Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 56648 dokumen yang sesuai dengan query
cover
Kiki Widiyanti
"Fotoelektrokimia water splitting merupakan salah satu metode untuk memproduksi hidrogen yang menjanjikan. ZnO menjadi salah satu material semikonduktor yang cocok digunakan sebagai fotoanoda dalam sel fotoelektrokimia. Berbagai cara telah dilakukan untuk meningkatkan kinerja fotoelektrokimia salah satunya yaitu dengan membuat stuktur nano fotoanoda. Pada penelitian ini telah dilakukan sintesis ZnO nanorod dengan metode hidrotermal dan ZnO nanotubes disintesis dengan metode self-selective etching sebagai fotoanoda. Hasil pengujian fotoelektrokimia water splitting menunjukan ZnO nanotubes 22 jam menghasilkan photocurrent tertinggi pada reaksi reduksi air atau hydrogen evolution reaction yaitu sebesar 0,1736 mA/cm2 dan reaksi oksidasi air atau oxygen evolution reaction sebesar -0,2108 mA/cm2 dengan nilai efisiensi sebesar 0,0177% pada tegangan 0,956 V vs RHE (Reversible Hydrogen Elektroda). ZnO nanotubes menyerap cahaya dengan spektrum yang lebih lebar sehingga mampu menghasilkan lebih banyak pasangan elektron-hole untuk fotoelektrokimia pemisahan air.

Photoelectrochemical water splitting is a promising method for producing hydrogen. ZnO is one of the suitable semiconductor materials to be used as photoanodes in photoelectrochemical cells. Various ways have been performed to improve the photoelectrochemical performance, such as by using the nanostructure of photoanodes. In this study, ZnO nanorods were synthesized using the hydrothermal method and ZnO nanotubes were synthesized using the self-selective etching method as photoanodes. The results of the photoelectrochemical water splitting measurement showed that ZnO nanotubes etched for 22 hours produced the highest photocurrent in the water reduction reaction or hydrogen evolution reaction, which was 0.1736 mA/cm2 and the water oxidation reaction or oxygen evolution reaction was -0.2108 mA/cm2 with an efficiency value of 0. 0.0177% at 0.956 V vs RHE (Reversible Hydrogen Elektroda). ZnO nanotubes absorb wider light spectrum resulting in more electron-hole pairs for photoelectrochemical water splitting."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fahmi Syafaat
"ABSTRAK
Pada penelitian kali ini TiO2 nanotube dibuat dengan metode Rapid Breakdown
Anodization menggunakan plat Ti dalam elektrolit HClO4 0,15 M. Serbuk TiO2
dikalsinasi pada 4500 C selama 3 jam, dan dikarakterisasi dengan SEM, XRD, UV-Vis
DRS, FTIR and BET. Zinc-Phorphirin-Imide telah berhasil dilekatkan pada TiO2
Nanotube dengan merendam TiO2 Nanotube ke dalam larutan Zinc-Phorphirin-imide
selama 24 jam. zinc-Phorphirin bebas memperlihatkan karakteristik spektra serapan pada
daerah cahaya tampak, yaitu 439 nm and 620 nm. Saat dilekatkan dengan TiO2-
Nanotube terjadi pergeseran serapan padathe 421 nm dan 640 nm. Zinc-Phorphirin/TiO2
electrode memperlihatkan respon arus yang baik pada daerah cahaya tampak dengan
photocurrent density sebesar 1,1 mA/cm2. Saat fotoelektroda dirakit menjadi Solar Cell
(DSSC), kurva I-V menunjukkan efisiensi fotokonversi dari Zinc-Phorphirin/TiO2
DSSC sebesar 1,914% (frontside illumination) dan1,147% (backside illumination).

