Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 193762 dokumen yang sesuai dengan query
cover
Hutahaean, Benita Aryani
"Pusuk Buhit adalah salah satu lapangan di Indonesia dengan potensi geotermal, dibuktikan oleh keberadaan fumarole, hot spring, dan cold spring. Penelitian bertujuan membangun model konseptual yang menggambarkan komponen-komponen sistem geotermal fokus wilayah penelitian yang belum ada sebelumnya, menggunakan data primer geofisika dan data sekunder geologi dan geokimia. Inversi 3-dimensi magnetotellurik mampu menggambarkan komponen sistem geotermal dari variasi resistivitas. Claycap memiliki resistivitas 0-16 Ωm, reservoir 16-80 Ωm, dan basement 80-300 Ωm, dengan pola updoming di antara basement diduga sebagai sumber panas. Model gravitasi 2-dimensi digunakan untuk mengkonfirmasi jalur fluida ke zona reservoir dan nilai densitas dari komponen sistem geotermal, dengan lapisan piroklastik densitas 1.92 gr/cc, batuan gamping 2.3-2.4 gr/cc, dan batuan dasar metamorf 2.7 gr/cc, yang menunjukkan korelasi dengan model magnetotellurik. Kedua metode didukung data geologi yang menunjukkan korelasi antara struktur dengan manifestasi permukaan, serta data geokimia yang menunjukkan fluida reservoir bertipe bikarbonat, suhu di reservoir 240-270°C, dan pergerakan fluida lateral ke arah manifestasi air, serta upflow menuju fumarole. Integrasi data menunjukkan area prospek geotermal berada di bawah lapisan batuan teralterasi konduktif di antara struktur graben wilayah penelitian.

Pusuk Buhit is one of the fields in Indonesia with geothermal potential, evidenced by the presence of fumaroles, hot springs, and cold springs. The research aims to build a conceptual model depicting the components of the geothermal system in the focus area, which has not been previously studied, using primary geophysical data and secondary geological and geochemical data. The 3-dimensional magnetotelluric inversion can illustrate the geothermal system components based on resistivity variations. The clay cap has a resistivity of 0-16 Ωm, the reservoir 16-80 Ωm, and the basement 80-300 Ωm, with an updoming pattern within the basement suspected to be the heat source. A 2- dimensional gravity model is used to confirm fluid pathways to the reservoir zone and the density values of the geothermal system components, with pyroclastic layers having a density of 1.92 gr/cc, limestone 2.3-2.4 gr/cc, and metamorphic basement rocks 2.7 gr/cc, which show correlation with the magnetotelluric model. Both methods are supported by geological data showing a correlation between structures and surface manifestations, as well as geochemical data indicating bicarbonate-type reservoir fluids, reservoir temperatures of 240-270°C, lateral fluid movement towards water manifestations, and upflow towards fumaroles. Data integration indicates that the geothermal prospect area is located beneath the conductive altered rock layer within the graben structures of the study area.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sarfina Adani
"Parakasak adalah salah satu gunung berapi kuaterner yang sebagian besar tersusun oleh lava andesitik dan piroklastik. Potensi sistem panas bumi terlihat oleh manifestasi sumber air panas di Batukuwung sebagai objek wisata lokal. Penelitian ini bertujuan untuk mengetahui sistem panas bumi di sana dan membuat model konseptual melalui pemahaman kita tentang karakteristik mereka. Metode untuk mencapai ini dapat dilakukan dengan mengambil dan menganalisis sampel geologi, analisis petrografi sebagai data primer, analisis geokimia dan geofisika sebagai data sekunder.
Berdasarkan analisis di atas, Mt. Parakasak adalah stratovolcano relief tinggi dengan dua sesar tektonik yaitu sesar Batukuwung dan sesar Wangun. Ia juga memiliki struktur runtuh di pusat gunung sebagai hasil dari letusannya di masa lalu. Karakteristik sistem panas bumi di daerah ini didominasi cairan, air meteorik sebagai sumber, dan memiliki suhu sedang (175˚C-230 ˚C). Sumber panas berasal dari ruang magma dan reservoir adalah lava andesit piroklastik dan fraktur.

