Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 75832 dokumen yang sesuai dengan query
cover
Syafira Maharaniputri Vyandra
"

Graf 𝐺 terdiri dari sepasang himpunan simpul dan himpunan busur. Graf yang tersusun dari sebanyak 𝑛 graf bintang yang terhubung oleh satu simpul tambahan disebut sebagai graf pohon pisang. Orde ganjil pada graf pohon pisang dapat dicapai dengan ukuran dan banyaknya graf bintang yang membentuk dirinya. Pelabelan super busur graceful merupakan pemetaan bijektif himpunan busur ke himpunan {0, ±1, ±2, … , ± |𝐸(𝐺)|−1 2 } apabila jumlah busur ganjil dan ke himpunan { ±1, ±2, … , ± |𝐸(𝐺)|−1 2 } apabila jumlah busur genap, sedemikian sehingga tidak terdapat label busur yang sama dan tiap simpul 𝑥 dari busur 𝑥𝑦 memiliki bobot ∑𝑥∈𝑉(𝐺) 𝑓(𝑥𝑦), tidak memiliki bobot simpul yang sama. Lee membuat sebuah konjektur bahwa semua graf pohon berorde ganjil berlabel super busur graceful. Sesuai dengan konjektur tersebut, penelitian ini akan membahas pelabelan super busur graceful untuk graf pohon pisang dengan orde ganjil.


Graph 𝐺 consisted of a pair of a set of vertices and a set of edges. A graph made out of as many as 𝑛 star graph, connected by an additional vertex, is called a banana tree graph. A banana tree graph with an odd order can be achieved by a certain size of star graph it is made of. Super edge graceful labeling is a bijective mapping of a set of edges a set of {0, ±1, ±2, … , ± |𝐸(𝐺)|−1 2 } if there are odd amount of edges and to a set of { ±1, ±2, … , ± |𝐸(𝐺)|−1 2 } if there are even amount of edges thus that there are no edges sharing the same label and for each 𝑥 vertex from an 𝑥𝑦 edge labeled ∑𝑥∈𝑉(𝐺) 𝑓(𝑥𝑦), there is no vertex sharing the same label. Lee created a conjecture stating that all odd ordered tree graphs are super edge graceful. Based on that conjecture, this research will discuss super edge graceful labeling on odd ordered banana tree graph.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fabian Andhika Pratama
"Misalkan Gadalah graf sederhana dengan himpunan simpul yang tak kosong V(G) dan himpunan busur E(G) serta V(G) menyatakan banyaknya simpul pada graf G dan E(G) menyatakan banyaknya busur pada graf G. Pelabelan total super simpul antiajaib lokal (PTSSAL) pada graf G adalah fungsi bijektif f yang memetakan gabungan dari V(G) dan E(G) ke himpunan {1, 2, …, |V(G)|+|E(G)|} yang memenuhi kondisi f(V(G)) = {1, 2, …, |V(G)|}, sedemikian sehingga w(u) tidak sama dengan w(v) untuk setiap pasangan simpul bertetangga u dan v dengan w(u) sama dengan f(u) dijumlahkan dengan hasil penjumlahan dari label-label busur yang hadir terhadap simpul u. Nilai minimum dari banyaknya bobot yang berbeda pada pelabelan total super simpul antiajaib lokal yang dibutuhkan untuk suatu graf G disebut sebagai bilangan kromatik total super simpul antiajaib lokal. Graf pohon pisang B_(n,k) adalah graf yang diperoleh dengan menghubungkan satu daun dari setiap n-salinan graf bintang S_k kepada suatu simpul akar. Pada tahun 2018, telah ditemukan batas atas untuk bilangan kromatik total simpul antiajaib lokal pada graf pohon pisang B_(n,k). Pada penelitian ini dikonstruksi pelabelan total super simpul antiajaib lokal untuk graf pohon pisang B_(n,k) untuk menentukan nilai bilangan kromatik total super simpul antiajaib lokal pada graf pohon pisang B_(n,k) dengan n dan k adalah bilangan asli dan n serta k bernilai lebih besar atau sama dengan 3.

