Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 192660 dokumen yang sesuai dengan query
cover
Ja`far Hilmy Farhan
"Identifikasi suatu letak atau lokasi tumor beserta jaringan-jaringan sehat di sekitarnya secara akurat, merupakan salah satu langkah dalam melakukan perencanaan radioterapi atau disebut juga dengan istilah treatment planning. Setelah lokasinya ditentukan dan dipastikan, dokter akan mencoba membuat perencanaan berupa dosis radiasi yang dibutuhkan untuk diberikan kepada pasien sehingga dapat memberikan kerusakan yang maksimal pada tumor tanpa memberikan dampak negatif pada organ-organ sehat di sekitarnya. Salah satu solusi dalam melakukan tugas tersebut adalah berupa segmentasi otomatis suatu citra PET. Segmentasi otomatis ini tidak hanya memakan waktu yang cukup singkat, tetapi juga mempertimbangkan seluruh nilai time-activity curve (TAC) yang ada pada citra. Salah satu metode untuk menentukan lokasi tumor adalah dengan cara segmentasi otomatis menggunakan algoritma clustering k-means. Berdasarkan penelitian dari (Abualhaj, 2017), clustering k-means memberikan hasil segmentasi yang sangat baik dalam melalukan pendeteksian lokasi tumor. Namun, algoritma yang digunakan tidak sepenuhnya otomatis karena perlunya input parameter nilai yang diterapkan oleh pengguna. Penelitian ini bertujuan mengidentifikasi pengaruh error terhadap input dari algoritma k-means clustering yaitu apabila terjadi kesalahan dalam memasukkan nilai-nilai input tersebut. Terdapat lima paremeter yang akan diuji dengan masing-masing lima variasi masukan. Parameter tersebut masing-masing adalah maximum number of cluster, maximum iteration, maximum repetition time, total counts, dan random counts. Untuk semua parameter, hasil jumlah cluster optimalnya tidak berubah dan tidak dipengaruhi oleh variasi dari parameter tersebut yaitu berjumlah 4 cluster kecuali pada parameter pertama apabila nilainya di bawah 4. Pada parameter pertama, hasil bentuk segmentasi beserta kurva TAC nya berubah saat nilai parameternya di bawah 4. Adapun jika nilainya di atas 4, berdasarkan yang diteliti penulis, tidak ada perbedaan pada bentuk segmentasi maupun jumlah optimal clusternya. Pada parameter kedua, bentuk segmentasinya terlihat ada sedikit perbedaan beserta kurva TAC saat nilai parameternya diperkecil.  Parameter ketiga memiliki hasil yang mirip dengan parameter kedua yang mana hasil segmentasinya memiliki sedikit perbedaan saat nilainya diperkecil begitu pula dengan kurva TAC nya. Parameter ketiga dan keempat memiliki hasil yang mirip ketika nilainya diperkecil maupun diperbesar yakni terlihat adanya sedikit perbedaan pada hasil segmentasinya.