Mt. Parakasak is a quaternary volcano composed mostly of andesitic and pyroclastic lava. Potential geothermal systems are seen by the manifestation of hot springs in Batukuwung as a local tourist attraction. This research aims to find out the geothermal system there and create a conceptual model through our understanding of their characteristics. Methods to achieve this can be done by taking and analyzing geological samples, petrographic analysis as primary data, geochemical analysis and geophysics as secondary data.
Based on the above analysis, Mt. Parakasak is a high relief stratovolcano with two tectonic faults, the Batukuwung fault and the Wangun fault. It also has a collapsed structure at the center of the mountain as a result of its eruption in the past. The characteristics of geothermal systems in this area are dominated by liquids, meteoric water as a source, and has a moderate temperature (175˚C-230 ˚C). The heat source comes from the magma chamber and the reservoir is pyroclastic andesite lava and fracture.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zaiza Salsa Khoirunnisa
"Penelitian berlokasi di daerah Langgikima, Konawe Utara, Sulawesi Tenggara. Tujuan dari penelitian ini yaitu untuk memetakan zona profil laterit berdasarkan hasil domaining serta mengestimasi kadar dan tonase nikel laterit yang terdapat di daerah penelitian. Metode pengolahan dan analisis data meliputi analisis statistik univarian serta metode ordinary kriging. Unsur yang diestimasi meliputi Ni, Co, Fe, SiO2, dan MgO dengan variogram model yang digunakan yaitu Ni sebagai variabel utama. Data yang digunakan berupa data sekunder yang mencakup collar, survey, dan assay serta menggunakan foto core sebagai data penunjang untuk validasi. Domain geologi pada penelitian ini terbagi menjadi 3, yaitu limonit, saprolit, dan bedrock. Limonit dan saprolit termasuk kedalam zona mineralisasi yang akan diestimasi. Densitas limonit sebesar 1.6 gr/cm3 dan saprolit 1.5 gr/cm3 . Klasifikasi sumberdaya didasarkan pada jarak antar spasi bor dan parameter geostatistik slope of regression. Hasil klasifikasi dengan menggunakan cut off grade 1% menunjukkan daerah penelitian terdiri atas kelas terukur. Domain limonit menghasilkan volume sebesar 1,697,891 m3 dan tonase 2,716,625 ton dengan kandungan rata-rata Ni sebesar 1.31%, Co 0.1%, Fe 45.42%, SiO2 9.01%, dan MgO 1.13%. Domain saprolit menghasilkan volume sebesar 964,063 m3 dan tonase 1,446,094 ton dengan kandungan rata-rata Ni sebesar 1.69%, Co 0.04%, Fe 20.93%, SiO2 33.52%, dan MgO 14.92%. Kategori terukur menandakan pada daerah penelitian memiliki tingkat keyakinan geologi yang tinggi untuk membuktikan kemenerusan kadar dan kandungan mineral serta memiliki nilai yang ekonomis untuk ditambang.

