Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 171140 dokumen yang sesuai dengan query
cover
Siti Shafa Adilah
"Moda transportasi udara sangat bergantung pada keadaan dan perubahan cuaca, baik saat lepas landas, mengudara, maupun saat pendaratan, dengan lebih dari 50% kecelakaan pesawat diakibatkan oleh cuaca. Curah hujan yang tinggi dapat mengganggu aktivitas penerbangan dengan menurunkan visibilitas, meningkatkan massa pesawat, mengurangi akurasi instrumen pengukuran, serta menyebabkan turbulensi. Oleh karena itu, penting bagi manajemen bandara untuk memastikan kondisi cuaca aman bagi operasi pesawat. Penelitian ini bertujuan untuk mengembangkan model prediksi kategori hujan berdasarkan curah hujan untuk 1 jam, 3 jam, dan 9 jam ke depan, menggunakan data dari AWOS di Bandara Jenderal Ahmad Yani, Semarang. Algoritma yang digunakan adalah Random Forest dengan 100 pohon dan K-Nearest Neighbor (KNN) dengan k sebesar 5. Hasil analisis menunjukkan bahwa model KNN dan Random Forest memiliki performa yang cukup baik, dengan prediksi terbaik untuk periode 1 jam ke depan. Model KNN memiliki performa terbaik dengan akurasi 0,86, presisi 086, recall 0,86, F1-score 0,85, dan MCC 0,83.

Air transportation is highly dependent on weather conditions and changes, both during takeoff, flight, and landing, with more than 50% of aircraft accidents caused by weather. Heavy rainfall can disrupt flight activities by reducing visibility, increasing aircraft mass, decreasing the accuracy of onboard measurement instruments, and causing turbulence. Therefore, it is crucial for airport management to ensure that weather conditions are safe for aircraft operations. This study aims to develop a model to predict rain categories based on rainfall for 1 hour, 3 hours, and 9 hours ahead, using data from AWOS at Jenderal Ahmad Yani Airport, Semarang. The algorithms used are Random Forest with 100 trees and K-Nearest Neighbor (KNN) with k set to 5. The analysis results show that the KNN and Random Forest models perform reasonably well, with the best predictions made for the 1-hour ahead period. The KNN model demonstrated the best performance with an accuracy of 0.86, precision of 0.86, recall of 0.86, F1-score of 0.86, and MCC of 0.86."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rashifa Khairani Setianegara
"Curah hujan mempunyai dampak yang signifikan terhadap berbagai sektor kehidupan dan lingkungan. Misalnya, curah hujan membantu meningkatkan produktivitas pertanian, menjamin cadangan pangan dan air. Selain itu, curah hujan juga mempengaruhi kekeringan dan siklus air tanah. Oleh karena itu, mengetahui cara memperkirakan curah hujan di suatu daerah secara akurat sangat penting. Salah satu cara memperkirakan curah hujan adalah dengan menggunakan radar cuaca yang mengukur nilai reflektivitas, kemudian menggunakan persamaan Z-R untuk menghitung curah hujan yang terjadi. Namun, beberapa penelitian sebelumnya telah menggunakan model estimasi curah hujan kuantitatif dengan machine learning dari data radar hujan karena dapat memberikan prediksi yang lebih akurat dibandingkan persamaan Z-R. penelitian lain menyatakan bahwa gradient boosting menghasilkan estimasi curah hujan yang lebih akurat dibandingkan beberapa algoritma lainnya. Pada penelitian ini, estimasi curah hujan dilakukan pada satu wilayah dengan tipe curah hujan lokal di Kota Gorontalo. Estimasi ini dilakukan dengan membandingkan keakuratan dua metode: persamaan Z-R dan algoritma machine learning. Persamaan Z-R yang digunakan adalah persamaan Z-R oleh Marshall-Palmer (𝐴 = 200, 𝑏 = 1.6) dan Rosenfeld (𝐴 = 250, 𝑏 = 1.2), sedangkan algoritma machine learning yang digunakan adalah gradient boosting. Hasil perbandingan menunjukkan bahwa gradient boosting memberikan estimasi yang lebih akurat dibandingkan dengan kedua persamaan Z-R tersebut. Hasil estimasi algoritma gradient boosting memberikan nilai RMSE, MAE, dan R 2 masing-masing sebesar 0,61, 0,17, dan 0,86. Persamaan Marshall-Palmer Z-R menghasilkan nilai RMSE, MAE, dan R 2 sebesar 8,14, 3,66, dan -0,19. Estimasi persamaan Z-R Rosenfeld menghasilkan nilai RMSE, MAE, dan R 2 sebesar 8,18, 3,71, dan -0,20. Dari ketiga metrik tersebut, dapat disimpulkan bahwa gradient boosting memberikan estimasi yang paling akurat untuk curah hujan di wilayah dengan tipe hujan lokal di Kota Gorontalo.