Identifying a location or location of a tumor and surrounding healthy tissues accurately is one of the steps in planning radiotherapy or also known as treatment planning. After the location is determined and confirmed, the doctor will try to make a plan in the form of the radiation dose needed to be given to the patient so that it can provide maximum damage to the tumor without having a negative impact on the surrounding healthy organs. One solution in performing this task is in the form of automatic segmentation of a PET image. This automatic segmentation not only takes a fairly short time, but also considers all the time-activity curve (TAC) values ​​in the image. One method to determine the location of the tumor is by means of automatic segmentation using the k-means clustering algorithm. Based on research from (Abualhaj, 2017), k-means clustering provides excellent segmentation results in detecting tumor locations. However, the algorithm used is not fully automated because of the need for user-implemented value parameter input. This study aims to identify the effect of error on the input of the k-means clustering algorithm, namely if there is an error in entering the input values. There are five parameters to be tested with five variations of each input. These parameters are maximum number of cluster, maximum iteration, maximum repetition time, total counts, and random counts. For all parameters, the results of the optimal number of clusters do not change and are not influenced by variations of these parameters, which are 4 clusters except for the first parameter if the value is below 4. In the first parameter, the results of the segmentation form along with the TAC curve change when the parameter value is below 4 Meanwhile, if the value is above 4, based on what the author has studied, there is no difference in the form of segmentation and the optimal number of clusters. In the second parameter, the shape of the segmentation shows a slight difference along with the TAC curve when the parameter value is reduced. The third parameter has similar results to the second parameter where the segmentation results have a slight difference when the value is reduced as well as the TAC curve. The third and fourth parameters have similar results when the value is reduced or enlarged, namely that there is a slight difference in the segmentation results.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Erica
"Diversifikasi portofolio telah dijadikan solusi dalam memitigasi risiko dalam berinvestasi. Tujuan utama diversifikasi portofolio adalah untuk mengurangi variansi return dibandingkan dengan investasi pada satu saham tertentu. Metode Clustering, misalnya Agglomerative Clustering, digunakan untuk mengelompokkan saham-saham ke dalam masing-masing klaster yang homogen berdasarkan risiko. Klaster-klaster yang terbentuk kemudian akan digunakan sebagai acuan diversifikasi portofolio. Objek yang digunakan dalam metode clustering adalah 7 skor rasio finansial PER, EPS, PEG, DER, ROE, Current Ratio dan Profit Margin dari setiap saham. Selanjutnya, proporsi dari setiap saham pembentuk portofolio ditentukan melalui aplikasi Genetic Algorithm ke masing-masing klaster.
Pada penelitian ini, metode Genetic Algorithm dibangun berdasarkan model MVCCPO sehingga membentuk metode Genetic Algorithm Constrained. Performa dari Agglomerative Clustering Genetic Algorithm Constrained yang dievaluasi menggunakan data aktual, menghasilkan portofolio yang mampu mengalahkan return portofolio pasar dan memiliki rata-rata return yang lebih besar dibandingkan dengan portofolio yang dikonstruksi dengan metode Genetic Algorithm saja. Namun, dengan hubungan linear antara risiko dan return, adalah masuk akal bahwa portofolio dengan return yang lebih besar akan memiliki risiko yang lebih besar pula.

The purpose of portfolio diversification is to reduce the return rsquo s variance risk compared with a single stock investment or undiversified portfolio. The primary motivation of this research is to investigate the portfolio selection strategies through clustering and genetic algorithm. Clustering serves as a method to cluster assets with similar financial ratio scores the scores of EPS, PER, PEG, ROE, DER, Current Ratio and Profit Margin. By clustering method such as Agglomerative Clustering, stocks with similar risk profile are clustered together and the clusters produced can be used in diversifying portfolio. Genetic Algorithm will then be applied to each resulting cluster to obtain the optimal proportion of each stock in the portfolio.
The Genetic Algorithm used in this study is built from the MVCCPO model hence making it a Constrained Genetic Algorithm. The performance of Constrained Genetic Algorithm refined with Agglomerative Clustering in portfolio optimization, evaluated based on some actual datasets, gives a portfolio that beats the market and has bigger expected return than a portfolio constructed with only Genetic Algorithm. Due to the direct relationship of risk and return, it is logical to expect portfolio with a bigger return would have a bigger risk.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Felicia