The research is located in Langgikima, Nort Konawe, Southeast Sulawesi. The purpose of this study was to map the laterite profile zones based on the results of domaining and to estimate the grades and tonnage of laterite nickel found in the study area. Data processing and analysis methods include univariate statistical analysis and ordinary kriging methods. The estimated elements include Ni, Co, Fe, SiO2, and MgO with the variogram model used, Ni as the main variable. The data used is in the form of secondary data which includes collars, surveys, and assays and uses core photos as supporting data for validation. The geological domain in this study is divided into 3, namely limonite, saprolite, and bedrock. Limonite and saprolite are included in the mineralized zone to be estimated. The density of limonite is 1.6 gr/cm3 and that of saprolite is 1.5 gr/cm3 . Resource classification is based on the distance between drill spacing and the slope of regression geostatistical parameters. Classification results using 1% cut off grade show that the study area is composed of measurable classes. The limonite domain produces a volume 1,697,891 m3 and tonnage of 2,716,625 tons with an average content of 1.31% Ni, 0.1% Co, 45.42% Fe, 9.01% SiO2, and 1.13% MgO. The saprolite domain produced a volume of 964,063 m3 and tonnage of 1,446,094 tons with average content of 1.69% Ni, 0.04% Co, 20.93% Fe, 33.52% SiO2, and 14.92% MgO.The measured category indicates that the research area has a high level of geological confidence to prove the continuity of grades and mineral content and has economic value for mining."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lukman Sutrisno
"Data produksi menunjukkan bahwa bagian utara WW adalah area utama dimana sampai saat ini sekitar 90 persen produksi uap (steam) dihasilkan. Selain itu beberapa indikasi menunjukkan adanya sumberdaya di bagian utara ini belum dieksploitasi secara maksimal. Oleh karena itu, perlu dilakukan studi karakterisasi sumberdaya di bagian utara WW, yaitu di sekitar kompleks Gunung Malabar sampai dengan area Gunung Gambung. Daerah penelitian yang berada di bagian utara lapangan WW merupakan sistem panasbumi dominasi uap yang memiliki lapisan reservoir dominasi uap setebal ±500 m di atas zona dominasi air. Sistem ini tidak terkait dengan batuan intrusi di bawah Kompleks Gunung Malabar. Batuan intrusi ini bukan merupakan sumber panas, dan keberadaannya cenderung menyebabkan permeabilitas yang terbatas di area sekitarnya. Reservoir dominasi uap di bagian utara terkait dengan zona alterasi propylitic pada Formasi Dogdog yang merupakan fasies medial dari pusat-pusat erupsi di timur dan barat Gunung Malabar. Lapisan penudung di bagian utara terkait dengan zona alterasi argillic pada Formasi Malabar yang merupakan fasies sentral-proksimal dari Gunung Malabar. Puncak reservoir rata-rata berada pada elevasi 1050-1100 mdpl, yang menurun ke arah selatan di sumur-sumur WWQ. Sedangkan brine level teramati pada elevasi 400-600 mdpl.

Production data shows that the Northern Part of WW field is the main area where currently almost 90% steam was produced. Moreover, several data indicated that the area has additional potential resource which has not been exploited yet. Therefore, comprehensive resource characterization in that particular area is needed, especially around Gunung Malabar and Gunung Gambung. Area of study in this thesis is located in the northern part of WW which is vapor-dominated system with ±500 m thick steam cap layer above water dominated reservoir. This system is not related with intrusion body beneath Gunung Malabar Complex. The occurrence of intrusion body tends to limit the permeability in country rock rather than act as the heat source for the system. Vapor-dominated reservoir in this area is related with propylitic alteration zone within Dogdog Formation, the medial facies from several older eruption centers in the eastern and western side of Gunung Malabar. The capping layer is related with argillic alteration zone in Malabar Formation, which is central-proximal facies from Gunung Malabar. In average, top of the reservoir reside at 1050-1100 m above sea level, and descending toward the south, while the brine level is observed at 400-600 m above sea level."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T43645
UI - Tesis Membership  Universitas Indonesia Library
cover
S. Bachri
"The study area has been subjected to intense fracturing or brittle deformation resulting in five main trends of lineaments and faults, i.e. (1) the Group A (the Perantanaan Fault Group) with a mean of direction N95°E/ N275°E, (2) the Group B (the Gorontalo Fault Group) with a mean of direction N125°E/ N305°E, (3) the Group C (the Paleleh Fault Group) with a mean of direction 165°E /N335°E, (4) the Group D (the Randangan Fault Group) with a mean of direction N25°E/ N205°E and (5) the Group E (the Kuandang Fault Group) having a mean of trend of N55°E/ N235°E. The complexity of structural pattern in the study area has been interpreted to be due to stress system evolution during Neogene - Pleistocene. The changing stress system orientation has reactivated the preexisting faults of the five groups with different sense of movements from the older deformation.
The nearly E-W trending lineaments of Group A or the Perantanaan Fault Group coincide with trend of the long axis of ridges and valleys or depression areas which are covered by volcanic rocks, lake deposits, and alluvium of Quaternary age. This group of structures was presumably developed as reverse or thrust faults during Late Neogene which later on to have beem reactivated as normal faults due to extensional tectonics of the North Sulawesi area during Plesitocene."
