Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 102205 dokumen yang sesuai dengan query
cover
Ernia Susana
"Photoplethysmography (PPG) merupakan sinyal penting yang mengandung banyak informasi fisiologis tentang kesehatan jantung dan dapat digunakan untuk mengklasifikasikan kadar glukosa darah non-invasif (BGL). Meskipun demikian, distorsi kebisingan dan gerakan dapat dengan mudah mengkontaminasi sinyal PPG, sehingga berpotensi menghasilkan data berkualitas rendah. Masalah tambahan muncul dari fakta bahwa sifat gelombang PPG bervariasi karena variasi elastisitas dinding pembuluh darah dan kekentalan darah, yang dapat mengakibatkan ketidakakuratan pengukuran. Meskipun beberapa metode tersedia untuk meningkatkan kualitas sinyal PPG, algoritmanya rumit dan tidak selalu menghasilkan akurasi yang tinggi. Kami telah mengembangkan teknik ekstraksi fitur menggunakan analisis frekuensi waktu (TFA) yang menyediakan spektogram, frekuensi sesaat, dan entropi spektral yang dapat menjamin kualitas sinyal. Penelitian kami menggunakan memori jangka pendek jangka panjang dua arah (BLSTM) berdasarkan kebutuhan akan model yang secara berkala dapat beradaptasi dengan perubahan karakteristik PPG. Kami mengusulkan menggabungkan TFA dengan model BLSTM yang dapat mengurangi waktu pelatihan sekaligus meningkatkan akurasi. Metode yang kami usulkan mengurangi titik data pada sinyal PPG dari awal 2100 menjadi hanya 64, secara signifikan mengurangi waktu pelatihan dari 239 menit 34 detik menjadi 4 menit 4 detik. Model memiliki akurasi 94,1%, sensitivitas 100%, spesifisitas 89,5%, dan skor F1 94,5%. Metode yang kami usulkan mencapai akurasi tinggi dan janji luar biasa dengan hanya mengandalkan data PPG mentah dalam klasifikasi BGL.

Photoplethysmography (PPG) is an important signal that contains much physiological information about cardiovascular health and can be used to classify non-invasive blood glucose levels (BGL). Nonetheless, noise and motion distortions can readily contaminate PPG signals, potentially resulting in low-quality data. An additional issue arises from the fact that the PPG wave properties vary due to variations in the elasticity of the blood vessel wall and blood viscosity, which can result in measurement inaccuracies. While several methods are available to improve the quality of PPG signals, the algorithms are complex and do not always produce high accuracy. We have developed a feature extraction technique using time-frequency analysis (TFA) that provides spectrograms, instantaneous frequencies, and spectral entropies that can guarantee signal quality. Our study uses bidirectional long-short-term memory (BLSTM) based on the need for a model that can periodically adapt to changes in PPG characteristics. We propose combining TFA with a BLSTM model that can reduce training time while increasing accuracy. Our proposed method reduced the data points on the PPG signal from the initial 2100 to only 64, significantly reducing the training time from 239 min 34 sec to 4 min 4 sec. The model had an accuracy of 94.1%, sensitivity of 100%, specificity of 89.5%, and F1 score of 94.5%. Our proposed method achieves a high accuracy and excellent promise by relying solely on raw PPG data in BGL classification."
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Hendrana Tjahjadi
"ABSTRAK

Pada saat ini metode pengukuran tekanan darah secara non-invasive paling banyak digunakan baik didalam maupun diluar fasilitas kesehatan. Namun metode tersebut masih membuat pengguna tidak nyaman karena adanya tekanan manset pada saat pengukurannya. Beberapa metode non-invasive tanpa manset telah dikembangkan salah satunya adalah metode pulse wave analysis (PWA). Photoplethysmograpy (PPG) merupakan satu-satunya masukan dan dasar bagi perhitungan pengukuran tekanan darah pada metode PWA. Tantangan utama dalam menggunakan metode PWA berbasis PPG adalah akurasinya sangat dipengaruhi oleh noise. Selain itu, karakteristik PPG bervariasi tergantung pada kondisi fisiologis, karenanya sistem harus melakukan kalibrasi untuk menyesuaikan perubahan tersebut. Kami berupaya mengatasi keterbatasan tersebut dan mengusulkan pengembangan metode pulse wave analysis untuk klasifikasi tekanan darah secara non-invasive berbasis PPG menggunakan kombinasi algoritma Bidirectional Long Term Memory (BSLTM) dengan Time Frequency Analysis (TFA). Kami menggunakan 121 subyek untuk pengujian model yang bersumber dari figshare database dan mengklasifikasikannya ke dalam tiga tingkatan klasifikasi: normotension (NT), prehypertension (PHT), hypertension (HT) sesuai dengan standar klinis Join National Commitee. Pelatihan jaringan BLSTM menggunakan fitur TFA, secara signifikan meningkatkan efisiensi dengan mengurangi waktu pelatihan sekaligus meningkatkan akurasi klasifikasi. Metode yang diusulkan berhasil mengklasifikasikan tekanan darah dengan rata-rata nilai accuracy pada NT, PHT, dan HT masing-masing 92.43%, 94.83%, dan 94.01%. 