"Sekolah adalah lembaga pendidikan formal yang bertujuan untuk memberikan pengajaran dan pembelajaran kepada siswa dalam berbagai bidang studi. Sekolah terdiri dari berbagai jenjang pendidikan, taman kanak-kanak hingga sekolah menengah atas. Kualitas performa suatu sekolah dapat diukur dengan melihat capaian Ujian Nasionalnya. Ujian Nasional tingkat SMA wajib diikuti oleh seluruh siswa kelas 12 dan dilaksanakan untuk menetapkan standar nasional yang akan digunakan untuk mengendalikan mutu pendidikan secara nasional. Analisis performa sekolah pada umumnya menggunakan metode konvensional sistem peringkat atau ranking berdasarkan nilai rata-rata Ujian Nasional. Analisis data nilai Ujian Nasional juga dapat dilakukan dengan berbagai cara termasuk pengelompokan data menggunakan algoritma clustering maupun biclustering. Metode clustering dapat digunakan untuk mengidentifikasi nilai sekolah yang mirip satu sama lain. Salah satu metode clustering yang populer digunakan adalah metode hierarki dan metode partisi (metode K-Means). Tetapi pada kenyataannya, masing-masing mata pelajaran memiliki penilaian yang sangat berbeda dari mata pelajaran lainnya. Penerapan biclustering pada metode pengelompokan ini diperlukan untuk mengungkap pola hubungan yang tidak terlihat antara nilai dan mata pelajaran pada data. Hal ini diimplementasikan dalam pengelompokan secara bersamaan dan simultan antara SMA (baris) dan mata pelajaran (kolom). Penelitian ini bertujuan untuk mengelompokkan SMA/MA di DKI Jakarta dan indikator nilai Ujian Nasional tahun 2019 menggunakan metode biclustering Cheng and Church dan Plaid Model serta membandingkan hasil penerapan metode tersebut menggunakan nilai indeks Jaccard dan variansi koherensi. Penelitian ini menggunakan data Capaian Nilai Ujian Nasional tahun 2019 pada SMA/MA di DKI Jakarta yang bersumber dari Kementerian Pendidikan dan Kebudayaan. Hasil penerapan metode biclustering Cheng and Church dan biclustering Plaid Model, menunjukkan bahwa bicluster-bicluster yang dihasilkan metode biclustering Plaid Model memiliki kisaran nilai indeks Jaccard dan variansi koherensi yang lebih rendah dibandingkan biclustering Cheng and Church. Hasil penelitian tersebut menunjukkan bahwa metode biclustering Plaid Model memberikan performa pengelompokan terbaik pada data Ujian Nasional. Diharapkan hasil penelitian ini dapat membantu memberikan wawasan terkait metode yang sesuai untuk diterapkan pada data dengan kondisi yang serupa.

A school is a formal educational institution aimed at providing teaching and learning to students in various fields of study. Schools consist of various levels of education, from kindergarten to high school. The quality of a school's performance can be measured by looking at its National Exam achievements. The National Exam at the high school level must be taken by all 12th-grade students and is conducted to establish national standards that will be used to control the quality of education on a national scale. School performance analysis generally uses conventional ranking systems based on the average National Exam scores. National Exam score data analysis can also be performed in various ways, including data clustering using clustering or biclustering algorithms. Clustering methods can be used to identify schools with similar scores. One of the popular clustering methods used is hierarchical clustering and partitioning methods (K-Means method). However, in reality, each subject has distinctly different assessments from other subjects. The application of biclustering in this clustering method is necessary to reveal hidden patterns of relationships between scores and subjects in the data. This is implemented in simultaneous grouping of both high schools (rows) and subjects (columns). This study aimsto cluster high schools (SMA/MA) in Jakarta and the 2019 National Exam score indicators using the Cheng and Church biclustering method and the Plaid Model biclustering method, and to compare the results of these methods using Jaccard index values and coherence variance. This study uses the 2019 National Exam Score Achievement data for high schools (SMA/MA) in Jakarta sourced from the Ministry of Education and Culture. The results of the application of the Cheng and Church biclustering method and the Plaid Model biclustering method show that the biclusters produced by the Plaid Model biclustering method have a lower range of Jaccard index values and coherence variance compared to Cheng and Church biclustering. The results of this study indicate that the Plaid Model biclustering method provides the best clustering performance for National Exam data. The findings of this study are expected to offer insights into the appropriate methods for application to similar data conditions."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asita Darma Irawati
"Pertimbangan finansial menjadi salah satu penentu utama apakah seseorang akan melanjutkan
pendidikan ke tingkat yang lebih tinggi atau tidak, sehingga diperlukan beasiswa untuk
membantu mahasiswa dalam menempuh pendidikan tinggi, terutama hingga tingkat doktor.