Rainfall has a significant impact on various sectors of life and the environment. For example, rainfall helps increase productivity in agriculture, ensuring food reserves and water. In addition, rainfall also affects drought and the soil water cycle. Therefore, knowing how to estimate rainfall in an area accurately is essential. One way to estimate rainfall is to use a weather radar that measures reflectivity values, then use the Z-R equation to calculate the rainfall that occurs. However, Several previous studies have used machine learning quantitative rainfall estimation models from rain radar data because it can provide more accurate predictions than the Z-R equation. Another study state that gradient boosting provides more accurate rainfall estimation than several other algorithms. In this study, rainfall estimation was carried out in an area with local rainfall types in Gorontalo City. This estimation is done by comparing the accuracy of two methods: the Z-R equation and machine learning algorithms. The Z-R equation used is the Z-R Equation by Marshall-Palmer (𝐴 = 200, 𝑏 = 1.6) and Rosenfeld (𝐴 = 250, 𝑏 = 1.2), while the machine learning algorithm used is gradient boosting. The comparison results show that gradient boosting provides a more accurate estimation than the two ZR equations. The gradient boosting algorithm estimation results provide RMSE, MAE, and R 2 values of 0.61, 0.17 and 0.86, respectively. The Marshall-Palmer Z-R equation obtained RMSE, MAE, and R 2 values of 8.14, 3.66, and -0.19. The estimation of Rosenfeld's Z-R equation resulted in RMSE, MAE, and R 2 values of 8.18, 3.71, and - 0.20. From these three metrics, it is concluded that gradient boosting provides the most accurate estimate for rainfall in areas with localized rainfall types in Gorontalo City."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fauzul Akbar
"Large Language Model (LLM) generatif merupakan jenis model machine learning yang dapat diaplikasikan dalam industri jurnalisme, khususnya dalam proses pembuatan dan validasi berita. Namun, LLM memerlukan sumber daya yang besar untuk operasionalnya serta membutuhkan waktu proses inferensi yang relatif lama. Penelitian ini bertujuan untuk mengembangkan layanan web machine learning yang memanfaatkan LLM generatif untuk proses pembuatan dan validasi berita. Tujuan lainnya adalah menciptakan sistem dengan mekanisme manajemen beban yang efisien untuk meminimalkan waktu inferensi. Pengembangan melibatkan beberapa tahap, yakni analisis kebutuhan stakeholder, perancangan desain dan arsitektur, implementasi, serta evaluasi. Dalam implementasi layanan web machine learning, pengembangan ini berfokus pada manajemen GPU untuk meningkatkan kecepatan proses inferensi LLM. Selain itu, dilakukan implementasi design pattern untuk meningkatkan skalabilitas dalam penambahan model machine learning. Untuk manajemen beban, dikembangkan dua mekanisme, yaitu load balancer dan scheduler. Implementasi load balancer memanfaatkan NGINX dengan metode round-robin. Sedangkan untuk scheduler, digunakan RabbitMQ sebagai antrean, dengan publisher menerima permintaan dan subscriber mendistribusikan permintaan ke layanan yang tersedia. Berdasarkan API Test, layanan ini berhasil melewati uji fungsionalitas dengan waktu respons API sekitar 1-2 menit per permintaan. Evaluasi performa pada kedua mekanisme manajemen beban menunjukkan tingkat keberhasilan 100%, dengan waktu respon rata-rata meningkat seiring dengan peningkatan jumlah request per detik. Pengelolaan beban dengan load balancer menghasilkan waktu respon yang lebih cepat, sementara pengelolaan beban dengan scheduler menghasilkan mekanisme yang lebih efektif pada proses koneksi asinkron.

