Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 130340 dokumen yang sesuai dengan query
cover
Dewi Anggraeni
"Sistem Manajemen Baterai (BMS), yang bertanggung jawab untuk memantau baterai isi ulang, memainkan peran penting dalam melindungi kendaraan dan instrumen listrik. Dua indikator utama yang perlu dipertimbangkan adalah State of Charge (SoC) dan State of Health (SoH). Memperkirakan SoC secara akurat penting untuk mencegah potensi masalah. Selain itu, ruang, waktu komputasi, dan biaya merupakan faktor penting dalam pengembangan perangkat keras. Untuk mengatasi pertimbangan ini, model Extended Kalman Filter (EKF) orde pertama dan Adaptive Extended Kalman Filter (AEKF) dipilih karena pra-pemrosesan datanya lebih sederhana dan akurasinya lebih baik. Estimasi ini didasarkan pada metode matematika. Studi ini merekomendasikan penggunaan metode First-Order Equivalent Circuit Model (ECM) bersama dengan algoritma EKF dan AEKF karena pengaturannya yang mudah dan proses komputasi yang efisien. Melalui penelitian yang melibatkan beberapa siklus pengisian-pengosongan, ditemukan bahwa metode AEKF secara konsisten mengungguli metode EKF dalam hal akurasi SoC. Hal ini semakin diperkuat dengan melakukan pengujian reliabilitas pada metode AEKF, yang menunjukkan akurasi estimasi SoC yang lebih unggul dibandingkan metode EKF ketika diberikan nilai SoC awal yang berbeda. Selain itu, waktu komputasi yang lebih singkat dari metode EKF menjadi pertimbangan untuk penerapan praktis di dunia nyata. Lebih lanjut, percobaan yang dilakukan selama 500 siklus mengungkapkan bahwa estimasi SoH menurun dari 99,97% menjadi 76,1947%, menunjukkan bahwa baterai telah mencapai tahap End of Life (EOL), seperti yang dilaporkan di berbagai jurnal.

The Battery Management System (BMS), responsible for monitoring rechargeable batteries, plays an essential role in safeguarding electric vehicles and instruments. Two key indicators to consider are State of Charge (SoC) and State of Health (SoH). Accurately estimating SoC is important to prevent potential issues. Additionally, space, computing time, and cost are important factors in hardware development. To address these considerations the first-order Extended Kalman Filter (EKF) and Adaptive Extended Kalman Filter (AEKF) models were selected due to their simpler data pre-processing and better accuracy. These estimations are based on mathematical methods. The study recommends using the First-Order Equivalent Circuit Model (ECM) method in conjunction with the EKF and AEKF algorithms due to their straightforward setup and efficient computational process. Through research involving multiple charge-discharge cycles, it was found that the AEKF method consistently outperformed the EKF method in terms of SoC accuracy. This was further confirmed by subjecting the AEKF method to reliability testing, where it displayed superior SoC estimation accuracy compared to the EKF method when given different initial SoC values. Additionally, the shorter computing time of the EKF method is a consideration for practical real-world implementation. Furthermore, experiments conducted over 500 cycles revealed that SoH estimation declined from 99.97% to 76.1947%, suggesting that the battery has reached the End of Life (EOL) stage, as reported in various journals."
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Jeffrey Riady
"Senyawa Li4Ti5O12 merupakan senyawa yang memiliki potensial sebagai material anoda namun memiliki beberapa kekurangan. Kekurangan dari LTO adalah memiliki konduktivias yang rendah dan kapasitas teoritis yang lebih rendah dari grafit yang dipakai sebagai material anoda pada baterai lithium ion.
Pada penelitian ini mixing element yang diberikan pada LTO adakah karbon aktif dan SnO2 untuk menutupi kekurangan dari LTO. Jumlah karbon aktif yang diberikan adalah sebanyak 1, 3 dan 5. Persen SnO2 yang ditambahkan adalah 10. Senyawa SnO2 ditambahkan pada komposit LTO/C menggunakan metode deposisi in-situ.
Dengan metode deposisi in-situ senyawa SnO2 yang diperoleh memiliki ukuran partikel yang kecil dan tersebar secara merata. Li4Ti5O12 disintesis menggunakan metode sol-gel, hidrothermal dan mekanokimia dengan menggunakan LiOH sebagai sumber ion lithium. Karakterisasi yang digunakan adalah XRD dan SEM-EDX. Untuk pengujian performa baterai dilakukan pengujian EIS, CV dan CD untuk mengetahui efek dari penambahan karbon aktif dan SnO2 pada performa elektrokimia.
Hasil pengujian XRD menunjukkan partikel SnO2 telah terbentuk dan tanpa pengotor. Hasil pengujian SEM menunjukkan partikel SnO2 yang terbentuk memiliki ukuran partikel yang kecil dan tersebar merata begitu pula dengan partikel karbon aktif tersebar secara merata. hasil pengujian CV menunjukkan bahwa penambahan karbon aktif meningkatkan kapasitas spesifik LTO. Hasil pengujian CD menunjukkan dengan penambahan karbon aktif, capacity loss pada c-rate tinggi dapat dikurangi.