ABSTRACT
In this work, TiO2 Nanotube were prepared by rapid breakdown electro oxidation of Ti
foil in electrolyte containing 0.15 M HClO4. Obtained TiO2 Nanotube bundling powder
was calcinated at 4500 C for 3 hrs, then was characterized by SEM, XRD, UV-Vis DRS,
FTIR and BET. Zinc-Phorphirin-Imide dyes was deposited into TiO2 Nanotube by
immersion of TiO2Nanotube in Zinc-Phorphirin-imide solution for 24 hours. Free zinc-
Phorphirin-Imide dyes shows characteristics absorbtion spectra in visble region, these are
439 nm and 620 nm. While, when it was immobilized in to TiO2-Nanotube the
absorbtion peak shift to 421 nm and 640 nm. The Zinc-Phorphirin-Imide/TiO2 electrode
showed excellent respond toward visible light with the typical photocurrent density of 1,1
mA/cm2. When the fabricated photoelectrode was assemblied in a typical Dyes Sensitize
Solar Cell (DSSC), the I-V curve showed photoconversion efficiency of the assemblied
Zinc-Phorphirin-Imide/TiO2 DSSC was 1,914% (frontside illumination) and 1,147%
(backside illumination)."
2016
T44759
UI - Tesis Membership  Universitas Indonesia Library
cover
Kamilia Nabila Huwaida
"Material semikonduktor TiO2 yang digunakan sebagai fotoelektroda hanya dapat diaktifkan pada daerah sinar UV karena memiliki energi band gap yang relative besar. Untuk memperbaiki respon cahaya fotoelektroda, dilakukan pengembangan metode yang dapat mengubah respon fotokatalisis dari sinar UV ke sinar visible dengan menambahkan dopan karbon pada TiO2 nanotube. Menarik pula untuk diinvestigasi apabila sebelum dilakukan proses doping karbon, matriks TiO2 nanotube diperkaya terlebih dahulu dengan spesi Ti3+. Adanya spesi Ti3+ dapat memberikan hasil lebih baik daripada hanya menambahkan dopan karbon pada TiO2 nanotube. Spesi Ti3+ yang terdapat di dalam C-TiO2 nanotube diharapkan dapat memperkecil nilai energi band gap sehingga respon serapan sinar tampak lebih baik, arus cahaya yang dihasilkan lebih besar, dan meningkatkan kinerja fotoanoda dalam menghasilkan gas H2. Berdasarkan karakterisasi SEM, diameter tabung TiO2 nanotube yang dihasilkan rata-rata sebesar 68,92 nm. Dari karakterisasi XRD, didapatkan TiO2 nanotube yang berfasa anatase. Dari persamaan Kubelka-Munk, diperoleh nilai energi celah pita TiO2 nanotube sebesar 3,18 eV. Dari hasil MPA, arus cahaya TiO2 nanotube yang dihasilkan sinar UV (0,000011 mA/cm2) lebih tinggi daripada sinar visible (0,000007 mA/cm2). Hal ini menunjukkan bahwa TiO2 nanotube memiliki aktivitas fotokatalitik pada daerah sinar UV.

Material of TiO2 semiconductor as a photoelectrode can only be activated in the UV light region because it has a relatively large band gap energy. To improve the photoelectrode, an effort was developed to shift the photocatalytic response visible light by adding carbon dopant in to TiO2 nanotube. It is also interesting to investigate if before the carbon doping process is carried out, the TiO2 nanotube matrix is enriched first with the Ti3+ species. The presence of Ti3+ species can give better results than just adding carbon dopant to TiO2 nanotube. Ti3+ species contained in C-TiO2 nanotube are expected to reduce the band gap energy value better response in visible light absorption, resulting higher photocurrent, and improve the performance of photoanode in producing H2 gas. Based on SEM characterization, tube diameter of TiO2 nanotube on average is 68,92 nm. From XRD characterization, obtained TiO2 nanotube which has an anatase phase. From Kubelka-Munk equation, band gap energy of TiO2 nanotube is 3,18 eV. From MPA result, photocurrent of TiO2 nanotube produced by UV light (0.000011 mA/cm2) is higher than visible light (0.000007 mA/cm2). This shows that TiO2 nanotube has photocatalytic activity in the UV light region."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bernadet Valentine
"ABSTRAK