Generative Large Language Model (LLM) is a type of machine learning model that can be applied in the journalism industry, especially in the process of news generation and validation. However, LLM requires large resources for its operation and requires a relatively long inference process time. This research aims to develop a machine learning web service that utilizes generative LLM for news generation and validation. Another goal is to create a system with an efficient load management mechanism to minimize inference time. The development involves several stages, namely stakeholder needs analysis, design and architecture, implementation, and evaluation. In the implementation of machine learning web services, this development focuses on GPU management to increase the speed of the LLM inference process. In addition, the implementation of design patterns is done to improve scalability in adding machine learning models. For load management, two mechanisms are developed: load balancer and scheduler. The load balancer implementation utilizes NGINX with the round-robin method. As for the scheduler, RabbitMQ is used as a queue, with the publisher receiving requests and the subscriber distributing requests to available services. Based on the API Test, the service successfully passed the functionality test with an API response time of about 1-2 minutes per request. Performance evaluation on both load management mechanisms showed a 100% success rate, with the average response time increasing as the number of requests per second increased. The use of a load balancer results in faster response times, while load management with a scheduler results in a more effective mechanism for asynchronous connection processes. "
Depok: Fakultas Ilmu Komputer Universitas Indonesia , 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rr. Dea Annisayanti Putri
"Dalam era digital yang terus berkembang, aktivitas sosial dan bisnis semakin banyak beralih ke media sosial dan digitalisasi melalui e-commerce. Tidak hanya pada sektor jual beli masyarakat, terjadi digitalisasi di bidang pengadaan barang/jasa pemerintah dengan dibangunnya sistem e-katalog. Sistem e-katalog memungkinkan pemerintah dan masyarakat untuk mengawasi dan memastikan bahwa pengadaan barang dan jasa pemerintah dilakukan secara adil dan transparan. Namun, sistem e-katalog mengalami keterbatasan dalam hal jumlah dan jenis produk, sehingga upaya terus dilakukan untuk menambah vendor dan memperluas kesepakatan dengan penjual lokal. Meskipun begitu, masih terdapat banyak produk impor yang tercatat pada daftar produk di e-katalog. Dengan memanfaatkan teknologi Machine Learning, klasifikasi produk ke lokal dan pemetaannya ke kategori di e-katalog dapat membantu menyelesaikan permasalahan yang dihadapi oleh sistem e-katalog ini.
Desain penelitian yang digunakan pada penelitian ini adalah Experimental research, dimana klasifikasi produk dan pemetaan kategori yang dilakukan pada penelitian ini menggunakan metode Machine Learning. Pemetaan kategori dilakukan dengan 2 pendekatan, produk ke kategori dan kategori ke kategori. Klasifikasi produk dibagi menjadi 2 kelas yaitu lokal dan impor. Data yang diolah adalah produk dari e-commerce dari rentang November 2022 hingga April 2023.
Metode yang digunakan pada penelitian ini untuk klasifikasi produk lokal dan kategori adalah Random Forest (RF), Support Vector Machine (SVM), Neural Network (NN), dan Transformers. Dari eksperimen klasifikasi produk lokal dan kategori, keduanya mendapatkan hasil evaluasi terbaik dari model transformers, yang digunakan sebagai model ekstraksi fitur hingga klasifikasi. Performa model klasifikasi produk lokal mendapat f1-score 97,24% dan akurasi 97,25%. Sedangkan model klasifikasi kategori, performa model f1-score 63,74% dan akurasi 64,14%.

