
by implementing Hierarchical clustering using k-mers sparse matrix so that will
be known the ancestor of each sequence of DNA MERS-CoV.]"
2015
T44260
UI - Tesis Membership  Universitas Indonesia Library
cover
Tosan Wiar Ramdhani
"Pemerintah Kota Bogor merupakan salah satu bagian dari Pemerintah Provinsi Jawa Barat yang memiliki jumlah pegawai lebih dari 9000 orang. Pengelolaan kepegawaian dilakukan oleh Badan Kepegawaian Pendidikan dan Pelatihan Kota Bogor (BKPP). BKPP membentuk tim Badan Pertimbangan Jabatan dan Kepangkatan (Baperjakat) dalam tugas pengangkatan, pemindahan dan pemberhentian PNS dalam dan dari jabatan struktural Eselon IIA ke bawah. Baperjakat mengalami masalah dalam menyusun calon pejabat struktural yang selama ini dilakukan secara manual, meskipun sudah memiliki aplikasi Sistem Informasi Manajemen Kepegawaian (SIMPEG) sebagai aplikasi pengelolaan kepegawaian.
Penelitian ini melakukan identifikasi pola pengisian jabatan struktural di lingkungan Pemerintah Kota Bogor dengan menggunakan data jabatan struktural tahun 2009 hingga 2013 yang bersumber dari basis data SIMPEG. Berbagai algoritma data mining dari teknik classification diujicobakan untuk mengidentifikasi pola pengisian jabatan struktural.
Dari hasil classification, algoritma Classification Rule with Unbiased Interaction Selection and Estimation (CRUISE) menjadi algoritma terbaik dalam akurasi class eselon dengan tingkat akurasi rata-rata sebesar 95,7% untuk setiap tingkat eselon.
Pola yang dihasilkan dapat menjadi rules yang akan diimplementasikan sebagai modul baru dalam aplikasi SIMPEG yang berfungsi memberikan usulan dalam pengisian jabatan struktural yang ditempatkan secara otomatis. Urutan atribut yang secara dominan muncul pada setiap tingkat eselon adalah atribut jenjang jabatan, pangkat golongan, pendidikan dan pelatihan, tingkat pendidikan, masa kerja, pengalaman dalam unit kerja, serta umur.

Bogor District Government is a part of West Java Province Government, which employs more than 9,000 employees. The human resources are managed by human resources and training division that is called Badan Kepegawaian Pendidikan dan Pelatihan (BKPP). BKPP form a team called Badan Pertimbangan Jabatan dan Kepangkatan (Baperjakat), who are responsible for promoting, rotating and dismissing local government employees from structural positions below the Echelon IIA positions. Baperjakat have problems on constructing the draft of structural government positions. These processes were done manually, even though BKPP have a human resources information systems called SIMPEG.
The main purpose of this research is to identify patterns of filling structural positions at Bogor Local Government using the structural position data from 2009 to 2013. The data were taken from the SIMPEG database. Various data mining classification algorithms were tested to identify filling structural position patterns.
The classification process yields Classification Rule with Unbiased Interaction Selection and Estimation (CRUISE) as the best algorithm in echelon class. Its average accuracy is 95.7% for each echelon level.