ABSTRACT


The blood pressure measurement non-invasive methods that are presently implemented using a cuff cause discomfort, particularly for injured people, overweight people, and infants. Several non-invasive cuff-less methods have been developed, one of which is the pulse wave analysis (PWA) method. Photoplethysography (PPG) is the only input and basis for the calculation of blood pressure measurements in the PWA method.The main challenge in using the PPG method is that its accuracy is greatly influenced by motion artifacts. In addition, the characteristics of PPG vary depending on physiological conditions; hence, the system must be calibrated to adjust for such changes. We attempt to address these limitations and propose a novel method for the classification of BP using a bidirectional long short-term memory (BLSTM) network with time-frequency analysis (TFA) based on PPG signals. We used 121 subjects from the figshare database for model testing and classify into three classification levels: normotension (NT), prehypertension (PHT), and hypertension (HT) according to the Join National Committee. BLSTM network training uses the TFA feature, significantly increasing efficiency by reducing training time while increasing classification accuracy. The proposed method is successful in the classification of BP with accuracy values of NT, PHT, and HT; 92.43%, 94.83%, and 94.01% respectively. 

"
2020
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Farhatun Nurhaniifah
"Analisis sentimen dilakukan untuk menganalisis pendapat atau pandangan seseorang terhadap suatu masalah tertentu. Analisis sentimen dapat dilakukan secara manual, tetapi jika menggunakan data berskala besar akan lebih mudah dilakukan secara otomatis yaitu dengan menggunakan machine learning. Namun, machine learning hanya efektif digunakan pada satu domain saja sehingga dikembangkanlah lifelong learning. Lifelong learning merupakan machine learning yang dapat melakukan pembelajaran secara berkelanjutan. Pada penelitian ini, model yang digunakan adalah model CNN-LSTM dan LSTM-CNN. Pada kinerja transfer of knowledge, model CNN-LSTM dan LSTM-CNN menunjukkan hasil lebih baik dibanding model LSTM, tetapi kedua model gabungan tersebut kinerjanya lebih buruk dibanding model CNN. Sedangkan, pada kinerja loss of knowledge, model model CNN-LSTM dan LSTM-CNN menunjukkan hasil lebih baik dibanding model CNN, tetapi lebih buruk dibanding model LSTM. Pada penelitian ini, diimplementasikan juga lifelong learning dengan pembaruan vocabulary. Penambahan pembaruan vocabulary pada lifelong learning meningkatkan kinerja model CNN, LSTM, CNN-LSTM, dan LSTM-CNN pada transfer of knowledge dan loss of knowledge

Sentiment analysis is done to analyze a person's opinion or views on a particular problem. Sentiment analysis can be done manually, but if you use large-scale data it will be easier to do it automatically by using machine learning. However, machine learning is only effective in one domain, so lifelong learning is developed. Lifelong learning is machine learning that can carry out continuous learning. In this study, the models used are the CNN-LSTM and LSTM-CNN models. In the transfer of knowledge performance, the CNN-LSTM and LSTM-CNN models showed better results than the LSTM model, but the two combined models performed worse than the CNN model. Meanwhile, for the loss of knowledge performance, the CNN-LSTM and LSTM-CNN models showed better results than the CNN model, but worse than the LSTM model. In this study, lifelong learning with vocabulary updates was also implemented. The addition of vocabulary updates to lifelong learning improves the performance of the CNN, LSTM, CNN-LSTM, and LSTM-CNN models on transfer of knowledge and loss of knowledge"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rehan Hawari
