Hasil Pencarian

Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 185814 dokumen yang sesuai dengan query
cover
Fadhil Taufiqul Akbar Rusady
"Penelitian ini menyelidiki penerapan spektroskopi Raman pada sampel jaringan kanker kolorektal menggunakan pendekatan machine learning pada komputer klasik dan kuantum. Kanker kolorektal, salah satu penyebab utama kematian akibat kanker, memerlukan metode diagnostik yang akurat dan efisien. Studi ini menggunakan data spektroskopi Raman dari penelitian sebelumnya dan mengimplementasikan algoritma machine learning seperti XGBoost, LightGBM, Fully Connected Neural Network (FCNN), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Network (GRU) pada komputer klasik. Selain itu, penelitian ini juga memperkenalkan pendekatan baru dengan mengaplikasikan Hybrid Quantum Neural Network (QNN). Hasil penelitian menunjukkan bahwa model XGBoost pada komputer klasik mencapai F1-Score tertinggi sebesar 64,311%, sedangkan model Hybrid Classical-Quantum Classifier menunjukkan F1-Score terendah, sebesar 55.263%. Meskipun model Hybrid Classical-Quantum Classifier memperoleh skor terendah, penelitian ini menunjukkan potensi penerapan komputasi kuantum dalam meningkatkan akurasi diagnosis kanker kolorektal di masa depan. Namun, keterbatasan perangkat keras komputer kuantum saat ini menjadi kendala signifikan yang perlu diatasi melalui penelitian lebih lanjut.

This study investigates the application of Raman spectroscopy to colorectal cancer tissue samples using classical and quantum computer machine learning approaches. Colorectal cancer, one of the leading causes of cancer deaths, requires accurate and efficient diagnostic methods. This study utilizes Raman spectroscopy data from previous research and implements machine learning algorithms such as XGBoost, LightGBM, Fully Connected Neural Network (FCNN), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Network (GRU) on classical computers. In addition, this research also introduces a new approach by applying a hybrid quantum neural network (QNN). The results showed that the XGBoost model on classical computers achieved the highest F1-Score of 64.311%, while the Hybrid Classical-Quantum Classifier model showed the lowest F1-Score, at 55.263%. Despite the lowest score, this study shows the potential of applying quantum computing in improving the accuracy of colorectal cancer diagnosis in the future. However, the current hardware limitations of quantum computers are a significant obstacle that needs to be overcome through further research."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Juan Wiratama
"Dataset yang digunakan pada penelitian ini didapat dari paper yang berjudul “Attenuated total reflection FTIR dataset for identification of type 2 diabetes using saliva” yang ditulis oleh Sanchez-Brito et al. pada tahun 2022. Dataset tersebut berhubungan dengan spektrum ATR-FTIR dari 1040 saliva pasien. Dataset ini kemudian digunakan pada penelitian ini untuk melatih suatu model Machine Learning menggunakan algoritma SVM dan XGBoost. Sebelum dijadikan dataset acuan untuk keperluan pelatihan model, data terlebih dahulu melalui proses pre-processing yang meliputi proses pemotongan data agar terfokus pada region Biological Fingerprint, normalisasi protein amida I, dan penurunan orde satu. Untuk keperluan cross validation, dataset terlebih dahulu dipisah menjadi data train dan data test, kemudian data train akan kembali dipisah menjadi subset train untuk tiap fold dan subset validation yang dilatih sambil melewati stratified cross validation sebanyak 10 fold. Performa model akan didapat dari hasil prediksi model terhadap subset validation yang dihasilkan di semua 10 fold, serta hasil prediksi model terhadap data test yang menunjukkan performa keseluruhan model. Didapat bahwa performa model XGBoost melampaui performa model SVM dengan nilai accuracy sebesar 91,8%; sensitivity sebesar 93,6%; dan specificity sebesar 89,9%. Performa ini berhasil mendekati performa metode diagnosis diabetes tipe 2 yang masih bersifat invasif, yaitu tes HbA1c.