The discovered patterns can be applied as base rules that will be implemented as new modules of SIMPEG. These new modules can provide suggestions for automatically filling structural positions. The order of attributes, which dominantly show at each echelon, are hierarchy type, class rank, training education, level of education, working period, experience within division and age.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2014
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Filda Maharani Hasanah
"Telemedicine merupakan solusi ideal untuk menjadi layanan kesehatan di era COVID-19. Halodoc merupakan salah satu aplikasi telemedicine terbaik di Indonesia. Sejak tahun 2022, Halodoc sudah mempunyai lebih dari 15.000.000 pengguna sehingga perlu mengganti fokus bisnisnya dari product oriented menjadi customer oriented. Halodoc perlu melakukan analisis customer segmentation untuk mengetahui karakteristik pengguna lebih dalam. Analisis ini menggunakan salah satu teknik data mining yaitu clustering menggunakan algoritma K-Prototypes. Atribut penggunaan voucher, total transaksi, kategori produk, spesialis dokter, provider asuransi, kelompok usia, merek handphone, dan lokasi digunakan pada penelitian ini. Pengguna Halodoc yang melakukan transaksi minimal 1 kali selama November 2021 hingga Januari 2022 yang berjumlah 193.000 pengguna akan disegmentasi. Hasilnya adalah pengguna Halodoc dapat disegmentasi menjadi 4 status sosial yaitu working class, petty bourgeoise, middle class, dan high class. Status sosial yang memiliki ukuran terbesar adalah middle class yaitu dengan proporsi 46,69% dari keseluruhan pengguna. Pengguna yang paling potensial untuk Halodoc adalah yang berasal dari status sosial High Class karena memiliki frekuensi transaksi terbanyak dan nominal pengeluaran terbesar.

Telemedicine is the ideal solution to become a healthcare service in COVID-19 era. Halodoc is one of the best telemedicine applications in Indonesia. Since 2022, Halodoc has more than 15.000.000 users, so they need to change its business focus from product oriented to customer oriented. Halodoc needs to do customer segmentation analysis to find out more about user’s characteristics. This analysis uses one of data mining techniques which is K-Prototypes Clustering. Voucher usage, total transaction, doctor specialist, insurance provider, age group, mobile phones’s brand, and location are used in this study. Halodoc’s users who make transactions at least 1 time during November 2021 to January total 193.000 users will be segmented. The results is Halodoc’s users can be segmented into 4 social classes such as working class, petty bourgeoise, middle class, and high class. Social status that has the largest size is the middle class with the proportion of 46.69% of the total users. The most potential users for Halodoc are those from High Class social status because they have the highest transaction frequency and the largest nominal spending."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Heru Suroso
"Badan Pertimbangan Jabatan dan Golongan (BPJG) merupakan badan yang dibentuk untuk menjamin objektivitas dan kualitas proses pengangkatan, pemindahan dan pemberhentian pejabat struktural unit kerja di BP Batam. Dalam pelaksanaan tugasnya, BPJG menggunakan sistem Human Resource Management (HRM) untuk mendukung proses seleksi calon pejabat, namun sistem HRM ini belum dapat menghasilkan daftar calon yang memenuhi syarat untuk diseleksi menjadi pejabat struktural secara otomatis. Tujuan dari penelitian ini adalah untuk menemukan pola pengisian daftar calon pejabat struktural BP Batam berdasarkan data riwayat jabatan yang ada di sistem HRM (2010-2020) menggunakan teknik data mining, sehingga diharapkan dapat mempercepat proses penyusunan daftar calon pejabat struktural BP Batam oleh BPJG dan dapat digunakan untuk mengembangkan fitur dashboard talent pool pegawai BP Batam. Tahapan penelitian ini dilakukan menggunakan metodologi CRISP-DM dan tiga algoritme data mining klasifikasi yaitu Decision Tree, Support Vector Machine (SVM), dan Naive Bayes. Model klasifikasi Decision Tree menghasilkan performa terbaik pada dua skenario eksperimen yang dilakukan, yaitu skenario class imbalanced dataset dan skenario class balanced dataset. Model klasifikasi Decision Tree menghasilkan 25 pola pengisian jabatan struktural di BP Batam dan atribut Golongan BP merupakan atribut yang paling menentukan untuk memprediksi suatu tingkat jabatan.