Bandung: Pusat Survai geologi Bandung, 2011
551 JSDG 21:3 (2011)
Artikel Jurnal  Universitas Indonesia Library
cover
Fikri Fahmi
"Daerah prospek panas bumi Arjuno-Welirang berada di jalur ring of fire Indonesia dan berlokasi di Kab. Mojokerto, Kab. Malang, Kab. Pasuruan, dan Kota Batu Provinsi Jawa Timur. Secara geologi batuan di daerah ini didominasi oleh batuan vulkanik berupa lava dan piroklastik yang berumur kuarter. Manifestasi yang muncul di permukaan berupa fumarol - solfatar yang terletak di puncak Gn. Welirang dan mata air panas yang berada di sebelah barat dan baratlaut Gn. Welirang bertipe bicarbonate dengan suhu berkisar antara 39 - 55 0C. Inversi 2-D dan 3-D dari data Magnetotellurik dilakukan untuk mengetahui struktur resistivitas bawah permukaan dengan menggunakan software WinGlink dan MT3DInv-X.
Hasil penelitian ini menunjukan bahwa inversi 3-D mampu menggambarkan struktur bawah permukaan dengan lebih baik dibandingkan dengan inversi 2-D. Lapisan konduktif (<15 ohm-m) dengan ketebalan sekitar 1 - 1,5 km diindikasikan sebagai clay cap dari sistem panas bumi. Lapisan yang berada di bawah clay cap dengan nilai resistivitas sedikit lebih tinggi (20 - 60 ohm-m), diindikasikan sebagai zona reservoir. Body dengan nilai resistivitas yang tinggi (>80 ohm-m), diinterpretasikan sebagai heat source yang berasosiasi dengan aktivitas vulkanik Gn. Arjuno-Welirang.
Tahap akhir dari penelitian adalah mengintegrasikan data MT, geologi dan geokimia, untuk membangun model konseptual. Luas daerah prospek untuk sistem geotermal Arjuno-Welirang sekitar 18 km2 dengan pusat reservoar berada di bawah puncak Welirang. Temperatur reservoar geotermal Arjuno-Welirang dihitung dengan menggunakan geotermometer gas CO2 sekitar 260oC. Potensi dari sistem geotermal Arjuno-Welirang dihitung dengan metode Volumetrik Lump Parameter adalah sebesar 144 MWe.

Arjuno-Welirang Geothermal prospect area is situated in ring of fire Indonesia and located in Kab. Mojokerto, Kab. Malang, Kab. Pasuruan, and Kota Batu, East Java. Geologically, the prospect area is dominated by Quartenary volcanic rocks, both lava and phyroclastic. Surface manifestations occured in this prospect area are fumaroles-solfatara found on top of Mount Welirang. Other manifestanions found in this area are hot springs on the West and Northwest of Mount Welirang that catagorized as bicarbonate type with temperatures range between 39 to 55 oC. The 2-D and 3-D inversion MT data are performed to determine the subsurface resistivty structure. The 2-D inversion was done by using WinGlink software, while the 3-D inversion has been carried out using MT3DInv-X software.
The result of the inversion shows that the 3-D inversion can deliniate the subsurface structure more clearly than the 2-D inversion. The conductive layer (<15 ohm-m) with a thickness of about 1 - 1,5 km is indicated indicating the clay cap of the geothermal system. A slighty higher resistivity value (20-60 ohm-m) is discovered below the clay cap, indicating the reservoir zone. Body with high resistivity values (> 80 ohm-m) is interpreted as heatsource of geothermal system associated with volcanic activity of Mount Welirang.