Produksi nanotube karbon jenis Single Walled Nanotube Carbon (SWNT) dan
Few Walled Nanotube Carbon (FWNT) masih sulit untuk dilakukan. Salah satu
penyebab utama adalah pemilihan katalis yang kurang tepat. Penelitian ini
menggunakan katalis Fe/Mo/MgO untuk menghasilkan SWNT atau FWNT
(diameter luar nanotube karbon kurang dari 10 nm). Katalis Fe/Mo/MgO
dipreparasi dengan metode sol gel/spray coating. Nanokarbon akan dihasilkan
melalui reaksi dekomposisi katalitik metana pada suhu 850oC dengan katalis
Fe/Mo/MgO. Hasil penelitian menunjukkan konversi metana tertinggi mencapai
97,64% dan yield karbon sebesar 1,48 gc/gkat. Nanokarbon kemudian
dikarakterisasi dengan Transmission Electron Microscope (TEM). Nanokarbon
yang dihasilkan pada penelitian ini terdiri atas nanotube karbon jenis FWNT
(range diameter luar 4,5 nm ? 10 nm). Selain itu, MWNT (Multi Walled Nanotube
Carbon, range diameter luar 10 nm ? 89,5 nm), carbon nanofiber, coil nanotube,
dan bamboo-shaped carbon juga telah dihasilkan. Jenis nanokarbon yang
dihasilkan bukan hanya jenis nanotube karbon disebabkan oleh waktu reaksi yang
terlalu panjang serta diameter partikel katalis 20 nm hingga 100 nm yang
terdeteksi dari hasil X-Ray Diffraction (XRD) dan Field Emmision Scanning
Electron Microscope (FE SEM). Untuk memperbaiki hasil ini, running pada
penelitian ini dilakukan sekali lagi dengan waktu reaksi 30 menit dengan waktu
reduksi 30 menit di suhu 850oC dan suhu kalsinasi 550oC di udara. Hasil
nanokarbon yang diperoleh memiliki range diameter luar yang lebih kecil dan
berkisar antara 8,5 nm hingga 66,85 nm yang terukur pada FE SEM. Namun, jenis
nanokarbon belum diketahui berupa FWNT atau MWNT atau nanokarbon
lainnya.

Abstract
Production of Single Walled Nanotubes Carbon (SWNT) dan Few Walled
Nanotubes Carbon (FWNT) is really hard to do recently. It occured due to
inappropriate catalyst selection. Fe/Mo/MgO catalyst, used in literature, was used
to make nanotubes carbon. Fe/Mo/MgO catalyst was prepared by sol gel/spray
coating method and it would be reacted with methane in 850oC (methane
decomposition catalytic reaction). The research result shows that the highest
methane conversion reached 97,64% and carbon yield is 1,48 gc/gkat.
Transmission Electron Microscope (TEM) indicated that the synthesized product
was FWNT (carbon nanotubes with outer diameter between 4,5 nm ? 10 nm),
MWNT (Multi Walled Nanotubes Carbon, outer diameter between 10 nm ? 89,5
nm), coil nanotube, carbon nanofiber, dan bamboo-shaped carbon. It is happened
due to longer time reaction and catalyst diameters have range between 20 nm ?
100 nm which detected by XRD and SEM characterization. Then, methane
decomposition catalytic reaction to get nanotube carbon was done once again in
shorter times (30 minutes), longer time of reduction (40 minutes), and lower
calcination temperature (550oC) in air. FE SEM indicated that range of outer
diameter nanocarbon between 8,5 nm ? 66,85 nm but its types can not be
determined by FE SEM."
Fakultas Teknik Universitas Indonesia, 2012
S43615
UI - Skripsi Open  Universitas Indonesia Library
cover
Jessica Tanuwijaya
"Pengaruh memodifikasi TiO2 dengan menggunakan dopan C dan batu apung dalam mendegradasi fenol dan Reactive Orange 7 telah di investigasi. Sumber dopan Carbon diperoleh dari 1-propanol. Pelapisan C-TiO2 pada batu apung diperoleh dari metode deep coating. Analisis UV-Vis DRS menunjukkan bahwa penurunan bandgap energy C-TiO2 menjadi 3,05 eV. Analisis BET menunjukkan luas permukan C-TiO2-batu apung adalah 3,539 m2/g. Konsentrasi fenol dan Reactive Orange 7 dianalisis dengan Spektrofotometer UV-Vis. Penambahan laju udara 100 ml/menit dapat meningkatkan kinerja komposit dengan tingkat degradasi mencapai 100% selama 2,5 jam. Konsentrasi awal fenol 10 ppm dapat didegradasi selama 0,8 jam dengan konstanta laju degradasi 1,26 menit-1.