Badan Pertimbangan Jabatan dan Golongan (BPJG) was formed to guarantee the objectivity and quality process of promotion, mutation and dismissal structural official at BP Batam. BPJG uses the Human Resource Management (HRM) system to support the selection process for prospective officials, however this system unable to automatically produce a list of candidates who meet the requirements to be selected as official. The objective of this research is to find patterns in filling the list of candidates for structural officials based on historical data in the HRM system using data mining techniques, so it will accelerate the process of compiling a list of candidates for structural officials by BPJG and also it can help BP Batam to develop employee talent pool feature for HRM. This research were carried out using the CRISP-DM methodology and three classification algorithms namely Decision Tree, SVM, and Naive Bayes. The Decision Tree classification model yields the best performance in the two experimental scenarios, namely the class imbalanced dataset and the class balanced dataset. The Decision Tree classification model yields 25 patterns for filling the list of candidates for structural officials and Golongan BP attribute is the most decisive attribute for predicting a position level. "
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Bambang Novianto
"Pertumbuhan pemanfaatan internet telah meningkatkan perhatian terhadap keamanan data. Pada tahun 2014, Projek SHINE (SHodan Intelligence Extraction) telah menerbitkan laporan penilaian keamanan skala besar untuk perangkat yang terhubung ke Internet. Namun, berdasarkan laporan tersebut, jumlah informasi mengenai IP address Indonesia yang berhasil didapatkan masih sedikit. Terdapat sebanyak 7.182 IP address dari Indonesia, yaitu sekitar 0,0032% dari total 2.186.971 IP address yang berhasil dikumpulkan oleh Projek SHINE. Dalam penulisan tesis ini, penulis mengajukan inisiatif untuk melakukan analisis kerentanan semua informasi Autonomous System Number (AS Number) di Indonesia dari Shodan. Penulis telah menyusun dataset semua informasi AS Number di Indonesia antara lain 12.787 port, 79 sistem operasi, 409 produk, 3.634 domain, 145.543 IP address, dan 790 organisasi. Penulis menggunakan algoritma K-Means clustering untuk mengelompokkan AS Number ke dalam beberapa kelas sesuai dengan tingkat paparan di shodan. Berdasarkan hasil pengelompokan, penulis mendapatkan 4 kelas AS Number antara lain 1.075 AS Number di kelas: 0 (belum terdapat informasi mengenai AS Number tersebut di Shodan), 614 AS Number di kelas: 1 (tingkat paparan rendah), 9 AS Number di kelas: 2 (tingkat paparan sedang), dan 1 AS Number di kelas: 3 (tingkat paparan tinggi). Informasi ini dapat dimanfaatkan oleh Kementerian yang menangani bidang Teknologi Informasi dan Komunikasi dan Badan yang menangani Keamanan Siber di Indonesia untuk menghimbau organisasi pengelola AS Number agar mewaspadai potensi kerentanan yang dinformasikan oleh Shodan dan dimanfaatkan oleh hacker.

The growth of internet-enabled devices has increased interest in cybersecurity. In 2014, Project SHINE (SHodan INtelligence Extraction) published a report of large-scale security assessments for devices connected to the Internet. However, the number of IP addresses harvested from Indonesia in 2014 is very small. There were 7.182 IP address from Indonesia. It was about 0,0032% from the total 2.186.971 IP addresses. In this paper, we propose an initiative to gather all information for all Autonomous System Number (AS Number) from Indonesia in Shodan. We have gathered a dataset about all information of AS Numbers in Indonesia such as 12.787 unique ports, 79 unique operating systems, 409 unique products, 3.634 unique domains, 145.543 unique IP addresses, and 790 unique organizations. We use the K-Means algorithm to cluster all AS Numbers into several classes according to the exposure level in shodan. Based on the result, we have 4 classes of AS Numbers. There are 1.075 AS Numbers in class:0 (no information in Shodan yet), 614 AS Numbers in class:1 (exposure level = low), 9 AS Numbers in class:2 (exposure level = medium), and 1 AS Number in class:3 (exposure level = high). This information can be used to warn the organizations that manage AS Numbers in Indonesia to be aware of the security and the threats to their systems."