The final stage of the research is to intergrate the MT data, geology and geochemistry data, to build a conceptual model. The coverage boundary of the prospective area is about 18 km2 with the summit of Mount Welirang as the center of reservoar. Temperature of geothermal reservoir based on CO2 gas geothermometer is about 260oC.The capacity of Arjuno-Welirang geothermal system counted using Volumetric Lump Parameter method is about 144 MWe.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S52633
UI - Skripsi Membership  Universitas Indonesia Library
cover
Puji Suharmanto
"Telah diakukan penelitian guna mendelineasi zona prospek sistem panasbumi Daerah „P‟ menggunakan pemodelan multi dimensi data magnetotelurik terintegrasi data geologi dan geokimia. Daerah panasbumi „P‟ secara fisiografi termasuk pada Busur Banda Dalam tak bergunungapi disusun oleh komplek batuan malihan sekis berumur Perm-Trias. Gejala adanya sistem panasbumi pada daerah penelitian ditandai dengan kemunculan manifestasi permukaan berupa enam mata air panas bersuhu (37-67oC), pH (6-7) dan bertipe klorida-bikarbonat. Pembentukan sistem panasbumi diduga berkaitan dengan aktivitas tektonik kuat akibat tumbukan lempeng Pulau Seram dengan Lempeng Benua Australia (Plate Collision) yang memicu pembentukan batuan intrusi di kedalaman sebagai sumber panas. Guna mengetahui informasi subsurface daerah penelitian, dilakukan survei magnetotelurik. Selanjutnya hasil dari data MT akan diintegrasikan data geologi dan geokimia. Pengolahan data MT dimulai dari time-series data hingga mendapatkan kurva resistivitas-frekuensi dan fase, lalu dilakukan filtering noise, rotasi arah strike dan koreksi static shift untuk mendapatkan kualitas kurva MT baik. Selanjutnya dilakukan pemodelan inversi 1D, 2D dan 3D. Temperatur reservoir diduga sekitar 160-180oC termasuk temperatur sedang.
Hasil penelitian ini memperlihatkan lapisan konduktif (<15 Ωm) dengan ketebalan ± 500-1000 m diindikasikan sebagai Clay Cap dari sistem panasbumi. Zona resistivitas tinggi (>300 Ωm) dan berbentuk updome, berada di bawah area kemunculan manifestasi (MAP1, MAP2, MAP3, MAP4, dan MAP5) mengindikasikan heat source berada di utara kemudian menerus ke arah tenggara membentuk updome. Model konseptual terpadu sistem panasbumi dibentuk dari integrasi data geologi, geokimia, dan geofisika. Sistem panasbumi daerah penelitian merupakan hidrotermal heat sweep plate collision dengan temperatur sedang, luas area prospek dan rekomendasi titik pemboran diperkirakan ± 3 km2 di sekitar zona Upflow, potensi sumber daya hipotetik dengan metode volume lump parameter menggunakan binary cycle ± 34 MWe.

A study for delineating geothermal system of prospect area “P” has been done by using multi-dimensional modeling of magnetotelluric data. Physiographycally, geothermal prospect of “P” area is located at non-volcanic Banda inner arc hosted by Malihan Sekis rock complex with Perm-Trias age. The existance of geothermal system in this area is indicated by the presence of thermal manifestations in form of 6 chloride-bicarbonate hot springs with temperature in the the range of 37 – 67oC, and pH of 6-7. The development of geothermal system is most probably associated with strong tectonic activity caused by the collision between Seram island plate and Australian plate that ignite the occurence of intrussive body as heat source. In order to know the subsurface information of prospect area, magnetotelluric (MT) survey has been done. The processing of MT data was started from time-series data, continued by noise filtering, rotation of strike orientation and static shift correction to obtain better MT curve. The data were then being inversed by means of 1-Dimensional, 2-Dimensional and 3-Dimensional inversion methods. Reservoir temperature is estimated to be around 160-180 oC and classified as moderate temperature.