The dataset used in this study was obtained from the paper titled “Attenuated Total Reflection FTIR Dataset for Identification of Type 2 Diabetes Using Saliva” written by Sanchez-Brito et al. in 2022. This dataset pertains to the ATR-FTIR spectrum of saliva from 1040 patients. It was used in this research to train a machine learning model using the SVM and XGBoost algorithms. Before being used as a reference dataset for model training, the data underwent preprocessing, which included data trimming to focus on the Biological Fingerprint region, protein amide I normalization, and first-order derivative processing. For cross-validation purposes, the dataset was first split into training and testing data. The training data was further divided into train and validation subsets for each fold and trained using 10-fold stratified cross-validation. The model's performance was evaluated based on predictions on the validation subsets from all 10 folds, as well as predictions on the test data, reflecting the overall model performance. It was found that the XGBoost model outperformed the SVM model with an accuracy of 91.8%, sensitivity of 93.6%, and specificity of 89.9%. This performance approaches that of the invasive HbA1c test used for diagnosing type 2 diabetes."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Rafianto
"Pada tahun 2018, kanker prostat merupakan penyakit ganas kedua terbanyak pada pria secara global setelah kanker paru-paru. IDC-P merupakan varian agresif dari kanker prostat yang sering sering disalahinterpretasikan dengan proliferasi intraduktal seperti HGPIN yang dapat mempengaruhi perawatan pasien laki-laki pengidap kanker prostat. Teknik analisis spektroskopi Raman merupakan teknik molekuler berprospek untuk menganalisa jaringan biologis yang telah banyak digunakan dalam mencoba untuk mengidentifikasi berbagai macam jenis kanker. Sayangnya, spektroskopi Raman menghasilkan sinyal yang lemah dan mudah dipengaruhi oleh noise dan latar belakang floresens. Penelitian ini bertujuan untuk mengembangkan pipeline yang mencakup tahapan prapengolahan dan klasifikasi terhadap spektra Raman dari spesies IDC-P dan HGPIN untuk mendapatkan hasil metrik evaluasi yang optimal. Tujuan ini dicapai dengan menemukan nilai parameter optimal pada tahapan prapengolahan (smoothing, baseline correction, normalisasi), dan klasifikasi untuk menghasilkan hasil klasifikasi yang terbaik. Dihasilkan sebuah pipeline yang mencakup tahapan prapengolahan dan klasifikasi dengan kemampuan untuk meng- hasilkan hasil evaluasi metrik yang tinggi untuk metrik evaluasi F1 Test, accuracy, dan AUC-ROC masing-masing bernilai : 98.8%, 97.9%, dan 98.8%. Berdasarkan hasil anali- sis ANOVA, ditemukan bahwa perbedaan pada parameter window length dan polynomial order pada tahapan Savitzky-Golay smoothing tidak memiliki signifikansi terhadap hasil evaluasi metrik (p > 0.05). Sebaliknya, metode baseline correction beserta nilai polynomial degree yang berbeda cenderung memberikan signifikansi ke hasil evaluasi metrik (p < 0.05).

In 2018, prostate cancer was the second most common malignant disease in men globally, following lung cancer. IDC-P is an aggressive variant of prostate cancer often misinterpreted as intraductal proliferation like HGPIN, which can impact the treatment of male patients with prostate cancer. Raman spectroscopy analysis is a promising molecular technique for analyzing biological tissues and has been extensively used in attempts to identify various types of cancer. Unfortunately, Raman spectroscopy produces weak signals that are easily influenced by noise and fluorescent backgrounds. This research aims to develop a pipeline that includes preprocessing and classification stages for Raman spectra of IDC-P and HGPIN species to achieve optimal evaluation metric results. This goal is achieved by finding the optimal parameter values in preprocessing stages (smoothing, baseline correction, normalization) and classification to produce the best classification results. A pipeline was created that includes preprocessing and classification stages capable of producing high evaluation metric results for the F1 Test, accuracy, and AUC-ROC metrics, respectively valued at 98.8%, 97.9%, and 98.8%. Based on ANOVA analysis, it was found that differences in the ’window length’ and ’polynomial order’ parameters in the Savitzky-Golay smoothing stage do not significantly affect the evaluation metric results (p > 0.05). Conversely, the baseline correction method and different ’polynomial degree’ values tend to significantly impact the evaluation metric results (p < 0.05)."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadya Safitri
"Pemilihan metode machine learning atau deep learning menjadi suatu permasalahan dalam klasifikasi. Hal ini didapatkan dari penelitian yang menunjukkan bahwa deep learning kinerjanya lebih baik daripada machine learning, namun terdapat penelitian bahwa kedua metode tersebut kinerjanya tidak menentu tergantung dataset yang digunakan. Oleh karena itu, penelitian ini membandingkan kinerja dari machine learning dan deep learning untuk permasalahan klasifikasi teks dan analisis sentimen terhadap dampak Covid-19 di Indonesia. Hasil penelitian ini menunjukkan bahwa kinerja pada klasifikasi teks dan analisis sentimen menggunakan metode machine learning lebih baik dibandingkan dengan deep learning. Hasil penelitian mengenai klasifikasi teks menunjukkan bahwa kinerja metode machine learning yaitu Label Powerset dan Random Forest menghasilkan akurasi 77 % sedangkan kinerja metode deep learning yaitu Long Short-Term Memory (LSTM) dan Gate Reccurent Unit (GRU) menghasilkan akurasi 48%. Hasil penelitian mengenai analisis sentimen menunjukkan bahwa kinerja metode machine learning yaitu Label Powerset dan Random Forest menghasilkan akurasi 63 % sedangkan kinerja metode deep learning yaitu Long Short-Term Memory (LSTM) dan Gate Reccurent Unit (GRU) menghasilkan akurasi 55% dan 54%. Keseimbangan jumlah label pada semua label mempengaruhi hasil dari klasifikasi. Oleh karena itu, disarankan untuk menggunakan metode untuk menyeimbangkan jumlah label yang digunakan untuk klasifikasi.