Effect of TiO2 modified by using dopants C and pumice in degrading phenol and Reactive Orange 7 was investigated. Source of dopant Carbon was obtained from 1-propanol. Coating C-TiO2 on pumice stone was obtained by deep coating process. UV-Vis DRS analysis showed that bandgap energy of C-TiO2 is reducing to 3.05 eV. BET analysis showed surface area of composite is 3.54 m2/g. The concentration of phenol and Reactive Orange 7 was analyzed by UV-Vis spectrophotometer. The addition rate of air 100 mL/min to enhance the performance of composite with degradation rates reached 100% for 2.5 hours. Initial phenol concentration of 10 ppm for 0,86 hours can be degraded by the degradation rate constant 1.26 min-1."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S45235
UI - Skripsi Membership  Universitas Indonesia Library
cover
Angga Maulana
"Pada penelitian ini, sintesis dan karakterisasi dari nanomaterial aerogel titania (TiO2) untuk tujuan aplikasi sel surya tersensitasi zat pewarna (DSSC) telah dilakukan. Aerogel TiO2 dengan luas permukaan yang tinggi telah berhasil dipreparasi melalui dua tahapan: proses sol–gel dengan rasio hidrolisis (Rw) 2.00, diikuti oleh proses ekstraksi super kritis kontinu menggunakan CO2. Untuk tujuan perbandingan, xerogel juga disintesis dengan metode pengeringan biasa pada temperatur ruang. Metode kalsinasi bertahap digunakan untuk merubah kedua sampel menjadi anatase polikristalin dengan memanaskannya pada 1500C dan 3000C, masing-masing selama 3 jam di bawah pengaruh gas N2 dan melanjutkan hingga temperatur kalsinasi di 4200C selama 2 jam, di bawah tiupan gas oksigen.
Karakterisasi dari aerogel dan xerogel didapatkan menggunakan DTA, BET, XRD, UV-vis DRS, dan FTIR. Kedua sampel diintegrasikan menjadi DSSC, yang pengukuran tegangan sirkuit terbukanya (Voc) dilakukan di bawah sinar putih menggunakan multimeter. Hasil penelitian menunjukkan aerogel yang dipreparasi memiliki luas permukaan yang lebih tinggi (1975 m2/g) dari xerogel (271 m2/g). Telah dibuktikan pula bahwa proses kalsinasi bertahap mampu meningkatkan ukuran kristalit dari aerogel hingga 9,21 nm dengan tetap mempertahankan luas permukaannya (71,90 m2/g) lebih tinggi dari xerogel (67,90 m2/g). Hasil pengukuran Voc menunjukkan tegangan terbuka yang lebih tinggi pada DSSC aerogel (21,40 mV) daripada DSSC xerogel (1,10 mV).

In this work, synthesis and characterization of nanomaterial titania (TiO2) aerogels for the purpose of dye-sensitized solar cells (DSSC) application have been performed. TiO2 aerogels with high surface area were succesfully prepared by two steps: sol–gel process with hydrolysis ratio (Rw) of 2.00, followed with continuous supercritical extraction with CO2. For comparison purposes, xerogels were also synthesized by conventional drying at room temperature. Multi-step calcination method was used to transform both samples to polycrystalline anatase by heating at 1500C and 3000C for 3 hours each under the influence of N2 gas and continuing to calcination temperature at 4200C for 2 hours, under oxygen flow (muffle).
The characteristics of aerogels and xerogels were obtained by DTA, BET, XRD, UV-vis DRS, and FTIR. Both samples were integrated into DSSC, which open voltage measurement (Voc) were performed under white light using multimeter. The results suggest aerogels prepared had higher surface area (1975 m2/g) than xerogels’ (271 m2/g). It was also proven multi-step calcination could increase crystallite size of aerogels to 9,21 nm by maintaining its surface area (71,90 m2/g), which is higher than that of xerogels (67,90 m2/g). The Voc measurement reveals a higher voltage on aerogel’s DSSC (21,40 mV) than that of xerogel (1,10 mV).