"Jatuh merupakan penyebab utama kedua cedera dan kematian yang tidak disengaja di seluruh dunia. Kejadian ini sering terjadi pada lansia dan frekuensinya meningkat setiap tahun. Sistem pendeteksi aktivitas jatuh yang reliabel dapat mengurangi risiko cedera yang dialami. Mengingat jatuh adalah kejadian yang tidak dikehendaki atau terjadi secara tiba-tiba, sulit untuk mengumpulkan data jatuh yang sebenarnya. Deteksi jatuh juga sulit karena kemiripannya dengan beberapa aktivitas seperti jongkok, dan mengambil objek dari lantai. Selain itu, beberapa tahun belakangan dataset mengenai aktivitas jatuh yang tersedia secara publik juga terbatas. Oleh karena itu, di tahun 2019, beberapa peneliti mencoba membuat dataset jatuh yang komprehensif yang mensimulasikan kejadian yang sebenarnya dengan menggunakan perangkat kamera dan sensor. Dataset yang dihasilkan dataset multimodal bernama UP-Fall. Menggunakan dataset tersebut, penelitian ini mencoba mendeteksi aktivitas jatuh dengan pendekatan Convolutional Neural Network (CNN) dan Long Short Term Memory (LSTM). CNN digunakan untuk mendeteksi informasi spasial dari data citra, sedangakan LSTM digunakan untuk mengeksploitasi informasi temporal dari data sinyal. Kemudian, hasil dari kedua model digabungkan dengan strategi majority voting. Berdasarkan hasil evaluasi, CNN memperoleh akurasi sebesar 98,49% dan LSTM 98,88%. Kedua model berkontribusi kepada performa strategi majority voting sehingga mendapatkan akurasi (98,31%) yang melebihi akurasi baseline (96,4%). Metrik evaluasi lain juga meningkat seperti precision naik 11%, recall 14%, dan F1-score 12% jika dibandingan dengan baseline

.Fall is the second leading cause of accidental injury and death worldwide. This event often occurs in the elderly and the frequency is increasing every year. Reliable fall activity detection system can reduce the risk of injuries suffered. Since falls are unwanted events or occur suddenly, it is difficult to collect actual fall data. It is also difficult because of the similarity to some activities such as squatting, and picking up objects from the floor. In addition, in recent years the fall dataset that is publicly available is limited. Therefore, in 2019, some researchers tried to create a comprehensive fall dataset that simulates the actual events using camera and sensor devices. The experiment produced a multimodal dataset UP-Fall. Using this dataset, this study tries to detect falling activity using Convolutional Neural Network and Long Short Term Memory approaches. CNN is used to detect spatial information from image data, while LSTM is used to exploit temporal information from signal data. Then, the results of the two models are combined with the majority voting strategy. Based on the evaluation results, CNN obtained an accuracy of 98.49% and LSTM 98.88%. Both models contribute to the performance of the majority voting strategy with the result that the accuracy (98.31%) exceeds baseline accuracy (96.4%). Other evaluation metrics also improved such as precision goes up to 11%, recall 14%, and F1-score 12% in comparison with baseline."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maranatha Florensia Wijaya
"Analisis sentimen merupakan bidang studi yang menganalisis pendapat seseorang terhadap suatu entitas untuk mencari polaritas sentimennya. Potensi manfaat yang besar didukung dengan ketersediaan data teks beropini yang melimpah di internet memicu dikembangkannya model yang mampu melakukan analisis sentimen secara otomatis dan seakurat mungkin. Dua diantaranya adalah Long Short-Term Memory (LSTM) dan Convolutional Neural Network (CNN) yang merupakan arsitektur deep learning. LSTM digunakan karena dapat menangkap aliran informasi pada kalimat, sedangkan CNN digunakan karena kemampuannya dalam mengekstrak fitur penting dari tiap penggalan kalimat atau region. Kedua model ini dapat digabungkan menjadi model gabungan LSTM-CNN yang telah terbukti mampu meningkatkan akurasi model. Penelitian ini kemudian akan mengajukan modifikasi pada model gabungan LSTM-CNN dengan mengganti LSTM menjadi Bidirectional LSTM (BiLSTM) dan CNN menjadi CNN Multi Region Size CNNMRS sehingga terbentuk tiga model modifikasi yaitu BiLSTM-CNN, LSTM-CNNMRS, dan BiLSTM-CNNMRS. Implementasi model, baik untuk model gabungan LSTM-CNN standar maupun model modifikasi, dilakukan pada data tweets berbahasa Indonesia. Hasilnya, didapatkan kesimpulan bahwa penggunaan BiLSTM untuk menggantikan LSTM pada model gabungan LSTM CNN tidak meningkatkan akurasi dari model. Hal berbeda didapatkan dari penggunaan CNNMRS untuk menggantikan CNN yang memberikan peningkatan akurasi pada model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yogi Lesmana Sulestio