Jakarta: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bayu Permata Negara
"Analisis kelompok adalah metode multivariat yang bertujuan mengelompokkan pengamatan berdasarkan karakteristiknya. Salah satu metode analisis pengelompokan adalah metode cluster ensembel dengan pengelompokan dilakukan dengan satu metode berulang kali hingga diperoleh hasil yang lebih baik dibandingkan jika dilakukan satu kali. Penelitian ini mencoba menggunakan Cluster Ensemble Based Mixed Data Clustering (CEBMDC), yaitu metode pengelompokan yang biasa dilakukan untuk data dengan variabel campuran yaitu numerik dan kategorik. Tahap awal dalam metode ini yaitu membagi data awal menjadi data dengan hanya variabel-variabel numerik dan data dengan hanya variabel-variabel kategorik. Data yang telah dipisahkan berdasarkan jenis variabelnya kemudian dikelompokan menggunakan metode yang sesuai secara simultan. Hasil pengelompokan ini menjadi data baru dengan dua variabel kategorik yaitu hasil pengelompokan dengan variabel numerik dan hasil pengelompokan dengan variabel kategorik. Data baru dengan dua variabel kategorik ini kemudian dilakukan proses pengelompokan. Metode pengelompokan untuk data dengan variabel numerik adalah metode Hierarchical Agglomerative Clustering. Metode clustering untuk data kategorik adalah ROCK (RObust Clustering using linKs) dan K-medoids/PAM (Partition Around Medoids). Penelitian ini membandingkan hasil pengelompokan ROCK dan K-medoids. Pengelompokan dilakukan pada data mengenai sarana dan prasarana sekolah yang diambil dari 5.094 SMP yang ada di Jawa barat. Metode pengelompokan dengan kinerja terbaik pada penelitian ini adalah Ensemble K-medoids berdasarkan rasio antara simpangan baku di dalam kelompok (¬SW) dan simpangan baku antar kelompok (SB) terkecil. Penelitian ini menghasilkan 3 kelompok yang mencerminkan kondisi sekolah-sekolah pada jenjang SMP di Jawa Barat.
Clustering analysis is a multivariate method that aims to classify observations based on their characteristics. One method of clustering analysis is the ensemble clustering method in which the grouping is done using a method repeatedly until better results are obtained than if it is done once. This study uses the Cluster Ensemble Based Mixed Data Clustering (CEBMDC), which is a grouping method that commonly used for data with numerical and categorical variables. The first step in this method is to divide the initial data into two parts, that is data with only numerical variables and data with categorical variables. After data has been separated based on the types of variables, and then clustering using the appropriate method is conducted simultaneously. The results of these two clustering method become a new data with two categorical variables, namely the results of clustering with numeric variables and the results of clustering with categorical variables. The new data with two categorical variables are then carried out the clustering process. The clustering method for data with numerical variables is the Hierarchical Agglomerative Clustering method. Clustering methods for categorical data are ROCK (RObust Clustering using linKs) and K-medoids / PAM (Partition Around Medoids). This study compares the results of ROCK and K-medoids clustering. The study was conducted on data of school facilities and infrastructure taken from 5094 junior high schools in West Java. The best performance grouping method in this study is the Ensemble K-medoids based on the ratio between the standard deviation in the group (SW) and the smallest standard inter-group (SB) deviation. This study produced 3 groups that reflect the condition junior high schools in West Java."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Naufal Luthfi
"Peradaban yang terus berkembang telah membuat konflik antara manusia dan lingkungan menjadi semakin parah sehingga menyebabkan banyak terjadinya bencana alam. Banyak negara yang terdampak oleh bencana alam dan salah satunya adalah Indonesia. Kondisi dan letak geografis Indonesia menyebabkan banyak terjadinya bencana alam di Indonesia. Oleh karena itu, perlu dilakukan pengelompokan daerah bencana alam di Indonesia untuk mengetahui daerah yang paling sering terkena bencana alam. Metode clustering dapat digunakan untuk mengetahui daerah tersebut. Dari studi literatur yang telah dilakukan, belum ada penelitian yang menggunakan metode hierarchical clustering dan fuzzy c-means untuk clustering daerah bencana alam di Indonesia. Maka dari itu, tujuan dari penelitian ini adalah mengklasifikasi daerah yang sering mengalami bencana alam di Indonesia dengan menggunakan metode hierarchical clustering dan fuzzy c-means. Data yang digunakan dalam penelitian ini adalah data bencana alam di Indonesia dari tahun 2019 hingga 2023. Variabel yang digunakan adalah jumlah kebakaran hutan dan lahan, banjir, cuaca ekstrem, gelombang pasang, tanah longsor, kekeringan, erupsi gunung api, dan gempa bumi di setiap kabupaten yang terdampak bencana alam. Hasil clustering menunjukan terdapat 66 daerah yang sering mengalami banjir, 45 daerah yang sering mengalami kebakaran hutan dan gelombang pasang, dan 30 daerah yang sering mengalami cuaca ekstrem, tanah longsor, kekeringan, erupsi gunung api, dan gempa bumi.