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44312
UI - Skripsi Membership  Universitas Indonesia Library
cover
Novi Andini
"Fabrikasi Dye-Sensitized Solar Cell (DSSC)menggunakan klorofil dan rhodamin B telah berhasil dilakukan.Bahan semikonduktor sebagai elektroda kerja dalam DSSC yang digunakan adalah TiO2nanotube yang ditumbuhkan pada plat titanium dengan teknik anodisasi, dilanjutkan dengan kalsinasi pada 500⁰C untuk membentuk fasa kristal TiO2. Karakterisasi terhadap Ti/TiO2-NT meliputi Field Emission Scanning Electron Microscope(FE-SEM), UV-VisDiffuse Reflectance Spectrometry (DRS), X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), dan Linear Sweep Voltametry (LSV). Gambar FE-SEM menunjukkan bahwa TiO2 bermorfologi tube dengan diameter 88.99nm. Pola XRD menunjukkan puncak TiO2 anatase pada sudut 2θ: 25, 37,48,54, dan 55 derajat. Karakterisasi UV-Vis menunjukkan nilai bandgap TiO2 sebesar 3.24 eV. Spektrum FTIR menunjukkan keberadaan vibrasi ikatan ~Ti-O-Ti~. Kurva LSV menunjukkan bahwa TiO2 aktif pada daerah UV. Plat Ti/TiO2 dilapisi oleh zat warna melalui teknik elektroforesis dengan variasi waktu 8,10,12, dan 14 menit. Spektrum UV-Vis DRS dari TiO2 yang terlapisi zat warna menghasilkan puncak khas dari masing-masing zat warna, menunjukkan bahwa zat warna telah menempel pada TiO2. Pengujian terhadap performa DSSC menunjukkan nilai efiensi sebesar 0.3565% untuk Ti/TiO2-NT/Klorofil; 0.4351% untuk Ti/TiO2-NT/Rhodamin B; dan 0.3963% untuk Ti/TiO2-NT/Klorofil-Rhodamin B.Indonesia

Fabrication of Dye-Sensitized Solar Cell (DSSC) employing chlorophyll and rhodamine B has been successfully carried out. TiO2 nanotubes which was grown on titanium plate by an anodizationtechniques, followed by calcination at 500⁰C to form a crystalline phase of TiO2, was used as working electrode in the DSSC. Characterization of the Ti/TiO2-NT included Field Emission Scanning Electron Microscope (FE-SEM), UV-Vis Diffuse Reflectance Spectrometry (DRS), X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), and Linear Sweep Voltametry (LSV). FE-SEM images showed the tube morphologies of TiO2 with a diameter of 88,99 nm. XRD pattern showed the TiO2 anatase peak at 2θ : 25, 37, 48, 54, dan 55 degree. UV-Vis DRS characterization revealed that the bandgap of the prepared TiO2is 3.24 eV. FTIR spectrum showed the presence of ~Ti?O-Ti~ vibration. LSV curves obtained indicate that the TiO2is active in the UV region . The Ti/TiO2 plate then was being coated with the dye through electrophoresis technique with time variation of 8, 10, 12, and 14 minutes. UV-Vis DRS spectrum of the dyes coated TiO2 showed that all typical dyes realted peaks were observed, indicate that the dyes was attached to the Ti/TiO2-NT. Performance tests of the assembled DSSC showed the efficiencies of 0.3565%for the Ti/TiO2-NT/Chlorophyll; 0.4351% for the Ti/TiO2-NT/Rhodamine B; and 0.3963% for the Ti/TiO2-NT/Chlorophyll/Rhodamine B respectively."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S56100
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anggita Putri Mentari
"Fotoelektrokimia water splitting merupakan salah satu metode penghasil hidrogen yang paling menjanjikan. Salah satu material semikonduktor yang cocok digunakan sebagai fotoanoda untuk aplikasi water splitting adalah ZnO. Namun, ZnO memiliki beberapa kekurangan yang dapat diatasi dengan menggabungkan ZnO dengan logam mulia. Pada penelitian ini, ZnO Nanorods (NRs) disintesis dengan metode hidrotermal dan kemudian dideposisi dengan AuAg Mesoflowers (MFs) yang disintesis dengan metode wet chemistry. Hasil pengujian linear sweep voltamogram (LSV) dibawah cahaya tampak dan AM 1.5 G menunjukkan ZnO/AuAg MFs menghasilkan photocurrent tertinggi pada reaksi OER maupun HER dengan efisiensi tertinggi 0,034% pada tegangan 0,874 V vs RHE. AuAg MFs juga berperan sebagai donor elektron yang diinjeksikan ke pita konduksi ZnO sehingga dapat meningkatkan photocurrent yang dihasilkan.