The choice of machine learning or deep learning methods becomes a problem in classification. This is obtained from research which shows that deep learning performs better than machine learning, but there is research that the two methods perform erratically depending on the dataset used. Therefore, this study compares the performance of machine learning and deep learning for text classification problems and sentiment analysis on the impact of Covid-19 in Indonesia. The results of this study indicate that the performance of text classification and sentiment analysis using machine learning methods is better than deep learning. The results of research on text classification show that the performance of machine learning methods, namely Label Power and Random Forest, produces an accuracy of 77%, while the performance of deep learning methods, namely Long Short-Term Memory (LSTM) and Gate Recurrent Unit (GRU), produces an accuracy of 48%. The results of the research on sentiment analysis show that the performance of machine learning methods, namely Label Power and Random Forest, produces an accuracy of 63%, while the performance of deep learning methods, namely Long Short-Term Memory (LSTM) and Gate Recurrent Unit (GRU), produces 55% and 54% accuracy. The balance of the number of labels on all labels affects the results of the classification. Therefore, it is advisable to use a method to balance the number of labels used for classification."
Lengkap +
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Timotius Victory
"Pengguna media sosial di Indonesia merupakan salah satu yang terbanyak di dunia. Hal ini mendorong pemilik produk atau layanan menggunakan media sosial sebagai saluran utama untuk penjualan dan layanan pelanggan. Masyarakat Indonesia cenderung mencari ulasan online sebelum memutuskan pembelian, sehingga ulasan pengguna sangat mempengaruhi keputusan pembelian dan keberhasilan bisnis. Oleh karena itu, pemilik produk dan layanan harus cepat tanggap terhadap sentimen ulasan pengguna untuk mempertahankan reputasi dan menghindari penurunan penjualan. Analisis sentimen adalah salah satu cara untuk mengetahui sentimen terhadap produk atau layanan. Terdapat pendekatan machine learning dan deep learning dalam analisis sentimen. Penggunaan machine learning pada analisis sentimen ulasan pengguna berbahasa Indonesia telah banyak dilakukan, namun eksplorasi dalam bidang deep learning masih jarang ditemukan. Penelitian ini menggunakan model CNN-BiLSTM dan BiLSTM-CNN yang dibandingkan dengan logistic regression, support vector machine, dan naïve bayes. Pada skenario pertama, analisis ulasan pengguna di Traveloka menunjukkan model BiLSTM-CNN dengan Precision tertinggi 85% dan AUC 82.14%, serta model Support Vector Machine (SVM) dengan Accuracy 83.25% dan F1-Score 86.53%. Pada skenario kedua, analisis ulasan pengguna provider telekomunikasi menunjukkan SVM sebagai yang terbaik dengan Accuracy 78.15%, Precision 68.78%, F1-Score 76.33%, dan AUC 77.36%. Dari hasil ini, model machine learning lebih unggul dibandingkan deep learning.