The continuously evolving civilization has exacerbated the conflict between humans and the environment, leading to increasingly severe natural disasters. Many countries are affected by natural disasters, and one of them is Indonesia. Indonesia's conditions and geographic location contribute to the occurrence of numerous natural disasters in the country. Therefore, it is necessary to classify areas prone to natural disasters in Indonesia to identify the most frequently affected regions. Clustering methods can be used to determine these areas. From the literature review conducted, there has been no research utilizing hierarchical clustering and fuzzy c-means methods for clustering areas prone to natural disasters in Indonesia. Therefore, the aim of this research is to classify areas that frequently experience natural disasters in Indonesia using hierarchical clustering and fuzzy c-means methods. The data used in this research is the natural disaster data in Indonesia from 2019 to 2023. The variables used include the number of forest and land fires, floods, extreme weather events, tidal waves, landslides, droughts, volcanic eruptions, and earthquakes in each disaster-affected district. The clustering results indicate that there are 66 regions frequently experiencing floods, 45 regions often experiencing forest fires and tidal waves, and 30 regions commonly facing extreme weather, landslides, droughts, volcanic eruptions, and earthquakes."
Jakarta: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nicko Perdana Putra
"Pengembangan karier merupakan salah satu aspek dalam pelaksanaan sistem merit, yang juga merupakan bagian dari delapan area perubahan pada Grand Design Reformasi Birokrasi 2010-2025. Komisi Aparatur Sipil Negara (KASN) menyebutkan bahwa banyak instansi pemerintah yang kesulitan dalam melaksanakan aspek pengembangan karier ini. Dari hasil wawancara, hal ini pun terjadi di Badan Kepegawaian Daerah (BKD) Provinsi Kalimantan Selatan. Penelitian ini mengusulkan pemanfaatan data mining dalam penyusunan rencana pengembangan karier pegawai negeri sipil (PNS) dengan berbasis pada metodologi CRISP-DM (Cross-Industry Standard Process for Data Mining). Penelitian ini memodelkan analisis kesenjangan kompetensi dan kinerja dengan melakukan eksperimen menggunakan class imbalance maupun class balance data set. Dari hasil evaluasi didapatkan algoritma SVM (Support Vector Machine) sebagai model terbaik pada masing-masing analisis dan skenario. Dari hasil analisis yang dilakukan dengan memetakan kelompok kesenjangan kompetensi-kinerja dalam bentuk Human Asset Value Matrix yang diadaptasi dari General Electric-McKinsey Nine-box Grid, dapat disusun rencana pengembangan karier PNS secara lengkap mulai dari rekomendasi promosi jabatan, informasi kebutuhan diklat, hingga hukuman disiplin. Selain dapat memberikan rekomendasi pengembangan karier PNS, hasil penelitian ini juga dapat memberikan informasi kompetensi maupun jabatan yang akan dikembangkan.