"Penelitian Part-of-Speech tagger (POS tagger) untuk bahasa Indonesia telah banyak dikembangkan. Sayangnya, sejauh ini baru Polyglot yang menggunakan POS tag menurut pedoman anotasi Universal Dependencies (UD). Namun, Polyglot sendiri masih mempunyai kekurangan karena belum dapat mengatasi klitik dan kata ulang yang terdapat dalam bahasa Indonesia. Tujuan penelitian ini adalah mengembangkan POS tagger untuk bahasa Indonesia yang tidak hanya sesuai dengan ketentuan anotasi UD, tapi juga sudah mengatasi kekurangan Polyglot. POS tagger ini akan dikembangkan dengan metode deep learning menggunakan arsitektur yang merupakan versi modifikasi dari Recurrent Neural Network (RNN), yaitu Bidirectional Long Short-Term Memory (Bi-LSTM). Dataset yang digunakan untuk mengembangkan POS tagger adalah sebuah dependency treebank bahasa Indonesia yang terdiri dari 1.000 kalimat dan 19.401 token. Hasil eksperimen dengan menggunakan Polyglot sebagai pembanding menunjukkan bahwa POS tagger yang dikembangkan lebih baik dengan tingkat akurasi POS tagging yang meningkat sebesar 6,69% dari 84,82% menjadi 91,51%.

There have been many studies that have developed Part-of-Speech tagger (POS tagger) for Indonesian language. Unfortunately, so far only Polyglot that has used POS tag according to Universal Dependencies (UD) annotation guidelines. However, Polyglot itself still has shortcomings since it has not been able to overcome clitics and reduplicated words in Indonesian language. The purpose of this study is to develop POS tagger for Indonesian language which is not only in accordance with UD annotation guidelines, but also has overcome Polyglot’s shortcomings. This POS tagger will be developed under deep learning method by using modified version of Recurrent Neural Network (RNN) architecture, Bidirectional Long Short-Term Memory (Bi-LSTM). The dataset used to develop POS tagger is an Indonesian dependency treebank consisting of 1.000 sentences and 19.401 tokens. Result of experiment using Polyglot as baseline shows that the developed POS tagger is better. This is indicated by increased accuracy POS tagging by 6,69% from 84,82% to 91,51%."
Depok: Fakultas Ilmu Kompter Universitas Indonesia, 2020
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Stanley Pratama
"Parafrasa merupakan suatu cara untuk menuliskan kalimat dengan kata-kata lain dengan maksud atau tujuan yang sama. Pendeteksian parafrasa otomatis dapat dilakukan dengan menggunakan Natural Language Sentence Matching (NLSM) yang merupakan bagian dari Natural Language Processing (NLP). NLP merupakan teknik komputasi untuk memproses teks secara umum, sedangkan NLSM dikhususkan untuk mencari hubungan antar dua kalimat. Dengan adanya perkembangan neural network (NN), maka saat ini NLP dapat lebih mudah dilakukan oleh komputer.Model untuk mendeteksi maupun membuat parafrasa Bahasa Inggris sudah banyak dikembangkan dibandingkan dengan Bahasa Indonesia yang data pelatihannya lebih sedikit. Penelitian ini mengusulkan Model SPratama yang memodelkan deteksi parafrasa untuk Bahasa Indonesia menggunakan recurrent neural network (RNN) yaitu bidirectional long short-term memory (BiLSTM) dan bidirectional gated recurrent unit (BiGRU). Data yang digunakan adalah “Quora Question Pairs” yang diambil dari Kaggle dan diterjemahkan ke Bahasa Indonesia menggunakan Google Translate. Hasil penelitian ini menunjukkan bahwa model-model yang diusulkan mendapatkan akurasi sekitar 80% untuk pendeteksian kalimat parafrasa.