In the ever-evolving digital era, social and business activities are increasingly turning to social media and digitalization through e-commerce. Not only in the public buying and selling sector, digitization happen in the field of government goods/services procurement with the construction of an e-catalog system. The e-catalog system enables the government and the public to monitor and ensure that government procurement of goods and services is carried out in a fair and transparent manner. However, the e-catalog system suffers from limitations in terms of the number and types of products, so efforts are being made to add more vendors and expand agreements with local sellers. Even so, there are still many imported products listed on the product list in the e-catalog. By utilizing Machine Learning technology, classifying products to local and mapping them to categories in the e-catalog can help solve the problems faced by this e-catalog system.
The research design used in this study is Experimental research, where product classification and category mapping are carried out in this study using Machine Learning methods. Category mapping is done with 2 approaches, product to category and category to category. Product classification is divided into 2 classes, namely local and imported. The processed data are products from e-commerce from November 2022 to April 2023.
The methods used in this study for local product classification and categories are Random Forest (RF), Support Vector Machine (SVM), Neural Network (NN), and Transformers. From the local and category product classification experiments, both obtained the best evaluation results from the Transformers model, which was used as a feature extraction model for classification. The performance of the local product classification model gets an f1-score of 97,24% and accuracy 97,25%. While the category classification model, the performance of the f1-score model is 63,74% and accuracy 64,14%.
"
Depok: 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Wahid Amir Chairudin
"Dalam menghadapi meningkatnya permintaan transportasi muatan curah kargo di era transisi energi, efisiensi operasional menjadi krusial untuk mengelola biaya operasional harian kapal bulk carrier, di mana bahan bakar mencakup 60%-70% dari total biaya operasional. Penelitian ini mengusulkan pendekatan menggunakan model Random Forest (RF) untuk memprediksi konsumsi bahan bakar kapal, mengatasi keterbatasan metode empiris statistik konvensional dalam memodelkan faktor eksternal seperti kondisi cuaca. Ordinary Least Squares (OLS) digunakan untuk mengevaluasi signifikansi variabel independen setelah normalisasi data dengan metode min-max, dengan pembagian data training dan testing sebesar 70% dan 30%. Pendekatan baru diterapkan untuk validasi data guna mengevaluasi sejauh mana model dapat membaca dataset dengan variasi jumlah subset data kapal, dan menggunakan analisis histogram untuk mengkaji pergeseran nilai error dalam persebaran data seiring bertambahnya jumlah data yang digunakan. Evaluasi dilakukan menggunakan empat metrik, yaitu MSE, RMSE, MAE, dan MAPE, yang menunjukkan bahwa model RF mencapai akurasi tinggi sebesar 95%-98% dengan kesalahan rata-rata sangat rendah di bawah 0,1 pada semua metrik. Penelitian ini tidak hanya memberikan solusi efektif untuk mengoptimalkan konsumsi bahan bakar dan meminimalkan biaya operasional, tetapi juga mendukung pengambilan keputusan yang lebih cepat dan tepat dalam operasional kapal.