The result of MT data inversions shows the presence of conductive layer (<15 Ωm) with 500 – 1000 m thickness that is interpreted as clay cap og geothermal system. High resistivity zone (>300 Ωm) with updome shape appears underneath the manifestations occurence (MAP1, MAP2, MAP4, and MAP5), indicating that the heat source is located in northern part and elongate to souteast direction. The conceptual model of geothermal system was built based on integrated interpretation of geological, geochemical and geophysical data. The prospect area and recommendation of drilling location is estimated to be ± 5 km2 around upflow zone. Potential hypothetical resource with volume lump parameters method using binary cycle ± 34 MWe.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T43733
UI - Tesis Membership  Universitas Indonesia Library
cover
Depri Yanra
"Penelitian ini dilakukan untuk memberikan data penunjang dalam pembangunan jembatan mengenai persebaran litologi bawah permukaan, Jenis litologi yang berpotensi sebagai lapisan batuan keras (bedrock), dan kedalaman bedrock di Kecamatan Larantuka. Terdapat 7 lintasan pengukuran menggunakan alat geolistrik ARES multi channel. Metode resistivitas digunakan untuk identifikasi jenis litologi batuan. Pengambilan data bor pada lintasan A1 dilakukan untuk mengetahui jenis litologi batuan sekaligus memperoleh data Standard Penetration Test (SPT). Data bor pada lintasan A1 digunakan sebagai acuan interpretasi litologi batuan untuk semua lintasan. Adapun lapisan bawah permukaan yang teridentifikasi dari hasil pemboran, yaitu batuan lanau basah hingga lanau pasiran sebagai lapisan penutup, lanau pasiran kompak adalah lapisan dibawah lapisan penutup dengan kekerasannya berubah menjadi lebih kompak dan nilai SPT naik lebih dari 40, dan lapisan paling bawah adalah lempung pasiran dengan kondisi litologi menjadi lebih keras dan sangat kompak serta nilai SPT diatas 80. Pengolahan data pada penelitian ini dilakukan dengan metode inversi dua dimensi dan pemodelan tiga dimensi dengan data hasil gridding. Berdasarkan hasil pengolahan, Tanah keras atau bedrock pada lokasi penelitian adalah lempung pasiran karena memiliki susunan yang kompak, nilai SPT diatas 80, dan ketebalan yang cukup tebal berkisar ±20-30 meter merupakan lapisan ketiga atau paling bawah dari interpretasi penampang litologi dengan nilai resistivitas diatas 150 Ωm.

This research was conducted to provide supporting data for the construction of bridges regarding the distribution of subsurface lithology, types of lithology that have the potential to act as hard rock layers (bedrock), and depth of bedrock in Larantuka. There are 7 measurement paths using the ARES multi-channel geoelectric. The resistivity method is used to identify rock lithology types based on resistivity values. Drill data collection on line A1 was carried out to determine the type of rock lithology as well as to obtain Standard Penetration Test (SPT). Drill data on line A1 is used as a reference for rock lithology interpretation for all line. The subsurface layer identified from the drilling results, namely wet silt rock to sandy silt as a cover layer, compact sandy silt is the layer below the cover layer with its hardness changing to become more compact and the SPT value rises to more than 40, and the bottom layer is sandy clay. with lithology conditions becoming harder and very compact and SPT values above 80. Data processing in this study was carried out using the two-dimensional inversion method and three-dimensional modeling with gridding data. Based on the processing results, the hard soil or bedrock at the study site is sandy clay because it has a compact structure, the SPT value is above 80, and the thickness is quite thick ranging from ±20 - 30 meters, which is the third layer or the lowest layer from the interpretation of the lithology cross-section with a resistivity value of above 150 Ωm."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syarifah Azzurri Nindya Putri
"Gunung Api Krakatau merupakan salah satu gunung api aktif yang terbagi menjadi tiga periode letusan. Aktivitas vulkanik yang terjadi setelah letusan pembentuk kaldera pertama (diperkirakan sekitar abad ke-5) hingga letusan pembentuk kaldera kedua pada tahun 1883 termasuk dalam periode Krakatau Muda. Penelitian pada produk sebelum 1883 dilakukan pada lokasi penelitian Danan dan Pulau Rakata dengan total sampel berjumlah empat. Aktivitas vulkanisme yang terjadi pada 1883 membentuk kaldera dan mengakibatkan hilangnya Pulau Perbuatan dan sebagian Danan, sehingga penelitian pada produk sebelum 1883 terbilang sangat terbatas. Penelitian ini dilakukan melalui pendekatan petrologi, petrografi dan analisis geokimia dan kaitannya pada proses magmatisme periode Krakatau Muda. Periode Krakatau Muda menunjukkan karakteristik batuan berkomposisi mafik hingga felsik dengan jenis batuan basaltik hingga dasitik, dengan analisis geokimia batuan menunjukkan afinitas magma dalam seri kalk-alkali dan toleiitik, serta seri magma sub-alkali dengan seri K rendah hingga sedang dan evolusi magma yang berasal dari island arc. Analisis kimia mineral menunjukkan proses magmatisme yang terjadi di Krakatau Muda dipengaruhi oleh proses kristalisasi fraksional dan pencampuran magma dari terbentuknya mikro-tekstur zonasi dan glomerokris pada plagioklas.