Paraphrasing is a way to write sentences with other words with the same intent or purpose. Automatic paraphrase detection can be done using Natural Language Sentence Matching (NLSM) which is part of Natural Language Processing (NLP). NLP is a computational technique for processing text in general, while NLSM is used specifically to find the relationship between two sentences. With the development neural network (NN), nowadays NLP can be done more easily by computers. Many models for detecting and paraphrasing in English have been developed compared to Indonesian, which has less training data. This study proposes SPratamaModel, which models paraphrase detection for Indonesian using a recurrent neural network (RNN), namely bidirectional long short-term memory (BiLSTM) and bidirectional gated recurrent unit (BiGRU). The data used is "Quora Question Pairs" taken from Kaggle and translated into Indonesian using Google Translate. The results of this study indicate that the proposed models have the accuracy of around 80% for the detection of paraphrased sentences."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michelle Annice Tjitra
"Hipertensi merupakan salah satu faktor risiko dari kardiovaskular yang mematikan yang dikenal sebagai “the silent killer” dikarenakan hipertensi tidak menunjukkan gejala apapun dan tidak memiliki keluhan namun hipertensi mampu menyebabkan penyakitpenyakit lain atau komplikasi seperti kerusakan pada organ. Pengukuran parameterparameter fisiologis seperti tekanan darah adalah hal yang vital dalam menunjang pendeteksian dan analisis dari penyakit kardiovaskular. Namun, hingga saat ini beberapa metode-metode pengukuran yang tersedia saat ini membutuhkan instrumen yang canggih dan dibutuhkannya tenaga kesehatan dengan keahlian khusus untuk mengoperasikan instrumen tersebut. Selain itu, penggunaan cuff pada alat sphygmomanometer sangat tidak nyaman untuk digunakan apabila diperlukannya pengukuran tekanan darah secara kontinu serta pengoperasian instrumen membutuhkan kontak fisik sehingga meningkatkan kemungkinan terpaparnya COVID-19. Oleh karena itu, dibutuhkannya metode pengukuran darah tanpa cuff, mampu mengukur tekanan darah secara kontinu, dan mampu mengukur tekanan darah dengan akurat yang mampu dioperasikan dengan mudah. Penelitian ini bertujuan untuk membuat desain rancangan prototipe alat pengukur tekanan darah dengan menggunakan sensor MAX30102 dan ESP32 secara wireless melalui sinyal photoplethysmograph dengan pengolahan sinyal PPG berbasis pada ekstraksi fitur dan machine learning. Sistem pengukuran menggunakan sensor PPG dan microcontroller untuk mendapatkan sinyal PPG dari subjek yang kemudian sinyal melalui tahap preprocessing untuk menghilangkan noise kemudian sinyal diproses dengan peak detection dan ekstraksi fitur. Data tersebut kemudian akan dikumpulkan untuk dilatih pada machine learning untuk mendapatkan model yang mampu memprediksi nilai parameter fisiologis, yaitu tekanan darah. Model terbaik yang didapatkan, yaitu model dengan dataset 6 subjek dengan jumlah baris hasil ekstraksi 4 fitur sinyal PPG berjumlah 20 baris dengan perbandingan data training dan data validation sebesar 90:10 tanpa regularization dengan algoritma XGBoost dengan evaluasi performa sebesar 0,49/0,59 untuk koefisien determinasi dan nilai error sebesar 4,53/4,57 digunakan pada Graphical User Interface (GUI) yang berbasis web sehingga model dapat terintegrasi dengan sistem yang kemudian mampu diimplementasikan secara langsung oleh user.