Besar biaya yang dikeluarkan oleh lembaga penyedia beasiswa kepada penerima beasiswa
tentunya diharapkan sepadan dengan kualitas ilmu yang diperoleh. Oleh karena itu, penelitian
ini bertujuan untuk membahas analisis pengelompokan universitas terbaik dunia berdasarkan
komponen biaya pendidikan program doktor dengan metode K-Means. Universitas pada
penelitian ini diambil dari QS World University Rangkings (WUR) 2022. Analisis eksploratori
data dilakukan dan diperoleh bahwa terdapat 83 dari 472 universitas di dunia memberi bantuan
dana penuh untuk studi program doktor. Nilai Silhouette sebesar 0,72 menunjukkan bahwa tiga
merupakan jumlah kelompok yang optimal bagi data. Sehingga terbentuk kelompok A
sebanyak 328 universitas, kelompok B sebanyak 108 universitas, dan kelompok C sebanyak
36 universitas. Kelompok A terdiri dari universitas dengan SPP dan biaya hidup per bulan
relatif rendah, kelompok B sedang, dan kelompok C tinggi. Untuk biaya transportasi udara,
kelompok B cenderung rendah, sedangkan kelompok A dan C relatif serupa dan lebih mahal
dari kelompok B. Sementara untuk biaya visa, kelompok A cenderung lebih murah, sedangkan
kelompok B dan C cenderung serupa dengan biaya lebih mahal. Berdasarkan analisis ini,
penulis memberikan saran universitas yang bisa dipertimbangkan lembaga pemberi beasiswa
sebagai perguruan tinggi tujuan.

Financial concern has been one of the main reasons why an individual wants to pursue higher
education. That is why scholarship is needed to help students earn an education, especially until
doctoral degree. The amount of money spent by institution who give scholarship must be
equivalent with the quality of knowledge an awardee got. This study aims to do clustering
analysis of the world’s top universities based on tuition fee components for doctoral program
using K-Means method. The object of this study are universities based on QS World University
Rankings 2022. Exploratory data analysis is done and found that there are 83 out of 472
universities in the world who give fully funded program for doctoral study. Based on the
silhouette value of 0.72, three is the best number of clusters for the data. Group A, B, C consists
of 328, 108, and 36 universities in respective order. Group A consists of universities who have
chepear tuition fee and monthly living cost compared to Group B dan C. However, Group B
consists of universities who have cheaper transportation, meanwhile Group A and C are quiet
similar. For visa, Group A is cheaper compared to Group B and C which are similar. Based on
the results, recommendations are given to the institution who provide scholarship about the
objective university for doctoral study.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Reza Maullanna
"Kegiatan berbelanja secara daring di e-commerce meningkat seiring dengan peningkatan pengguna internet di Indonesia. Kondisi ini mengakibatkan melonjaknya kegiatan pengiriman barang. Dalam proses pengiriman barang terdapat tahap last-mile delivery. Adapun tantangan yang dihadapi pada tahap ini adalah jumlah pengiriman yang banyak dan waktu pengiriman yang panjang. Hal ini bisa mengakibatkan penambahan jumlah alat transportasi yang digunakan. Salah satu alat transportasi untuk last-mile delivery adalah truk. Penggunaan truk dalam last-mile delivery dapat menyebabkan polusi udara serta tidak dapat mengirimkan paket tepat waktu karena kemacetan lalu lintas (dalam kasus daerah perkotaan). Karena hal itu, harus dicari jalan keluar yang dapat menurunkan polusi udara serta menurunkan kasus pengiriman paket tidak tepat waktu dalam last-mile delivery. Penelitian ini menggabungkan pemakaian truk dan drone yang bermaksud untuk menurunkan kasus pengiriman paket tidak tepat waktu serta menurunkan polusi udara dengan keunggulan drone. Metode yang dipakai melibatkan implementasi Fuzzy C-Means (FCM) clustering untuk mengelompokkan data pelanggan dengan mempertimbangkan kendala jumlah drone yang tersedia serta radius terbang drone dan implementasi Algoritma Genetika untuk merancang rute pengiriman yang optimal dengan mempertimbangkan kendala Time Windows pada depot dan semua cluster. Penerapan kedua metode itu dipakai pada data 90 pelanggan. FCM bisa menurunkan 63,15% jumlah cluster, menurunkan 36,03% keseluruhan jarak tempuh rute, menurunkan 28,77% keseluruhan waktu tempuh rute, serta pengurangan 4,06% nilai fungsi objektif bila ketimbang dengan yang didapat dari clustering secara intuitif.