In response to the increasing demand for bulk cargo transportation in the energy transition era, operational efficiency is crucial to managing the daily operational costs of bulk carrier vessels, with fuel accounting for 60%-70% of total operational expenses. This study proposes an approach utilizing the Random Forest (RF) model to predict ship fuel consumption, addressing the limitations of conventional empirical statistical methods in modeling external factors such as weather conditions. Ordinary Least Squares (OLS) was employed to evaluate the significance of independent variables after data normalization using the min-max method, with a 70% and 30% split for training and testing data, respectively. A novel approach was implemented for data validation to assess the extent to which the model can interpret datasets with varying subsets of ship data, using histogram analysis to examine the shift in error distribution as the dataset size increases. The evaluation was conducted using four metrics, namely MSE, RMSE, MAE, and MAPE, demonstrating that the RF model achieved high accuracy between 95% and 98%, with extremely low average errors below 0.1 across all metrics. This study not only provides an effective solution to optimize fuel consumption and minimize operational costs but also supports faster and more accurate decision-making in ship operations."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sulthan Afif Althaf
"Large Language Model (LLM) generatif merupakan jenis model machine learning yang dapat diaplikasikan dalam industri jurnalisme, khususnya dalam proses pembuatan dan validasi berita. Namun, LLM memerlukan sumber daya yang besar untuk operasionalnya serta membutuhkan waktu proses inferensi yang relatif lama. Penelitian ini bertujuan untuk mengembangkan layanan web machine learning yang memanfaatkan LLM generatif untuk proses pembuatan dan validasi berita. Tujuan lainnya adalah menciptakan sistem dengan mekanisme manajemen beban yang efisien untuk meminimalkan waktu inferensi. Pengembangan melibatkan beberapa tahap, yakni analisis kebutuhan stakeholder, perancangan desain dan arsitektur, implementasi, serta evaluasi. Dalam implementasi layanan web machine learning, pengembangan ini berfokus pada manajemen GPU untuk meningkatkan kecepatan proses inferensi LLM. Selain itu, dilakukan implementasi design pattern untuk meningkatkan skalabilitas dalam penambahan model machine learning. Untuk manajemen beban, dikembangkan dua mekanisme, yaitu load balancer dan scheduler. Implementasi load balancer memanfaatkan NGINX dengan metode round-robin. Sedangkan untuk scheduler, digunakan RabbitMQ sebagai antrean, dengan publisher menerima permintaan dan subscriber mendistribusikan permintaan ke layanan yang tersedia. Berdasarkan API Test, layanan ini berhasil melewati uji fungsionalitas dengan waktu respons API sekitar 1-2 menit per permintaan. Evaluasi performa pada kedua mekanisme manajemen beban menunjukkan tingkat keberhasilan 100%, dengan waktu respon rata-rata meningkat seiring dengan peningkatan jumlah request per detik. Pengelolaan beban dengan load balancer menghasilkan waktu respon yang lebih cepat, sementara pengelolaan beban dengan scheduler menghasilkan mekanisme yang lebih efektif pada proses koneksi asinkron.

Generative Large Language Model (LLM) is a type of machine learning model that can be applied in the journalism industry, especially in the process of news generation and validation. However, LLM requires large resources for its operation and requires a relatively long inference process time. This research aims to develop a machine learning web service that utilizes generative LLM for news generation and validation. Another goal is to create a system with an efficient load management mechanism to minimize inference time. The development involves several stages, namely stakeholder needs analysis, design and architecture, implementation, and evaluation. In the implementation of machine learning web services, this development focuses on GPU management to increase the speed of the LLM inference process. In addition, the implementation of design patterns is done to improve scalability in adding machine learning models. For load management, two mechanisms are developed: load balancer and scheduler. The load balancer implementation utilizes NGINX with the round-robin method. As for the scheduler, RabbitMQ is used as a queue, with the publisher receiving requests and the subscriber distributing requests to available services. Based on the API Test, the service successfully passed the functionality test with an API response time of about 1-2 minutes per request. Performance evaluation on both load management mechanisms showed a 100% success rate, with the average response time increasing as the number of requests per second increased. The use of a load balancer results in faster response times, while load management with a scheduler results in a more effective mechanism for asynchronous connection processes."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raden David Febriminanto
"In line with rapid business process digitalization in the Directorate General of Taxes, the size of the data stored in the institution has grown exponentially. However, there is a problem with generating value out of the valuable data assets. Correspondingly, this research provides machine-learning-based predictive analytics as a solution to the question of how to use taxpayers' trigger data as a decision support system to discover and realize unexplored tax potential. More specifically, this research presents predictive analytics models that can accurately predict which potential taxpayers are likely to pay their due. We developed three machine learning models: logistic regression, random forest, and decision tree. We analyzed 5,562 tax revenue potential data samples with eight predictors: trigger data nominal value, distance to tax office, type of taxpayer, media of tax report, type of tax, report status, registered year of taxpayer, and area coverage. Our study shows that the random forest model provided the best prediction performance. The resultant weight of each attribute indicated that the status of the tax report was the top tier of variable importance in predicting tax revenue potential. The analytics can help tax officers determine potential taxpayers with the highest likelihood to pay their due. Given the size of the data records, this approach can provide tax administrators with a powerful tool to increase work efficiency, combat tax evasion, and provide better customer service."