Hipertensi merupakan salah satu faktor risiko dari kardiovaskular yang mematikan yang dikenal sebagai “the silent killer” dikarenakan hipertensi tidak menunjukkan gejala apapun dan tidak memiliki keluhan namun hipertensi mampu menyebabkan penyakitpenyakit lain atau komplikasi seperti kerusakan pada organ. Pengukuran parameterparameter fisiologis seperti tekanan darah adalah hal yang vital dalam menunjang pendeteksian dan analisis dari penyakit kardiovaskular. Namun, hingga saat ini beberapa metode-metode pengukuran yang tersedia saat ini membutuhkan instrumen yang canggih dan dibutuhkannya tenaga kesehatan dengan keahlian khusus untuk mengoperasikan instrumen tersebut. Selain itu, penggunaan cuff pada alat sphygmomanometer sangat tidak nyaman untuk digunakan apabila diperlukannya pengukuran tekanan darah secara kontinu serta pengoperasian instrumen membutuhkan kontak fisik sehingga meningkatkan kemungkinan terpaparnya COVID-19. Oleh karena itu, dibutuhkannya metode pengukuran darah tanpa cuff, mampu mengukur tekanan darah secara kontinu, dan mampu mengukur tekanan darah dengan akurat yang mampu dioperasikan dengan mudah. Penelitian ini bertujuan untuk membuat desain rancangan prototipe alat pengukur tekanan darah dengan menggunakan sensor MAX30102 dan ESP32 secara wireless melalui sinyal photoplethysmograph dengan pengolahan sinyal PPG berbasis pada ekstraksi fitur dan machine learning. Sistem pengukuran menggunakan sensor PPG dan microcontroller untuk mendapatkan sinyal PPG dari subjek yang kemudian sinyal melalui tahap preprocessing untuk menghilangkan noise kemudian sinyal diproses dengan peak detection dan ekstraksi fitur. Data tersebut kemudian akan dikumpulkan untuk dilatih pada machine learning untuk mendapatkan model yang mampu memprediksi nilai parameter fisiologis, yaitu tekanan darah. Model terbaik yang didapatkan, yaitu model dengan dataset 6 subjek dengan jumlah baris hasil ekstraksi 4 fitur sinyal PPG berjumlah 20 baris dengan perbandingan data training dan data validation sebesar 90:10 tanpa regularization dengan algoritma XGBoost dengan evaluasi performa sebesar 0,49/0,59 untuk koefisien determinasi dan nilai error sebesar 4,53/4,57 digunakan pada Graphical User Interface (GUI) yang berbasis web sehingga model dapat terintegrasi dengan sistem yang kemudian mampu diimplementasikan secara langsung oleh user."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Prima Dewi Purnamasari
"Terdapat dua masalah besar yang diselesaikan dalam disertasi ini, yaitu masalah pemrosesan sinyal dan masalah aplikasi sinyal EEG dalam pengenalan keadaan emosi. Masalah tersebut diselesaikan dengan metode kecerdasan komputasional yang terdiri dari bagian utama, ekstraksi fitur dan klasifikasi. Pada bagian ekstraksi fitur, pada disertasi ini dibahas penggunaan metode konvensional ekstraksi fitur berbasis power spectrum yaitu dengan Discrete Wavelet Transform DWT , dan penggunaan metode baru ekstraksi fitur yang diajukan yaitu analisis bispektrum dengan filter piramida 3D, serta dengan Relative wavelet bispectrum RWB.
Untuk menyelesaikan permasalahan penerapannya pada sistem otomatis pengenal emosi, maka classifier dengan jenis Artificial Neural Network ANN digunakan.Penggunaan DWT dalam metode ekstraksi fitur menunjukkan bahwa fitur Relative Wavelet Energy DWT RWE memberikan recognition rate terbaik, konsep energi relatif ini kemudian digunakan pada metode baru yang diajukan. Pada metode baru ekstraksi fitur menggunakan analisis bispektrum dengan filter piramida 3D, diketahui bahwa persentase mean bispektrum memberikan recognition rate yang terbaik dengan kompleksitas yang lebih rendah 74.22 untuk arousal dan 77.58 untuk valence.
Filter non-overlap dengan ukuran alas yang bervariasi memberikan recognition rate tertinggi, khususnya secara signifikan terlihat untuk jenis emosi arousal. Penurunan jumlah channel EEG sampai dengan 8 channel dapat dilakukan untuk menurunkan biaya komputasi. Metode baru ekstraksi fitur yaitu RWB telah diajukan dalam disertasi ini dan menunjukkan pengenalan yang sangat baik mencapai 90 untuk data sinyal EEG orang alkoholik. Semakin besar lag yang digunakan dalam perhitungan korelasi, semakin tinggi recognition rate yang diperoleh.
Capaian dari penelitian ini membuktikan bahwa RWB cocok untuk digunakan sebagai metode ekstraksi fitur untuk klasifikasi orang alkoholik, dan dapat dipertimbangkan untuk digunakan pada aplikasi lainnya. Dari keempat classifier yang diujikan, dari segi recognition rate, PNN sedikit lebih unggul daripada BPNN, namun uji sensitivity, specificity dan PPV serta grafik ROC menunjukkan bahwa BPNN merupakan classifier yang lebih baik dibanding PNN. Di sisi lain, waktu komputasi PNN untuk mencapai recognition rate maksimum adalah sekitar 3,5 kali lebih cepat dibanding BPNN.