Social media users in Indonesia are among the largest in the world. This drives product or service owners to use social media as the main channel for sales and customer service. Indonesian consumers tend to look for online reviews before making a purchase decision, so user reviews greatly influence purchasing decisions and business success. Therefore, product and service owners must quickly respond to user review sentiments to maintain reputation and avoid sales decline. Sentiment analysis is one way to understand the sentiment towards a product or service. There are machine learning and deep learning approaches in sentiment analysis. The use of machine learning in sentiment analysis of user reviews in Indonesian has been widely conducted, but exploration in the field of deep learning is still rarely found. This study uses CNN-BiLSTM and BiLSTM-CNN models compared to logistic regression, support vector machine, and naïve bayes. In the first scenario, analysis of user reviews on Traveloka shows the BiLSTM-CNN model with the highest Precision of 85% and AUC of 82.14%, and the Support Vector Machine (SVM) model with an Accuracy of 83.25% and F1-Score of 86.53%. In the second scenario, analysis of user reviews of telecommunications providers shows SVM as the best with an Accuracy of 78.15%, Precision of 68.78%, F1-Score of 76.33%, and AUC of 77.36%. From these results, machine learning models outperform deep learning models."
Lengkap +
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hendriawan Alfitodinova
"Sebuah paparan radiasi memiliki dampak yang baik dan buruk bagi kehidupan manusia, maka dari itu diperlukan alat untuk mendeteksi adanya sinar radiasi yang berbahaya atau tidak. Hal tersebut merupakan bentuk preventif dari sebuah malapetaka. Sebuah kejadian pada Chernobyl yang membuat manusia tidak bisa menghuni tempat tersebut lagi. Oleh karena itu, perlu dipelajari bahwa kejadian tersebut bisa saja tidak terjadi apabila disiapkan tindakan preventif. Salah satu hal preventif tersebut adalah dengan melakukan identifikasi radiasi dari sumber untuk menilai tingkat keselamatannya. Maka dari itu, penelitian ini dilakukan agar implementasi preventif tersebut bisa dipermudah dengan melakukan modernisasi sebuah sistem dengan menambahkan machine learning pada sebuah sistem. Hasil analisis menunjukkan kedua algoritma memiliki performa yang baik. Model CNN dengan transformasi Upscaling memiliki performa terbaik dengan akurasi sebesar 96.1%, presisi sebesar 0.963, recall sebesar 0.957, dan F1-score sebesar 0. 960.

A radiation exposure has a good and bad impact on human life, hence the need for a tool to detect the presence of harmful radiation rays or not. This is a preventive form of a catastrophe. An incident in Chernobyl that made humans unable to inhabit the place again. Therefore, it is necessary to learn that the incident could not have happened if preventive measures were prepared. One of the preventive measures is to identify the radiation from the source to assess its safety level. Therefore, this research was conducted so that the preventive implementation can be facilitated by modernizing a system by adding machine learning to a system. The analysis results show that both algorithms have good performance. CNN model with Upscaling transformation has the best performance with accuracy of 96.1%, precision of 0.963, recall of 0.957, and F1-score of 0. 960."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
California: Tioga, 1983
001.535 MAC
Buku Teks SO  Universitas Indonesia Library
cover
Ajeng Dwi Asti
"Ujaran kebencian dapat menyebabkan terjadinya konflik dan pembantaian di masyarakat sehingga harus segera ditangani. Indonesia memiliki lebih dari 700 bahasa daerah dengan karakteristik masing-masing. Ujaran kebencian yang ada di Indonesia juga pernah dilakukan menggunakan bahasa daerah. Media sosial Twitter paling sering digunakan dalam menyebarkan ujaran kebencian. Identifikasi target, kategori, serta level ujaran kebencian dapat membantu Polri dan Kemenkominfo dalam menentukan prioritas penanganan ujaran kebencian sehingga dapat meminimalisir dampaknya. Penelitian ini melakukan identifikasi ujaran kasar dan ujaran kebencian beserta target, kategori, dan level ujaran kebencian pada data Twitter berbahasa daerah menggunakan algoritma classical machine learning dan deep learning. Penelitian ini menggunakan data lima bahasa daerah di Indonesia dengan penutur terbanyak yaitu Jawa, Sunda, Madura, Minang, dan Musi. Pada data Bahasa Jawa performa terbaik diperoleh menggunakan algoritma Support Vector Machine (SVM) dengan transformasi data Classifier Chains (CC) serta kombinasi fitur word unigram, bigram, dan trigram dengan F1-score 70,43%. Algoritma SVM dengan transformasi data CC serta kombinasi fitur word unigram dan bigram memberikan performa terbaik pada data Bahasa Sunda dan Madura dengan masing-masing F1-score 68,79% dan 78,81%. Sementara itu, pada data Bahasa Minang dan Musi hasil terbaik diperoleh menggunakan algoritma SVM dengan transformasi data CC serta fitur word unigram dengan F1-score 83,57% dan 80,72%. Penelitian ini diharapkan dapat digunakan sebagai masukan bagi Polri dan Kemenkominfo dalam pembangunan sistem identifikasi ujaran kasar, ujaran kebencian serta target, kategori, dan level ujaran kebencian pada media sosial.