Photoelectrochemical separation of water is one of the most promising methods of producing hydrogen. One of the most suitable semiconductor materials used as photoanodes for water splitting applications is ZnO. However, ZnO has several drawbacks that can be overcome by combining it with noble metals particles. In this study, ZnO nanorods (NRs) were synthesized by the hydrothermal method and then deposited with AuAg Mesoflowers (MFs) which was synthesized by the wet chemical method. The linear sweep voltammogram (LSV) measurement under visible light and AM 1.5 G show that ZnO / AuAg MFs produces the highest photocurrent in the OER and HER reactions with the highest efficiency of 0.034% at a voltage of 0.874 V vs RHE. AuAg MFs may acts as an electron donor that is injected into the ZnO conduction band so that it can increase the photocurrent."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Gede Wibawa Putra
"Bahan bakar hidrogen sebagai energi terbarukan berpotensi untuk dimanfaatkan sebagai sumber energi baru dan menggantikan bahan bakar fosil karena menghasilkan emisi rendah dan tidak berdampak negatif terhadap lingkungan. Produksi hidrogen dapat dilakukan dengan reaksi pemisahan air. Dalam penelitian ini, akan diamati reaksi pemisahan air pada sistem Sel Fotoelektrokimia Tersensitasi Zat Warna (DSPEC) menggunakan nanopartikel TiO2 untuk menghasilkan hidrogen 2H+ + 2e− → H2 (0,198 V NHE pada pH 7). Film FTO/TiO2 dipreparasi dan dikarakterisasi dengan XRD dan SEM. Pewarna komersial D102 dan D131 serta pewarna Rumbipy (kompleks) digunakan sebagai zat warna tersensitasi yang akan dibandingkan dalam elektroda kerja FTO/TiO2/pewarna; faktor-faktor seperti waktu loading zat warna, hole mobility (h+), dan adanya EDTA sebagai agen sacrificial akan diinvestigasi. Produksi hidrogen optimal diperoleh pada waktu loading 3 jam untuk D102 dan Rumbipy, sementara 2 jam untuk D131, hole mobility D102, D131, dan Rumbipy masing-masing adalah 6.42, 5.25, dan 11.01 (10-10 cm2s-1). Percobaan menghasilkan produksi hidrogen dalam sistem dengan adanyaEDTA sebagai berikut, Rumbipy > D102 > D131 dengan mol hidrogen terbesar mencapai 226,4 μmol dengan efisiensi faradaic 98,88% pada zat warna Rumbipy. Sedangkan dalam sistem tanpa adanya EDTA produksi hidrogen menghasilkan D131 > D102 > Rumbipy dengan mol hidrogen terbesar hanya mencapai 0,353 μmol dengan efisiensi faradaic 2,537% pada zat warna D131, selama waktu pengukuran 550 detik dengan iradiasi 100 mWcm-2.