Let G be a simple graph with a nonempty vertex set |V(G)| and edge set |E(G)| where |V(G)| denotes the number of vertices of G and |E(G)| denotes the number of edges of G. Super vertex local antimagic total labeling on graph G is a bijective function f that maps union of V(G) and E(G) to the set{1, 2, …, |V(G)|+|E(G)|} that satisfies the condition f(V(G)) = {1, 2, …, |V(G)|}, such that w(u) is not equal to w(v) for every adjacent vertices u and vwith w(u) is equal to the f(u) added to the sum of labels from edges that are incident to vertex u. The minimum number of different weights needed on super vertex local antimagic total labeling on graph is referred as super vertex local antimagic total chromatic number. A banana tree B_(n,k) is a graph that is obtained by connecting single leaf from every n-copy of star graph S_k to a root vertex. In 2018, the upper bound for vertec local antimagic total chromatic number has been found for banana tree graph B_(n,k). The research finds the construction of the super vertex local antimagic total labeling on banana tree graph B_(n,k) to determine the number of super vertex local antimagic total chromatic number from banana tree graph B_(n,k) where n and k are natural numbers and n also k are greater or equal to 3."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elvi Khairunnisa
"Sebuah graf adalah pasangan himpunan dengan adalah himpunan tidak kosong dan adalah himpunan mungkin kosong pasangan tidak berurutan dari elemen-elemen . disebut dengan simpul dan disebut dengan busur. Pelabelan graceful didefinisikan sebagai pemberian label pada simpul suatu graf G yang memenuhi fungsi injektif dari himpunan simpul ke himpunan bilangan bulat tak negatif sedemikian sehingga setiap busur xy di G mendapat label , maka label setiap busur akan berbeda. Graf bunga aster merupakan graf yang dibentuk dari graf lingkaran dengan menghubungkan graf lintasan pada dua simpul yang bertetangga. Graf korona bunga aster merupakan graf yang dibentuk dari graf bunga aster dengan menambahkan r simpul daun pada setiap simpulnya. Pada tesis ini dibahas graf yang mempunyai pelabelan graceful atau tidak mempunyai pelabelan graceful pada graf bunga aster untuk dan graf korona bunga aster untuk dan.

A graph is a sets where is the non empty set and is the set of possibly empty of non sequential elements . is called as vertices and is called as edges. Graceful labeling is defined as labeling the vertices of graph that satisfies the injective function from the set of vertices to the set of non negative integers such that each of the xy edges in G gets label , then the label of each vertices will be distinct. An aster flower graph is a graph which generated from the cycle graph by connecting the path graph to the two adjacent vertices. A corona product of aster flower graph is a graph which generated from an aster flower graph by adding r leaf vertices on each vertex. This thesis discusses graphs that have graceful labeling or doesn rsquo t have graceful labeling on aster flower graph for and corona product of aster flower graph for and.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T50683
UI - Tesis Membership  Universitas Indonesia Library
cover
Mahardika Putra Raes
"Pelabelan total busur ajaib diperkenalkan pertama kali oleh Wallis pada tahun 2001. Pelabelan total busur ajaib pada graf dengan himpunan simpul dan himpunan busur adalah suatu fungsi bijektif sehingga untuk setiap busur di berlaku untuk suatu konstanta. Jika maka pelabelannya disebut pelabelan total super busur ajaib. Enomoto membuktikan bahwa memiliki pelabelan total super busur ajaib untuk setiap memiliki pelabelan total super busur ajaib untuk setiap dan graf memiliki pelabelan total super busur ajaib jika dan hanya jika adalah bilangan ganjil. Misalkan terdapat dua graf yaitu graf dan dengan banyaknya simpul masing-masing adalah dan. Graf hasil korona dari didefinisikan sebagai suatu graf yang dihasilkan dari dan dengan mengambil satu salinan dari dan salinan dari dan menambahkan busur yang menghubungkan setiap simpul dari salinan ke dari dengan simpul ke dari. Pada skripsi ini akan dibahas studi literatur tentang pelabelan total super busur ajaib pada kelas graf korona dan dimana dan.