Career development is one aspect of implementing the merit system, which is also part of the eight areas of change in the Grand Design for Bureaucratic Reform 2010-2025. The State Civil Apparatus Commission (KASN) stated that many government agencies had difficulties in implementing this aspect of career development. From the results of the interview, this also happened in the Regional Personnel Agency (BKD) of South Kalimantan Province. This study proposes the use of data mining in the preparation of career development plans for civil servants (PNS) based on the CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology. This study models the competency and performance gap analysis by conducting experiments using class imbalance and class balance data sets. From the evaluation results, the SVM (Support Vector Machine) algorithm is obtained as the best model for each analysis and scenario. From the results of the analysis conducted by mapping the competency-performance gap groups in the form of the Human Asset Value Matrix adapted from the General Electric-McKinsey Nine-box Grid, a complete career development plan for civil servants can be drawn up starting from recommendations for promotions, information on training needs, to penalties. discipline. Besides being able to provide recommendations for career development for civil servants, the results of this study can also provide information on competencies and positions to be developed."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Timothy Orvin Edwardo
"Data aktivitas pada Learning Management System (LMS) yang digunakan di Universitas XYZ mengalami pertumbuhan yang signifikan dan tidak terbendung. Hal ini menimbulkan tantangan dalam pemrosesan dan analisis data tersebut. Penelitian ini melakukan pemrosesan data aktivitas mahasiswa secara streaming dan analisis untuk menemukan pola aktivitas mahasiswa di LMS. Pola aktivitas yang diidentifikasi menggunakan snapshot pada periode minggu pertama perkuliahan, minggu Ujian Tengah Semester (UTS), minggu sebelum Ujian Akhir Semester (UAS), dan pada saat minggu UAS. Analisis dilakukan dengan algoritma data mining menggunakan teknik clustering dengan mengambil snapshot data pada mata kuliah Metodologi Penelitian dan Penulisan Ilmiah semester genap 2018/2019. Algoritma dari teknik clustering yang disimulasikan adalah K-Means dan agglomerative hierarchical clustering dengan menggunakan evaluasi silhouette index untuk menentukan pola dengan jumlah cluster yang sesuai. Dari eksperimen terhadap algoritma clustering, algoritma agglomerative hierarchical clustering menjadi algoritma terbaik dalam mengelompokan aktivitas mahasiswa pada periode minggu pertama, minggu UTS, minggu sebelum UAS, dan minggu UAS. Hasil clustering memperlihatkan bahwa terdapat perbedaan pola aktivitas antara periode minggu pertama, minggu UTS, minggu sebelum UAS, dan minggu UAS, di mana terjadinya peningkatan aktivitas dan terdapat perbedaan pola cluster menjelang minggu UAS. Secara umum, pola cluster terdiri dari mahasiswa yang tidak self-regulated dan mahasiswa yang self-regulated. Mahasiswa yang tidak self-regulated dapat dilakukan intervensi oleh dosen untuk dapat meningkatkan pembelajarannya.

Activity data on the Learning Management System (LMS) used at XYZ University is experiencing significant and continuous data growth. This poses challenges in processing and analyzing such data. This study performs streaming student activity data processing and analysis to find patterns of student activity in LMS. Activity patterns identified using snapshots in the period of the first week of lectures, the week of the mid-term exam, the week before the final exam, and during the final exam week. The analysis was carried out by data mining algorithms using clustering techniques using snapshot of Research Methodology and Scientific Writing course in the term of even semester 2018/2019. The algorithm of the simulated clustering technique is K-Means and agglomerative hierarchical clustering using silhouette index evaluation to determine the pattern with the optimal number of clusters. From experiments on the clustering algorithm, the hierarchical clustering algorithm became the best algorithm in clustering student activities in the first week of lectures, mid-term exam weeks, the week before final exam, and final exam weeks. The clustering results show that there are differences in activity patterns between the first week, mid-term exam week, the week before final exam, and final exam week, where there is an increase in activity and there are differences in cluster patterns before the exam week. In general, the pattern consists of non-self-regulated students and self-regulated students. Non-self-regulated students can be intervened by lecturers to improve their learning"
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>