Hate speech can lead to conflict and massacres in society so it must be dealt immediately. Indonesia has more than 700 regional languages with their own characteristics. Hate speech in Indonesia has also been carried out using regional languages. Twitter is the most frequently used social media to spread hate speech. Identification of targets, categories, and levels of hate speech can help the National Police and the Ministry of Communication and Information to determine priorities for handling hate speech to minimize its impact. This study identifies abusive speech and hate speech along with the target, category, and level of hate speech on regional language Twitter data using classical machine learning and deep learning algorithms. This study uses data from five regional languages in Indonesia with the most speakers, namely Javanese, Sundanese, Madurese, Minang, and Musi. In Java language data, the best performance is obtained using the Support Vector Machine (SVM) algorithm with Classifier Chains (CC) data transformation and a combination of unigram, bigram, and trigram word features with an F1-score of 70.43%. The SVM algorithm with CC data transformation and the combination of unigram and bigram word features provides the best performance on Sundanese and Madurese data with F1-scores of 68.79% and 78.81%, respectively. Meanwhile, in Minang and Musi language data, the best results were obtained using the SVM algorithm with CC data transformation and word unigram features with F1-scores of 83.57% and 80.72%, respectively. This research is expected to be used as input for the National Police and the Ministry of Communication and Information in developing a system for identifying harsh speech, hate speech and the target, category, and level of hate speech on social media."
Lengkap +
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mitchell, Tom M.
New York: McGraw-Hill, 1997
006.31 MIT m
Buku Teks SO  Universitas Indonesia Library
cover
I Gusti Agung Ayu Widyarini
"Skizofrenia memiliki gejala utama psikosis yang ditandai inkoherensi pembicaraan akibat kekacauan proses pikir. Sebelum berkembang menjadi skizofrenia, terdapat fase prodromal psikosis di masa remaja. Pengenalan dini fase ini penting untuk mencegah perkembangan gejala menjadi gangguan jiwa berat. Penggunaan teknologi machine learning dapat digunakan untuk memprediksi kekacauan proses pikir melalui analisis sintaksis dan semantik pembicaraan. Penelitian ini bertujuan untuk mengetahui gambaran sintaksis dan semantik remaja prodromal psikosis dan normal serta membandingkan analisisnya pada kedua kelompok tersebut. Subjek penelitian terdiri dari 70 remaja usia 14-19 tahun yang terbagi menjadi 2 kelompok. Subjek mengisi instrumen PQ-B dan direkam suaranya melalui wawancara. Analisis sintaksis dan semantik dilakukan pada seluruh data yang berjumlah 1017 segmen frasa dan diklasifikasikan dengan machine learning. Hasil penelitian terdapat perbedaan analisis sintaksis dan semantik yang signifikan antara kelompok remaja prodromal psikosis dan normal pada nilai minimum koherensi dan frekuensi penggunaan kata nomina, pronomina persona, konjungtor subordinat, adjektiva, preposisi, dan proper noun

Schizophrenia has the main symptom of psychosis which is characterized by speech incoherence due to thought process distubance. Before schizophrenia, there is a prodromal phase of psychosis in adolescence. Early recognition of this phase is important to prevent the development of symptoms into a severe mental disorder. Machine learning technology can be used to predict thought process disturbance through syntactic and semantic analysis of speech. This study aims to determine the syntactic and semantic descriptions of prodromal psychosis and normal adolescents and to compare the analysis in the two groups. The research subjects consisted of 70 adolescents aged 14-19 years which were divided into 2 groups. Subjects filled out the PQ-B instrument and recorded their voices through interviews. Syntactic and semantic analysis was carried out on all data which amounted to 1017 phrase segments and classified by machine learning. The results showed that there were significant differences in syntactic and semantic analysis between groups of prodromal psychosis and normal adolescents at the minimum value of coherence and frequency of use of nouns, personal pronouns, subordinate conjunctions, adjectives, prepositions, and proper nouns."
Lengkap +
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2022
SP-pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>