Edge total magic labeling was first introduced by Wallis in 2001. Edge magic total labeling a graph with the set of vertices V and set of edges E is a bijective mappin for every edge in for a constant If then the labeling is called super edge magic total labeling. Enomoto proved that have super edge magic total labeling for every Graph have super edge magic total labeling for every and graph have super edge magic total labeling if and only if is an odd number. Suppose there are two graphs and H with number of its vertices are Corona product graph defined as a graph that obtain from and H by taking one copy from and copy from H and connects with an edge from each vertex on the copy of H with vertex i in In this undergraduate thesis, we will discuss the literature study on super edge magic total labeling in the corona graph class and where and."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Alif Asyad Kurniatama
"Pelabelan total busur ajaib pertama kali dikenalkan oleh Kotzig dan Rosa. Minat terhadap pelabelan ini diteruskan berkat paper Ringel dan Llad³ tahun 1996. Pelabelan total busur ajaib adalah pemetaan satu-satu pada dari suatu graf dengan menyatakan banyaknya simpul dari dan menyatakan banyaknya busur dari, dan terdapat bilangan bulat positif sedemikan sehingga untuk setiap busur pada. Pelabelan total busur ajaib  pada graf dikatakan total super busur ajaib apabila. Konsep pelabelan total super busur ajaib pertama kali diperkenalkan oleh Enomoto dkk. pada tahun 1998. Graf prisma merupakan sebuah produk cartesian dari graf lingkaran dan graf lintasan. Sedangkan graf tangga merupakan sebuah produk cartesian antara graf lingkaran dan graf lintasan. Pada artikel ini dibahas konstruksi pelabelan total super busur ajaib pada kelas graf prisma dan kelas graf tangga. Kemudian ditunjukkan keterkaitan pelabelan total super busur ajaib antara graf prisma  dan graf tangga.

Originally the edge magic total labeling was introduced and studied by Kotzig and Rosa who called it magic valuations. Interest in these labelings has been rekindled due to Ringel and Llad³’s paper in 1996. Edge magic total labelling is a one-one onto mapping of graph with numbers of vertices of and number of edges of, so that there exist integer such that for every edge in. Edge magic total labeling of graph is called super edge magic total labeling if. The concept of super EMT graphs was introduced by Enomoto et al. in 1998. Prism graph is a cartesian product of cycle and path. While ladder graph is a cartesian product of dan. In this article, the construction of super edge magic total labeling is discussed of prism graphs and ladder graphs. Then it is shown the super edge magic total labeling relation between prism graph  and ladder graph."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rendy Ahmad Triputra
"ABSTRAK
Graf adalah suatu sistem yang terdiri dari himpunan
tak kosong simpul dan himpunan busur . Pelabelan pada graf adalah
penetapan nilai pada simpul, busur, atau simpul dan busur dengan aturan tertentu.
Pelabelan graceful-busur pada graf adalah fungsi bijektif
yang menginduksi pemetaan bijektif
yang didefinisikan oleh
dengan . Pada skripsi ini dibuktikan bahwa graf caterpillar reguler,
dimana dan , dengan sejumlah ganjil
simpul pusat ( ) dan sejumlah genap simpul daun pada tiap pusatnya ( )
memiliki pelabelan graceful-busur.