Online shopping activities in e-commerce are increasing along with the rise in internet users in Indonesia. This trend has led to a surge in goods delivery activities. In the delivery process, there is a crucial last-mile delivery stage. The challenges faced during this stage include a high volume of deliveries and extended delivery times, leading to the necessity of deploying additional transportation means. One commonly used transportation method for last-mile delivery is trucks. However, the utilization of trucks in last-mile delivery poses challenges such as air pollution and the inability to ensure timely package deliveries due to traffic congestion, particularly in urban areas. To address these issues, a solution must be found that not only reduces air pollution but also mitigates instances of delayed package deliveries in last-mile delivery. This research proposes a novel approach by integrating the use of trucks and drones to capitalize on the advantages offered by drones. The methodology employed incorporates the implementation of Fuzzy C-Means (FCM) clustering to categorize customer data, considering constraints related to the number of available drones and the flying radius of the drones. Additionally, a Genetic Algorithm is applied to optimize delivery routes, considering time window constraints at the depot and within all clusters. The application of these two methods was tested on a dataset comprising 90 customers. FCM demonstrated the ability to reduce the number of clusters by 63.15%, decrease the overall route travel distance by 36.03%, and minimize the overall route travel time by 28.77%. Furthermore, it led to a 4.06% reduction in the objective function values compared to intuitive clustering."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wu, Junjie
"This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the "dangerous" uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the "2010 National Excellent Doctoral Dissertation Award", the highest honor for not more than 100 PhD theses per year in China."
Berlin: Springer-Verlag, 2012
e204063793
eBooks  Universitas Indonesia Library
cover
London: CRC Press, 2009
519.53 CON
Buku Teks SO  Universitas Indonesia Library
cover
Banjarnahor, Evander
"Berdasarkan data WHO pada pertengahan Juli 2021 lebih dari 185,2 juta orang di seluruh dunia terinfeksi virus corona atau Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Virus ini menyerang penapasan manusia yang dapat mengakibatkan infeksi paru-paru pada manusia dan bahkan dapat menyebabkan kematian. Tercatat bahwa lebih dari 4 juta orang di seluruh dunia meninggal akibat terinfeksi virus corona. Di Indonesia sendiri pada pertengahan Juli 2021 tercatat lebih dari 2,4 juta orang ternfeksi virus corona dan lebih dari 65,4 ribu orang meninggal akibat terinfeksi virus corona. Berdasarkan data tersebut, perlu dilakukan analisis kekerabatan virus SARS-CoV-2 untuk mengurangi penyebaran dan memberikan batasan sosial dari negara satu dengan negara lainnya. Identifikasi kekerabatan dari virus covid-19 dan penyebarannya dapat dilakukan dengan cara pembentukan pohon filogenetik dan clustering. Pada penelitian ini pohon filogenetik akan dibangun berdasarkan metode Hierarchical Clustering dengan menggunakan metode Multiple Encoding Vector dan K-Mer berdasarkan translasi DNA kodon menjadi asam amino. Jarak Euclidean akan digunakan untuk menentukan matriks jarak. Penelitian ini selanjutnya menggunakan metode K- Means Clustering untuk melihat penyebarannya, dimana nilai k ditentukan dari jumlah centroid yang dihasilkan dari metode Hierarchical Clustering. Penelitian ini mengambil sampel barisan DNA SARS-CoV-2 dari beberapa negara yang tertular. Dari hasil simulasi, nenek moyang SARS-CoV-2 berasal dari China. Hasil analisis juga menunjukkan bahwa leluhur covid-19 yang paling dekat dengan Indonesia berasal dari India, Australia dan Spanyol. Selain itu dari hasil simulasi dihasilkan bahwa barisan DNA SARS-CoV-2 terdiri dari 9 cluster dan cluster keenam adalah kelompok yang memiliki anggota paling banyak. Hasil analisis juga menunjukkan bahwa metode ini sangat opitimal dalam pengelompokan data dengan nilai 97.4%.