Jakarta: Direktorat Jenderal Pembendaharaan Kementerian Keuangan Republik Indonesia, 2022
336 ITR 7:3 (2022)
Artikel Jurnal  Universitas Indonesia Library
cover
Balqis Az Zahra
"Memprediksi niat kunjungan kembali memainkan peran penting dalam kebangkitan kembali waktu pandemi yang akan menguntungkan keunggulan kompetitif jangka pendek dan jangka panjang. Penelitian ini mengkaji faktor-faktor penentu niat berkunjung kembali dari analisis sentimen berbasis aspek dan pembelajaran mesin. Pendekatan big data diterapkan pada empat set data atraksi, hotel bintang 4&5, hotel bintang 3, dan motel dengan 49.399 ulasan dari TripAdvisor. Kami menerapkan metode pemodelan topik untuk mengekstrak aspek dan atribut, menghasilkan 10 aspek untuk kategorisasi hotel 4&5 dan kumpulan data atraksi, 6 aspek pada kumpulan data hotel bintang 3 dan Motel. Hasil analisis sentimen menunjukkan bahwa sentimen wisatawan secara positif dan negatif juga mempengaruhi kemungkinan niat berkunjung kembali. Peneliti menerapkan metode Logistic Regression, Random Forest Classifier, Decision Tree, k-NN, dan XGBoost untuk memprediksi niat berkunjung kembali yang menghasilkan tiga topik utama yang mendominasi probabilitas niat berkunjung kembali untuk masing-masing dataset. Aspek Properti pada hotel bintang 4&5 dan hotel bintang 3 mengindikasikan memiliki kemungkinan tinggi untuk niat berkunjung kembali. Sedangkan aspek Motels pada Atmosfir, Aktivitas Wisata, dan Durasi cenderung memiliki probabilitas niat berkunjung kembali. Aspek atraksi pada Harga, Layanan, Suasana meningkatkan kemungkinan niat berkunjung kembali. Studi ini berkontribusi pada pemanfaatan data besar dan pembelajaran mesin di industri pariwisata dan perhotelan dengan berfokus pada strategi inovatif sebagai pengurangan biaya untuk mempertahankan niat kunjungan kembali di kebangkitan kembali dari pandemi.