ABSTRACT
Graph is a system contains of a nonempty set of vertices and a set of edges . Labeling on a graph is an assignment of a nonnegative integer on each vertex, edge, or both under a certain condition. A edge-graceful labeling on graph is a bijection which induce a bijection defined by where . The proof that regular caterpillar graphs, where and with odd vertex center ( ) and even leaf ( ) has an edge-graceful is shown in this skripsi."
Universitas Indonesia, 2011
S988
UI - Skripsi Open  Universitas Indonesia Library
cover
Dhita Puspitasari
"Misalkan G adalah graf dengan himpunan simpul V dan himpunan busur E, dimana |V(G)| dan |E(G)| menyatakan banyaknya simpul dan busur pada G. Suatu pemetaan f : V  {0, 1 , …, |E|} disebut pelabelan graceful jika f merupakan fungsi injektif yang menginduksi fungsi bijektif g, g(uv) = |f(u) – f(v)|, dimana uv merupakan sebuah busur yang mempunyai titik ujung simpul u dan v, g : E  {1, 2 , …, |E|}. Dalam skripsi ini diberikan algoritma untuk menghasilkan semua pelabelan graceful yang tidak isomorfik pada graf lintasan Pn, graf matahari 𝐶𝑛⊙ 𝐾 1 dan graf ular k-C4 yang mungkin. Algoritma-algoritma ini kemudian diimplementasikan dalam program. Diberikan juga simulasi banyak pelabelan graceful mungkin sampai nilai n atau k tertentu."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27876
UI - Skripsi Open  Universitas Indonesia Library
cover
Adinda Diyah Ayu Permata Sari
"Misalkan graf G = (V (G), E(G)) merupakan graf dengan pasangan himpunan tak kosong simpul V (G) dan busur E(G). Pelabelan total super busur antiajaib lokal pada graf G dengan |V (G)| simpul dan |E(G)| busur didefinisikan sebagai pemetaan bijektif f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} dengan hasil pemetaan simpul f(V (G)) = {1, 2, . . . , |V (G)|}, sedemikian sehingga untuk setiap busur bertetangga uv dan vx di E(G), w(uv) ̸= w(vx), di mana w(uv) = f(u) + f(uv) + f(v). Setiap pelabelan total super busur antiajaib lokal menginduksi pewarnaan busur untuk graf G, di mana busur uv diberikan warna w(uv). Banyaknya warna minimal yang dibutuhkan untuk pewarnaan busur tersebut dikatakan sebagai bilangan kromatik pelabelan total super busur antiajaib lokal, dinotasikan dengan χsleat(G). Graf bunga matahari Sfn merupakan suatu graf yang diperoleh dengan mengambil suatu graf roda dengan simpul pusat c dan subgraf lingkaran dengan simpul-simpul x1, x2, . . . , xn dan tambahan simpul y1, y2, . . . , yn di mana yi dihubungkan oleh busur kepada xi dan xi+1, di mana xn+1 = x1. Pada penelitian ini, akan dikonstruksi pelabelan total super busur antiajaib lokal pada graf bunga matahari Sfn dan juga ditentukan bilangan kromatiknya, yaitu χsleat(Sfn) = n + 1.

Suppose that a graph G = (V (G), E(G)) be a graph with a nonempty vertices set V (G) and edges set E(G). A super local edge antimagic total labeling on a graph G with |V (G)| vertices and |E(G)| edges defined as a bijective map f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} with the result vertex mapping f(V (G)) = {1, 2, . . . , |V (G)|} such that for any adjacent edges uv and vx in E(G), w(uv) ̸= w(vx), which w(uv) = f(u) + f(uv) + f(v). Each super local edge antimagic total labeling induces an edge coloring for the graph G, where the edge uv ∈ E(G) is assigned to the color w(uv). The minimum number of colors required for the edge coloring is called the chromatic number of super local edge antimagic total labeling, denoted by χsleat(G). The sunflower graph Sfn is a graph obtained by taking a wheel with central vertex c and the n-cycle x1, x2, . . . , xn and additional vertices y1, y2, . . . , yn where yi is joined by edges to xi and xi+1, where xn+1 = x1. In this research, the super local edge antimagic total labeling on sunflower graph Sfn is constructed and its chromatic number also be determined, which χsleat(Sfn) = n + 1."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siwi Purwitasari
"Misalkan G = (V(G), E(G)) suatu graf sederhana. Didefinisikan suatu pewarnaan busur c: E(G) => {1,2, ..., k}, dengan k E N. Suatu lintasan antara simpul u dan v di G dengan pewarnaan c disebut lintasan-(u-v) pelangi, jika tidak ada dua busur di lintasan-(u-v) yang memiliki warna yang sama. Untuk dua simpul u dan v di G, geodesik pelangi-(u-v) adalah lintasan pelangi dengan panjang d(u,v), dimana d(u,v) disebut panjang lintasan-(u-v) terpendek di G. Pewarnaan pelangi kuat lokal-d didefinisikan sebagai pewarnaan busur yang setiap dua simpul dengan jarak maksimum d dapat dihubungkan oleh geodesik pelangi dan bilangan yang menyatakan banyak warna minimum dalam suatu pewarnaan pelangi kuat lokal-d dimana nilai d berada pada interval 1 3 dan r >1 dan graf CnPs adalah graf yang diperoleh dengan mengambil satu salinan dari Cn dan sebanyak n salinan dari Ps, dan menghubungkan setiap simpul dari salinan ke-i dari Ps dengan simpul ke-i dari Cn dengan n > 3 dan s > 2. Tesis ini memaparkan hasil tentang bilangan keterhubungan pelangi kuat lokal-d dari graf CnKr dan graf CnPs dengan n > 3, r >1, s >2 untuk d = 2 dan d = 3.