Li4Ti5O12 is one of the compound which has potential as anode material on lithium ion battery but with certain limitation. The limitation of Li4Ti5O12 are it hasa low conductivity and low theoritical capacity compared to graphite which is anode material of state of the art litihum ion battery.
In this research mixing element given to LTO are activated carbon and SnO2 to decrease LTO limitation. Activated carbon as mixing element added in LTO are 1, 3 and 5. SnO2 added to LTO are 10. SnO2 added to LTO composite with in situ deposition method.
Using in situ deposition method, SnO2 particle acquired from deposition has small particle size and distribute evenly. Li4Ti5O12 synthetized with sol gel method, hydrotermal method and mechano chemical method using LiOH as ionic Li source. The sample was characterized with XRD and SEM EDX. For battery performance, EIS, CV and CD testing was conducted to determine the effect of addition activated carbon and SnO2 on electrochemical performance.
Based on XRD result, SnO2 particle is formed with no residue from previous reaction. Based on SEM EDS result, SnO2 particle has small size and distribute evenly same with active carbon. The result from CV testing show with addition of activated carbon increase specific capacity of LTO. The result from CD tewting show with addition of activated carbon, capacity loss on high c rate can be reduced.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asih Kurniasari
"Pesatnya transformasi sektor energi ramah lingkungan membuat fungsi dari sistem penyimpan energi menjadi krusial. Kapasitor lithium-ion (KLI) merupakan sistem penyimpan energi yang melengkapi kekurangan densitas daya pada baterai lithium-ion (BLI) dan densitas energi pada superkapasitor. Karakteristik luas spesifik permukaan (specific surface area, SSA) dan porositas serta properti fisik lain pada karbon aktif sebagai material katoda menentukan kapasitas muatan yang tersimpan pada KLI.
Pada penelitian ini, karbon aktif berbahan biomassa tongkol jagung dengan variasi laju alir gas nitrogen (N2) dibuat dan dianalisis untuk mendapatkan karakteristik optimal dan pengaruhnya terhadap performa elektrokimia sel KLI. Proses karbonisasi tongkol jagung (corncob) dilakukan dalam aliran gas Argon (Ar). Aktivasi nitrgoen corncocb activated carbon (NCAC) menggunakan KOH sebagai agen kimia dan pirolisis di suhu 700°C dalam N2 dengan laju alir sebesar 200, 300, dan 400 standard centimeter cubic per minute (sccm). Karakterisasi morfologi melalui scanning electron microscopy (SEM) dan energy dispersive x-ray (EDX) memperlihatkan bahwa ketiga NCAC memiliki sebaran pori berukuran mikro yang merata serta komposisi karbon C di atas 90%.
Pengujian Brunauer-Emmett-Teller (BET) menunjukkan sampel aktivasi kering memiliki luas SSA lebih besar daripada aktivasi basah, dimana SSA terbesar terdapat pada NCAC300 (1936 m2/g). Karakterisasi kristalinasi dan vibrasional dengan x-ray diffraction (XRD) dan Raman spectra memperlihatkan struktur ketiga NCAC berupa karbon amorf yang solid, dan NCAC300 memiliki properti fisik kristalit yang paling optimal. Ketiga sampel NCAC dijadikan material aktif katoda dan LTO sebagai material aktif anoda KLI. Analisis properti elektrokimia sel telah dilakukan melalui uji cyclic-voltammetry (CV) dan charge-discharge (CD).
Pengujain CV pada scan rate 5, 10, 15, 25, dan 50 mVs-1 menunjukan ketiga sel memiliki kurva quasi-rectangular dengan kapasitansi spesifik terbesar dimiliki oleh KLI-200 pada 5mV/s sebesar 24.22 Fg-1 dan rating terbaik pada scan rate tertinggi dimiliki oleh KLI-400 sebesar 8.27 Fg-1. Kestabilan coulomb dan energi spesifik tertinggi tercapai pada KLI-300 dengan densitas energi 10.791 Wh/kg pada densitas daya 526.39 W/kg. Dari hasil ini, laju gas N2 pada 300 sccm memberikan hasil karakterisasi dan kinerja yang optimal pada karbon aktif tongkol jagung dan KLI.