Hydrogen fuel as renewable energy has a potency to be utilized as new energy sources and replace fossil fuels cause it resulted low emission and having no negative impact to the environment. Hydrogen production can be carried out by water splitting. In this study, we will observe the reaction of water splitting on Dye-Sensitizer Photoelectrochemical Cell (DSPEC) system using TiO2 nanoparticles to produce hydrogen 2H+ + 2e− → H2 (0,198 V NHE in pH 7). FTO/TiO2 film was prepared and characterized by XRD and SEM. Commercial dyes D102 and D131 are used as well as Rumbipy (complex) dyes as dye sensitizer which will compared in working electrode FTO/TiO2/dyes; factors such as dye loading time, hole mobility, and with or without EDTA as sacrificial agent were studied. The optimal hydrogen production was achieved at 3 hours dye loading time for D102 and Rumbipy dyes, while 2 hours for D131 dyes, hole mobility of D102, D131, and Rumbipy dyes was 6.42, 5.25, and 11.01 (10-10 cm2s-1) respectively. The experiment resulted hydrogen production in the system with the presence of EDTA as follow Rumbipy > D102 > D131 with the largest mol hydrogen reached 226.4 μmol with faradaic efficiency 98.88% in Rumbipy dyes. Whereas in the system without EDTA the hydrogen production resulted D131 > D102 > Rumbipy with the largest mol hydrogen only reached 0.35 μmol with faradaic efficiency 2.54% in D131 dyes, during measurements time 550 seconds with irradiation 100 mW cm-2."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indar Kustiningsih
"Optimasi berbagai parameter untuk preparasi fotokatalis TiO2 nanotubes dan TiO2 nanowires telah dilakukan, diantaranya dengan kombinasi proses sonikasi dan hidrotermal yang dilanjutkan dengan post treatment (kalsinasi atau hydrothermal post treatment) dan penambahan dopan logam (Cu, Pt) dan dopan nonlogam (N). Karakterisasi terhadap hasil sintesis dilakukan dengan menggunakan analisa TEM, SEM, BET, DRS dan XRD. Dari hasil analisa TEM dan SEM menunjukkan proses kombinasi sonikasi hidrothermal menggunakan NaOH diperoleh morfologi nanotubes dengan diameter luar 40 nm, sedangkan dengan KOH diperoleh struktur nanowires dengan diameter luar sebesar 6 nm. Hasil pengujian XRD menunjukkan fasa kristal baik untuk nanotubes maupun nanowires yang dihasilkan adalah anatase. Uji aktifitas katalis untuk produksi hidrogen menggunakan sacrificial agent metanol.
Dari hasil pengujian menunjukkan modifikasi TiO2 dari nanopartikel menjadi nanotubes dapat meningkatkan produksi hidrogen menjadi dua sampai tiga kalinya, sedangkan modifikasi ke bentuk nanowires menjadi dua kali dibandingkan TiO2 P25. Luas permukaan yang tinggi dan morfologi berongga pada nanotubes menyebabkan dispersi dopan Pt pada TiO2 nanotubes menjadi lebih baik sehingga mampu meningkatkan aktivitas fotokatalis dalam memproduksi hidrogen dari air hingga delapan belas kali lebih tinggi dibandingkan tanpa dopan platina. Pemberian dopan nitrogen pada fotokatalis TiO2 nanotube belum mampu menggeser panjang gelombang absorbansi secara signifikan sehingga dengan sumber foton sinar tampak belum dapat menghasilkan hidrogen yang cukup tinggi.

Optimization of various parameters on the preparation of TiO2 nanotubes and TiO2 nanowires have been conducted, such as combination of sonication and hydrothermal process followed by post-treatment (calcination or hydrothermal post treatment) and the addition of dopant metal (Cu, Pt) and non-metallic dopants (N). The modified catalysts were characterized using TEM, SEM, BET, DRS and XRD. The TEM and SEM analysis showed that the sonication-hydrothermal treatment with aqueous NaOH and KOH lead to the formation of nanotubes and nanowires morphology with an average outer diameter of 40 nm and 6 nm, respectively. XRD analysis showed that the both morphologies have anatase crystalline phase. Performance of the prepared photocatalyst on hydrogen production was examined by using methanol as sacrificial agent.
The results indicated the modification of TiO2 nanoparticles into nanotubes could increased in producing hydrogen two-three fold, while the modification to the nanowires into two fold comparing to that of unmodified TiO2 (P25). Larger surface area and porous morphology in nanotubes enhanced the Pt dopant dispersion on TiO2 NT to increase the photocatalyst activity. Furthermore, this increased the production of hydrogen by 18 fold compared to that of non doped TiO2 nanotubes. However introduction of N dopant to the TiO2 nanotubes was not able to shift the absorbtion band toward visible region. Therefore, the high yield of hydrogen production was not achieved by as prepared N doped TiO2, when visible light was used as the photon source."
Depok: Fakultas Teknik Universitas Indonesia, 2013
D1502
UI - Disertasi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>