Mount Krakatoa is one of the active volcanoes that can be divided into three eruption periods. The volcanic activity that occurred after the first caldera-forming eruption (estimated around the 5th century) until the eruption forming the second caldera in 1883 is part of the Young Krakatau period. Research on products from before 1883 was conducted at the Danan research location and Rakata Island with a total of four samples. The volcanic activity in 1883 formed a caldera and caused the disappearance of Perbuatan Island and parts of Danan, so that research on volcanic products before 1883 are quite limited. This study was conducted using petrology, petrography, and geochemical analysis approaches, focusing on the magmatic processes of the Young Krakatoa period. The Young Krakatoa period is characterized by rocks with compositions ranging from mafic to felsic, including basaltic to dacitic rocks. Geochemical analysis of the rocks indicates a magma affinity within the calcalkaline and tholeiitic series, as well as a sub-alkaline magma series with low to medium potassium series and magma evolution originating from an island arc. Geochemical analysis of minerals shows that the magmatic processes in Young Krakatoa were influenced by fractional crystallization and magma mixing, as evidenced by the formation of microtextures, zonation, and glomerocrysts in plagioclase.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zulimatul Safa`ah Praromadani
"Daerah prospek geotermal Telomoyo terletak sekitar 34 km sebelah selatan dari kota Semarang, Jawa Tengah. Geomorfologi Telomoyo terdiri atas komplek Gunung Telomoyo yang didominasi batuan vulkanik plistosen-kuarter berupa piroklastik dan lava dengan komposisi andesit-basaltik. Manifestasi permukaannya berupa mata air panas dan batuan teralterasi. Pendugaan temperature reservoirnya berkisar 2300C.
Dari data gravitasi diketahui ada intrusi di bawah kaldera Telomoyo. Untuk mengetahui informasi bawah permukaan daerah prospek geothermal Telomoyo, dilakukan survey magnetotellurik (MT). Selanjutnya data MT yang diperoleh diolah melalui tahapan pemilihan data time series sampai inversi 2D dan divisualisasikan ke dalam 3D.
Hasil penelitian ini memperlihatkan lapisan resistivitas sangat rendah (<15 Ωm), diinterpretasikan sebagai lapisan penudung (clay cap). Lapisan yang berada di bawah clay cap dengan nilai resistivitas sekitar 50-150 Ωm diinterpretasikan sebagai reservoir dari sistem geotermal. Lapisan heat source tampak berbentuk dome dengan nilai resistivitas >250 Ωm. Selanjutya model dari data MT tersebut diintegrasikan dengan data geologi, geokimia, dan geofisika (gravitasi) sehingga dapat dibuat model konseptual yang dapat mendelineasi sistem geotermal daerah prospek Telomoyo dimana potensi geotermalnya berkisar 125 MWe.

Telomoyo geothermal prospect is located about 34 km southern from Semarang, Central Java. Geomorphology of Telomoyo consist of Mount Telomoyo dominated by volcanic plistocene- quartenary formation consists of pyroclastic and andesit-basaltic lava. Surface manifestation are hot springs and alterationed rock. The estimation of reservoir temperature is about 2300C.
From gravity data we can see an intrusion under Telomoyo's caldera. To get subsurface information about Telomoyo geothermal prospect , MT survey was done. MT data is processed through data selection stage of time series up to 2D inversion and visualized into 3D. The result of the reseach shows that there is very low resistivity layer (<15 Ωm), interpreted as clay cap.
The layer under clay cap with resistivity value is about 50-150 Ωm interpreted as reservoir of geothermal system. Heat source layer has dome shape wih resistivity value >250 Ωm. Moreover, the model from MT data integrated with geology, geochemistry, and geophysics (gravity) data so the conceptual model that delineated geothermal system of Telomoyo prospect area of which geothermal potension about 125 Mwe can be made.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S44548
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>