Based on WHO data in middle of July 2021, Coronavirus or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is infecting more than 185.2 million people worldwide. The virus attacks human breathing, which can cause lung infections and can even cause death. More than 4 million people worldwide have died due to being infected with the coronavirus. In Indonesia alone, in mid-July 2021, there were more than 2.4 million people infected with the corona virus and more than 65.4 thousand people died from being infected with the corona virus. Based on those covid-19 survivor data, it is necessary to carry out a kinship analysis of the coronavirus to reduce its spreading. Identification of the kinship of the covid- 19 virus and its spread can be done by forming a phylogenetic tree and clustering. This study uses the Multiple Encoding Vector method and K-mer based on translation DNA codon to amino acid in analyzing sequences and Euclidean Distance to determine the distance matrix. This research will then use the Hierarchical Clustering method to determine the number of initial centroids and cluster, which will be used later by the K-Means Clustering method kinship in SARS-CoV-2 DNA sequence. This study took samples of DNA sequences of SARS-CoV-2 from several infected countries. From the simulation results, the ancestors of SARS-CoV-2 came from China. The results of the analysis also show that the closest ancestors of covid-19 to Indonesia came from India, Australia and Spain. In addition, the ancestors of SARS-CoV-2 came from China. The SARS- CoV-2 DNA sequence is also consisted of 9 clusters, and the sixth cluster is the group that has the most members. The results also show that this method is very optimal in a grouping of data with a value of 97.4%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Athiyyah Fadillah Eriri
"Pengelompokan atau clustering adalah pengelompokan objek-objek yang dilakukan atas dasar kesamaan atau jarak (perbedaan) di mana tidak ada asumsi yang dibuat mengenai banyaknya cluster atau struktur cluster. Salah satu metode yang banyak digunakan dalam penyelesaian masalah clustering adalah algoritme K-Means. Pada algoritme ini, suatu objek yang telah menjadi anggota cluster tertentu, tidak bisa menjadi anggota cluster yang lainnya. Metode ini dikenal sebagai hard clustering. Pendekatan lain dalam melakukan pengelompokan didasarkan pada teori himpunan fuzzy yang dikenal dengan pengelompokan fuzzy. Teori himpunan fuzzy memiliki nilai kekaburan antara salah atau benar. Jadi, dalam melakukan pengelompokan, setiap objek memiliki peluang menjadi anggota pada setiap cluster. Salah satu metode pengelompokan fuzzy adalah Fuzzy C-Means (FCM). Pada tugas akhir ini, metode K-Means dan FCM digunakan untuk mengelompokkan nagari-nagari di Kabupaten Agam. Nagari-nagari di Kabupaten Agam dikelompokan berdasarkan indikator pembangunan keluarga yang berasal dari Laporan Pendataan Keluarga tahun 2015 yang bersumber dari BKKBN (Badan Kependudukan dan Keluarga Berencana Nasional). Pada penelitian ini diperoleh empat cluster hasil dari indeks xie and beni. Jumlah anggota setiap cluster hasil dari algoritme K-Means adalah 32, 28, 11 dan 11. Sedangkan jumlah anggota setiap cluster hasil dari algoritme Fuzzy C-Means adalah 31, 18, 21, dan 12. Perbedaan jumlah anggota cluster yang dihasilkan algoritme K-Means dan Fuzzy C-Means adalah 14.29%. Karena rasio simpangan baku dalam dan antar cluster pada algoritme K-Means memberikan nilai yang lebih kecil dibandingkan algoritme Fuzzy C-Means maka algoritme K-Means memberikan hasil yang lebih baik dari pada algoritme Fuzzy C-Means dalam pengelompokan nagari-nagari di Kabupaten Agam.