The rapid transformation of the environmentally friendly energy sector makes the function of energy storage system become crucial. The lithium-ion capacitor (LIC) is energy storage system which complements the gap of lack power density in lithium-ion batteries (LIB) and energy density in super-capacitor. Specific surface area (SSA), porosity, and other physical properties of activated carbon (AC) as cathode materials determine the load capacity stored at LIC.
In this study, AC from corncob as biomass with variations flow rate of nitrogen gas (N2) was made and analyzed to obtain characteristic and their effect on the electrochemical performance of LIC. The carbonization process is carried out in the Argon gas (Ar). Activation was prepared using KOH and pyrolisis at 700°C with flow rate of N2 at 200, 300, and 400 standard centi-meter cubic per minute (sccm). Morphological characterization through scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) showed that all NCACs had evenly distributed microporous with carbon C contained in surface area above 90%.
The Brunauer-Emmet-Tller (BET) test exposed that dry activation had a greater SSA than wet activation, where the largest SSA is found in NCAC300 (1936m2/g). Characterization of crystallite and vibrational with x-ray diffraction (XRD) and Raman spectra revealed the all samples has solid amorphous carbon, and NCAC300 has the most optimal physical properties of crystallite. The three NCACs and LTO were used as cathode and anode active materials of LIC. Analysis of electrochemical properties of cells has been carried out through cyclic-voltammetry (CV) and charge-discharge test (CD).
CV testing on scan rates 5, 10, 15, 25 and 50 mVs-1 show that three cells have quasi-rectangular curves with the largest capacitance owned by LIC-200 at 5mVs-1 at 24.22 Fg-1 and the best rating is owned by LIC-400, amounting to 8.27 Fg-1. The highest coulomb stability and specific energy was reached at LIC-300 with an energy density of 10.79 Whkg-1 at power density of 526.39 Wkg-1. From this result, the N2 at 300 sccm gives the most optimal characterization and performance results on LIC with corncob activated carbon.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T53496
UI - Tesis Membership  Universitas Indonesia Library
cover
Achmad Hafidzan Aziz Sahab
"Litium Ferro Phosphate, LiFePO4 (LFP) adalah kandidat yang menjanjikan sebagai bahan katoda baterai lithium ion. Dalam penelitian ini, LFNP/C disintesis dengan metode solid-state dari precursor LFP, Nikel menjadi variasi penambahan konten LFP dalam bentuk doping, yaitu, 6, 7,5 dan 9%, diberi label sampel LFNP/C-Ni6%, LFNP/C-Ni7.5% dan LFNP/C-Ni9%. Karakterisasi dilakukan menggunakan XRD, SEM, EDX, dan MAPPING. Ini dilakukan untuk mengamati efek penambahan Nikel pada struktur, morfologi, dan komposisi sampel. Hasil penelitian menunjukkan bahwa persentase optimum doping Nikel adalah 7.5% karena telah menunjukan hasil yang memuaskan di performa CV,CD, dan EIS dengan ukuran kristal 76.93 nm. Dalam pengujian cyclic voltametry, konduktivitas dan kapasitas sampel meningkat dan disebabkan oleh penambahan Nikel pada LFP.

Lithium Ferro Phosphate, LiFePO4 (LFP) is a promising candidate as a cathode material for lithium ion batteries. In this study, LFNP / C was synthesized by the solid-state method of the LFP precursors, Nickel became a variation of LFP content addition in the form of doping, namely, 6, 7.5 and 9%, labeled LFNP / C-Ni6% sample, LFNP / C-Ni7.5% and LFNP / C-Ni9%. Characterization was done using XRD, SEM, EDX, and MAPPING. This was done to observe the effect of adding Nickel to the structure, morphology, and composition of the sample. The results showed that the optimum percentage of Nickel doping was 7.5% because it had shown satisfactory results in the performance of CV, CD, and EIS with a crystal size of 76.93 nm. In cyclic voltametry testing, the conductivity and capacity of the sample increases and is caused by the addition of Nickel to LFP."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Hafidzan Aziz Sahab
"Litium Ferro Phosphate, LiFePO4 (LFP) adalah kandidat yang menjanjikan sebagai bahan katoda baterai lithium ion. Dalam penelitian ini, LFNP/C disintesis dengan metode solid-state dari precursor LFP, Nikel menjadi variasi penambahan konten LFP dalam bentuk doping, yaitu, 6, 7,5 dan 9%, diberi label sampel LFNP/C-Ni6%, LFNP/C-Ni7.5% dan LFNP/C-Ni9%. Karakterisasi dilakukan menggunakan XRD, SEM, EDX, dan MAPPING. Ini dilakukan untuk mengamati efek penambahan Nikel pada struktur, morfologi, dan komposisi sampel. Hasil penelitian menunjukkan bahwa persentase optimum doping Nikel adalah 7.5% karena telah menunjukan hasil yang memuaskan di performa CV,CD, dan EIS dengan ukuran kristal 76.93 nm. Dalam pengujian cyclic voltametry, konduktivitas dan kapasitas sampel meningkat dan disebabkan oleh penambahan Nikel pada LFP.