There are two major problems resolved in this dissertation, which are signal processing problem and the problem in EEG signal in the application of recognizing human emotional states. The problems were solved by applying a computational intelligence method consists of two main parts, the feature extraction and the classification. In the feature extraction sub system, this study improved a conventional methods using power spectrum from discrete wavelet transform DWT, and proposed a new method for feature extraction by using bispectrum analysis with 3D pyramid flter, as well as using relative wavelet bispectrum RWB.
To solve the problem in the application of EEG signal for automatic emotion recognition system, the artificial neural network ANN classifier was used.The use of DWT in the feature extraction method shows that the relative wavelet energy DWT RWE feature provides the best recognition rate, the relative energy concept was then used in the proposed new feature extraction methods. In the proposed feature extraction using bispectrum analysis with 3D pyramid filters, the mean percentage of bispectrum feature gave the best recognition rate with lower complexity i.e. 74.22 for arousal and 77.58 for valence.
Non overlap filters with varied base sizes provided the highest recognition rate, and significantly seen for the arousal emotion. The selection of eight EEG channels can be conducted to lower the cost of computing. A novel feature extraction method, the RWB, showed an excellent recognition for the alcoholic person. The larger the lag used in the correlation calculation in RWB, the higher the recognition rate obtained.
The achievements of this study proved that RWB is suitable as a feature extraction method for the classification of alcoholic subjects, and may be considered for use in other applications.Of the four classifiers tested, PNN is slightly superior to BPNN in terms of recognition rate however, the sensitivity, specificity and PPV tests and ROC graph shown that BPNN is a better classifier than PNN. On the other hand, the PNN computing time to reach the maximum recognition rate was about 3.5 times faster than BPNN."
Depok: Fakultas Teknik Universitas Indonesia, 2017
D2271
UI - Disertasi Membership  Universitas Indonesia Library
cover
Fathia Amira Nuramalia
"Twitter adalah platform media sosial microblogging yang memungkinkan komunikasi dua arah untuk mengutarakan opini dan komentar. Komentar-komentar yang beragam ini dapat memperlihatkan sentimen-sentimen masyarakat apabila dilakukan analisis sentimen. Analisis sentimen adalah studi yang menganalisis opini orang terhadap suatu produk, organisasi, individu, atau jasa tertentu. Machine learning merupakan metode yang dapat mempermudah proses klasifikasi sentimen. Penelitian ini dilakukan pada cuitan berbahasa Indonesia terkait Kampus Merdeka yang diambil dari Twitter menggunakan package tweepy sebanyak 1.651 cuitan terhitung dari tanggal 5 Maret 2022 hingga 13 Maret 2022. Model machine learning yang digunakan pada penelitian ini adalah Bidirectional Long Short-Term Memory (BiLSTM), dengan dua model hybrid LSTM-based, yaitu CNN-LSTM dan LSTM-CNN sebagai pembanding. Kinerja model diukur dengan metrik kinerja accuracy, precision, recall, dan F1-score. Implementasi dilakukan pada data yang telah dilakukan oversampling untuk mendapatkan hasil yang optimal. Penelitian menunjukkan bahwa model BiLSTM memiliki kinerja yang lebih unggul dibandingkan dengan dua model pembanding lainnya pada seluruh metrik dengan besar metrik, yaitu: accuracy dan recall sebesar 79,577%; precision sebesar 73,097%; dan F1-score sebesar 75,634%.

Twitter is a microblogging social media platform that allows two-way communication to express opinion and comments. These various comments can show us sentiment of the public when we perform a sentiment analysis. Sentiment analysis is a study that analyze the opinion of people towards a specific product, organization, individual, or service. Machine learning is a method that will help perform sentiment classification easier. This study performs analysis on 1.651 data tweets about Kampus Merdeka taken from Twitter using a package called tweepy since March 5th 2022 until March 13th 2022. The machine learning model used in this study is Bidirectional Long Short-Term Memory (BiLSTM), with two LSTM-based hybrid model, CNN-LSTM and LSTM-CNN as comparison models. Model performance is measured by performance metrics accuracy, precision, recall, and F1-score. Implementation was done on data that has been going through oversampling to achieve the best result. The study shows that BiLSTM performs better than the other two comparison models for all the metrics with the percentage of the each metric being: 79.577% for accuracy and recall; 73,097% for precision; and 75,634% for F1-score."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>