Let G = (V(G), E(G)) be a simple graph. Define an edge coloring c: E(G)=> {1,2, ..., k}, with k E N. A path between vertices u and v in G is called rainbow (u-v)-path if we can have an edge coloring such that every edge in the path has different color. For two vertices u and v of G, a rainbow (u-v)-geodesic is a rainbow path of length d(u,v), which d(u,v) is called the shortest (u-v)-path length in G. The d-local strong rainbow coloring is defined as edge coloring that any two vertices with a maximum distance d can be connected by a rainbow geodesic and the smallest number of colors in d-local strong rainbow coloring such that any two vertices with distance at most d, 1 3 and r > 1 and the graph CnPs is defined as the graph obtained from Cn and Ps by taking one copy of Cn and n copies of Ps and connecting each vertex from the ith-copy of Ps with the ith-vertex of Cn for n > 3 and s >2. This thesis presents some results regarding the d-local strong rainbow connection number of the graph CnKr and graph CnPs with n > 3, r > 1 and s > 2 for d = 2 and d =3."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Lilik Widiastuti
"Sebuah graf roda berarah yang siklik berorder dapat direpresentasikan melalui matriks antidjacency yang dinyatakan dengan dan matriks adjacency yang dinyatakan dengan. Matriks antiadjacency dan adjacency adalah matriks persegi yang entrinya hanya 0 dan 1. Pada matriks adjacency dari suatu graf berarah, entri 1 menyatakan terdapat suatu busur berarah yang menghubungkan simpul ke simpul, sedangkan entri 0 menyatakan tidak ada busur berarah yang menghubungkan simpul ke simpul. Sementara pada matriks antiadjacency, menyatakan hal yang sebaliknya. Secara umum, setiap koefisien pada polinomial karakteristik dari matriks antiadjacency suatu graf berarah terkait dengan lintasan Hamilton, sementara setiap koefisien pada polinomial karakteristik dari matriks adjacency dari suatu graf berarah tidak terkait dengan lintasan Hamilton. Pada penelitian ini dibuktikan bahwa setiap koefisien pada polinomial karakteristik dari matriks maupun matriks memiliki sifat yang sesuai dengan keumuman tersebut. Selain itu matriks antiadjaceny dan adjacency dari graf roda berarah yang siklik, masing-masing memiliki nilai-nilai eigen yang bernilai real dan nilai-nilai eigen yang kompleks. Ternyata juga diperoleh bahwa nilai eigen kompleks sama dengan negatif dari nilai eigen kompleks.

A directed cylic wheel graph with order, can be represented by the antiadjacency matrix that denoted by and the adjacency matrix that denoted by. The antiadjacency and the adjacency matrix are square matrices that has entries 0 and 1. In the adjacency matrix of a directed graph, the entry 1 denotes there is an directed edge that connects the vertex to the vertex, while the entry 0 denotes there are no directed edges that connect the vertex to the vertex. While in the antiadjacency matrix, those entries denote the otherwise. In general, every coefficient of characteristic polynomial of antiadjacency matrix of a directed graph has relation with the Hamiltonian path, while every coefficient of characteristic polynomial of adjacency matrix of a directed graph does not. In this research, it is proved that every coefficient of the characteristic polynomial of or has properties that are in accordance with the generality. In addition the antiadjacency and the adjacency matrix of directed cyclic wheel graph, each of them has real and complex eigenvalues. It is also obtained that the complex eigenvalues of equals to the negative of the complex eigenvalues of.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>