Grouping or clustering is a method to group objects that are carried out on the basis of similarity or distance (difference) where no assumptions are made regarding the number of clusters or cluster structures. One method that is widely used in solving clustering problems is the K-Means algorithm. In this algorithm, if an object has become a member of a particular cluster, then it cannot become a member of another cluster. This method is known as hard clustering. Another approach to grouping is based on fuzzy set theory, known as fuzzy grouping. Fuzzy set theory has a blurring value between right or wrong. So, in grouping process, each object has the opportunity to become a member in each cluster. One of the fuzzy grouping methods is Fuzzy C-Means. In this study, the two methods, K-Means and Fuzzy C-Means, are used to group nagari-nagari in Agam District. Nagari is equivalent to villages in other provinces in Indonesia. The nagari grouping in Kabupaten Agam is based on family development indicators derived from the 2015 Family Data Collection Report sourced from BKKBN (Badan Kependudukan dan Keluarga Berencana Nasional). In this study four clusters were obtained based on xie and beni’s index. The numbers of members of each cluster as the result of the K-Means algorithm are 32, 28, 11 and 11. While the numbers of members of each cluster as the result of the Fuzzy C-Means algorithm are 31, 18, 21, and 12. The different cluster members produced by the K-Means and Fuzzy algorithms C-Means is 14.29%. Because the standard deviation ratio within and between clusters in the K-Means algorithm gives a smaller value than the Fuzzy C-Means algorithm, the K-Means algorithm gives better results than the Fuzzy C-Means algorithm on the nagari grouping in Agam District."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naufal Ikhwanuddin
"Dalam penelitian ini kami menganalisis lebih dari 1 juta sampel data crowdsource pelanggan jaringan seluler 4G dari tiga provinsi di Indonesia; Daerah Keistimewaan Indonesia (DKI) Jakarta, Jawa Barat, dan Banten. Rata-rata download throughput, rata-rata upload throughput, dan rata-rata kekuatan sinyal kemudian digunakan untuk segmentasi kabupaten ke dalam tiga kategori; Gold, Silver, dan Bronze, masing-masing dengan kelas tertinggi hingga terendah. Lima operator jaringan seluler Indonesia dievaluasi dalam lima minggu yang diambil dari peristiwa penting dari tahun 2020 hingga 2021. Metodologi yang digunakan adalah dengan menggunakan algoritma k-means pada perangkat lunak Tableau 2021.1. Hasil penelitian menunjukkan bahwa semua operator memiliki kinerja yang berimbang, sedangkan wilayah pinggiran kota memiliki kinerja yang lebih rendah dibandingkan dengan wilayah pusat perkotaan, dan pekan hari raya seperti Natal dan Idul Fitri menunjukkan kinerja yang lebih buruk dibandingkan minggu-minggu lainnya. Kebijakan strategis kemudian dapat diambil oleh operator untuk meningkatkan layanan di daerah dengan kualitas rendah seperti Kabupaten Majalengka, Cianjur, dan Kuningan, dan kebijakan marketing khusus untuk kota dengan segmen yang menonjol seperti Kota Bandung dan Kabupaten Banjar.

In this study we analyze more than 1 million crowdsource data samples of 4G Mobile Network subscribers from three provinces in Indonesia; Special Region of Indonesia (Daerah Keistimewaan Indonesia, DKI), West Java, and Banten. Average download throughput, average upload throughput, and average signal strength are then used to clustering the districts into three categories; Gold, Silver, and Bronze, with the highest to lowest class respectively. Five Indonesian mobile network operators evaluated in five weeks each with significant events from 2020 to 2021. The methodology is based on the k-means algorithm as applied in the software of Tableau 2021.1. The result shows that all operators have comparable performance, while the sub-urban area has lower performance compared to the urban district area, and a festive week like Christmas and Ied Muslim days shows worse performance than other weeks. Strategic policies can be taken by operators to improve services in low-quality areas such as Majalengka, Cianjur, and Kuningan Regencies, and special marketing policies for regions with prominent conditions such as Bandung City and Banjar Regency. "
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>