Predicting revisit intention plays a crucial role in the reawakening time of pandemic that will benefit short-term and long-term competitive advantage. This study examines the determiner factors of revisit intention from aspect-based sentiment analysis and machine learning. A big data approach was applied on four datasets of attractions, hotel 4&5 stars, hotel 3 stars, and motels with 49,399 reviews from TripAdvisor. We applied a topic modeling method to extract aspects and attributes, resulting in 10 aspects for hotel 4&5 categorization and attractions dataset, 6 aspects on hotel 3 stars and Motels dataset. Results on sentiment analysis show that tourists’ sentiment in positives and negatives also affect probability of revisit intention. Researchers applied methods of Logistic Regression, Random Forest Classifier, Decision Tree, k-NN, andXGBoost to predict revisit intention resulting in three main topics that have dominated probability on revisit intention for each dataset respectively. Aspect Properties on hotels 4&5 stars and hotel 3 stars indicate to have a high probability of revisit intention. Meanwhile, Motels' aspects on Atmosphere, Tourist Activities, and Duration tend to have a probability of revisit intention. Attraction’s aspects on Price, Services, Ambience increase probability of revisit intention. This study contributes to the utilization of big data and machine learning in tourism and hospitality industry by focusing on an innovative strategy as cost reduction to maintain revisit intention in the reawakening from pandemic."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bernadeta Nafirsta Ayu Nareswari
"Curah hujan merupakan unsur iklim yang memiliki keragaman dan fluktuasi yang tinggi di Indonesia. Hal ini membuat curah hujan merupakan unsur iklim yang paling dominan untuk mencirikan iklim di Indonesia. Berdasarkan gerakan udara naik untuk membentuk awan, terdapat tiga tipe hujan yaitu konvektif, orografik, dan gangguan. Pengukuran terhadap curah hujan dapat dilakukan dalam berbagai metode, salah satunya dengan menggunakan pengukuran jarak jauh yaitu radar (Radio Detecting and Ranging). Pada studi ini dilakukan perhitungan radar cuaca dengan menggunakan machine learninguntuk mengkaji keakuratan perhitungan data radar cuaca terhadap estimasi curah hujan di Pulau Biak, Indonesia. Produk dari radar cuaca merupakan data reflektifitas (Z). Penggunaan machine learning ini diterapkan pada data reflektifitas radar cuaca dimana data yang digunakan adalah C-MAX atau Column Maximum. Data curah hujan pada periode Desember 2021 sampai Februari 2022 di Kabupaten Biak diolah menggunakan algoritma yang berbeda, yaitu Decision Tree, Random Forest, Adaptive Boosting, Gradient Boosting Extreme Gradient Boosting. Hasil dari studi ini akan menunjukkan algoritma terbaik yang dapat digunakan untuk memprediksi estimasi curah hujan konvektif di Pulau Biak, Indonesia. Berdasarkan penelitian yang sudah dilakukan, didapatkan hasil R2 pada algoritma Decision Tree sebesar 0,70; Random Forest 0,60; Adaptive Boosting sebesar 0,42; Gradient Boosting sebesar 0,71 dan Extreme Gradient Boosting sebesar 0,73. Hasil analisis menunjukkan bahwa algoritma Extreme Gradient Boosting dapat memberikan estimasi curah hujan paling baik di Pulau Biak, Indonesia.

Rainfall is an element of climate with high diversity and fluctuation in Indonesia. This makes rainfall the most dominant climate element to characterize the climate in Indonesia. Based on the movement of rising air to form clouds, there are three types of rain: convective, orographic, and disturbance. Rainfall can be measured in various methods, one of which is by using remote measurement, namely radar (Radio Detecting and Ranging). In this study, weather radar calculations were carried out using machine learning to assess the accuracy of weather radar data calculations on the estimated rainfall value on Biak Island, Indonesia. The product of weather radar is reflectivity (Z) data. The use of machine learning is applied to weather radar reflectivity data where the data used is C-MAX or Column Maximum. Rainfall data from December 2021 to February 2022 in Biak Regency is processed using five different algorithms: Decision Tree, Random Forest, Adaptive Boosting, Gradient Boosting, and Extreme Gradient Boosting. The result of this study will show the best algorithm that can be used to predict convective rainfall estimation in Biak Island, Indonesia. Based on the research that has been done, the R2 results obtained on the Decision Tree algorithm of 0.70; Random Forest 0.60; Adaptive Boosting of 0.42; Gradient Boosting of 0.71 and Extreme Gradient Boosting of 0.73. The analysis shows that the Extreme Gradient Boosting algorithm can estimate the best rainfall in Biak Island, Indonesia.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dea Amrializzia
"Pipa transmisi adalah cara teraman dan paling efektif untuk mengangkut gas alam dalam jumlah besar dalam jarak jauh. Meskipun transportasi menggunakan pipa adalah yang paling aman, kegagalan pipa transmisi dapat menyebabkan kerusakan, kerugian finansial, dan cedera. Kegagalan pipa perlu diprediksi untuk untuk menentukan prioritas pemeliharaan pipa sebagai salah satu strategi membuat jadwal pemeliharaan prefentif yang tepat sasaran dan efisien agar pipa dapat diperbarui atau direhabilitasi pipa sebelum terjadi kegagalan. Metode yang ditawarkan pada studi ini adalah machine learning, dimana metode merupakan bagian dari insiatif transformasi digital (Hajisadeh, 2019). Model dikembangkan berdasarkan data kegagalan historis dari jaringan pipa transmisi gas darat sekitar 2010-2020 yang dirilis oleh Departemen Transportasi AS dengan karakteristik data yang tidak terstruktur dan kompleks. Proses pembelajaran mesin dapat dibagi menjadi beberapa langkah: pra-pemrosesan data, pelatihan model, pengujian model, pengukuran kinerja, dan prediksi kegagalan. Pengembangan model pada studi ini dilakukan menggunakan dua algoritma yaitu regresi logistik dan random forest. Pola perilaku dari faktor-faktor yang paling berpengaruh adalah usia dan panjang segmen pipa meiliki korelasi positif terhadap kegagalan pipa. Kedalaman pipa, ketebalan, dan diameter pipa memiliki korelasi negatif. Kegagalan pipa paling sering terjadi pada pipa dengan class location 1 dan class location 4, pipa yang ditempatkan di bawah tanah, serta pipa dengan tipe pelapis coal tar. Hasil pengembangan model menggunakan machine learning menunjukan hasil performa model akurasi prediksi 0.949 dan AUC 0.950 untuk model dengan algoritma regresi logistik. Sedangkan akurasi prediksi 0.913 dan AUC 0.916 untuk model dengan algoritma random forest. Berdasrkan hasil uji performa kita dapat menyimpulkan bahwa machine learning adalah metode yang efektif untuk memprediksi kegagalan pipa. Berdasarkan model yang dilatih pada dataset nyata pipa transmisi gas, hasil prediksi pada studi kasus dapat menghindari 29% dari kegagalan pipa pada 2025, 53% kegagalan pipa pada tahun 2030, dan 64% pada tahun 2035.

Transmission pipe is the safest and most effective way to transport large amounts of natural gas over long distances. Although transportation using pipelines is the safest, transmission pipeline failures can cause damage, financial losses, and injuries. Pipeline failures need to be predicted to determine the priority of pipeline maintenance as one of the strategies to create a schedule of maintenance targets that is right on target and efficient so that the pipeline can be rehabilitated before a failure occur. The method offered in this study is machine learning, where the method is part of the digital transformation initiative (Hajisadeh, 2019). The model was developed based on historical failure data from the onshore gas transmission pipeline around 2010-2020 released by the US Department of Transportation with unstructured and complex data characteristics. The machine learning process can be divided into several steps: data pre-processing, model training, model testing, performance measurement, and failure prediction. The development of the model in this study was carried out using two algorithms namely logistic regression and random forest. The correaltion of the factors that most influence the failure of an onshore gas transmission pipeline is the age and length of the pipe segment has a positive correlation with pipe failure. Depth of cover, thickness, and diameter of pipes have a negative correlation with pipe failures. Pipe failures most often occur in pipes with class location 1 and class location 4, undersoil, and pipes with coal tar coating types. The results of the development of the model using machine learning showed the results of the model performance prediction accuracy is 0.949 and AUC is 0.950 for models with logistic regression algorithms. Whereas the accuracy of prediction is 0.913 and AUC is 0.916 for models using the random forest algorithm. Based on the results of performance tests we can conclude that machine learning is an effective method for predicting pipe failures. Based on the model trained on a real dataset of gas transmission pipelines, the prediction results in case studies can avoid 29% of pipe failures in 2025, 53% of pipe failures in 2030, and 64% in 2035. "
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>