Lithium Ferro Phosphate, LiFePO4 (LFP) is a promising candidate as a cathode material for lithium ion batteries. In this study, LFNP / C was synthesized by the solid-state method of the LFP precursors, Nickel became a variation of LFP content addition in the form of doping, namely, 6, 7.5 and 9%, labeled LFNP / C-Ni6% sample, LFNP / C-Ni7.5% and LFNP / C-Ni9%. Characterization was done using XRD, SEM, EDX, and MAPPING. This was done to observe the effect of adding Nickel to the structure, morphology, and composition of the sample. The results showed that the optimum percentage of Nickel doping was 7.5% because it had shown satisfactory results in the performance of CV, CD, and EIS with a crystal size of 76.93 nm. In cyclic voltametry testing, the conductivity and capacity of the sample increases and is caused by the addition of Nickel to LFP."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Netta Claudia
"Salah satu anoda yang dewasa ini banyak dikembangkan untuk meningkatkan kapasitas dan performa baterai ion litium adalah anoda litium titanat (Li4Ti5O12). Anoda litium titanat memiliki kelebihan dalam aspek kestabilan termal dan karakteristik zero strain. Kekurangan dari material ini, yaitu konduktivitas listrik dan kapasitas yang rendah. Pada penelitian ini akan diobservasi perubahan karakteristik dari material anoda litium titanat yang dibuat menjadi komposit dengan grafit dan doping Fe dengan variasi konsentrasi 0,1, dan 5 mol%. Sintesis dilakukan dengan metode solid state dan hasil sintesis dikarakterisasi menggunakan XRD dan SEM, kemudian difabrikasi menjadi koin sel untuk dilakukan pengujian performa dengan EIS, CV, dan CD.

One of many anodes currently being developed to increase the capacity and performance of lithium ion batteries is lithium titanate anode (Li4Ti5O12). The lithium titanate anode has advantages in its thermal stability and zero strain characteristic. The main disadvantages of this material are the low electrical conductivity and capacity. This research will be observing the characteristic changes of the lithium titanate material made into composites with graphite (5 wt%) and iron (Fe) doping with concentrations of 0,1, and 5 mol%. The synthesis was carried out by solid state method and the synthesized material was characterized using XRD and SEM, then fabricated into cell coins for performance testing with EIS, CV, and CD."
Depok: Fakultas Teknik Universitas Indonesia , 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Balqis Nabilah
"Li4Ti5O12 merupakan senyawa yang banyak digunakan pada anoda baterai litium ion karena sifatnya zero strain dan terhindar dari pembentukan SEI. Namun, LTO memiliki konduktifitas elektrik yang rendah 10-9 S/cm sehingga ditambahkan unsur Sn untuk meningkatkan konduktifitas elektriknya dan meningkatkan kapasitas spesifiknya. Namun, pada unsur Sn terjadi perubahan volume yang besar hingga saat proses charge/discharge. Untuk menyelesaikan masalah ini ditambahkan karbon yang telah diaktivasi karena memiliki sifat konduktifitas elektrik yang baik dan dapat menahan ekspansi volume yang terjadi. LTO-C disintesis dengan metode sol-hidrotermal sebelum dicampur dengan unsur Sn menggunakan metode mekanokimia. Variasi persentase penambahan karbon aktif yang digunakan adalah 1wt, 3wt, dan 5wt. Karakterisasi yang digunakan yaitu XRD dan SEM EDS. Untuk pengujian performa baterai dilakukan pengujian EIS, CV, dan CD. Penelitian ini membahas efek penambahan karbon aktif pada komposit LTO/Sn. Performa elektrokimia paling baik diperoleh sampel LTO3 C/15 Sn.

Li4Ti5O12 is a widely used compound on the lithium ion battery due to its zero strain property and could avoid SEI formation. However, LTO has a low electrical conductivity 10 9 S cm so Sn is added to increase its electrical conductivity and specific capacity. But in Sn can occur large volume changes when charge discharge process. To solve this problem activated carbon is added because it has good electrical conductivity and can withstand the volume expansion. LTO C was synthesized by sol hydrothermal method before we mix it with Sn using mechanochemical method. The variation of activated carbon addition was 1wt , 3wt , and 5wt . XRD and SEM EDS were used for material characterization. For the battery performance testing we used EIS, CV, and CD. This research will explain the effect of carbon active addition on composite LTO Sn. LTO3 C 15 Snhas the best electrochemical performance."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pierre Wolter Winowatan
"Konsumsi bahan bakar fosil telah dianggap sebagai salah satu kebutuhan utama kita. Penggunaan bahan bakar fosil bisa merusak lingkungan dengan menghasilkan polusi sebagai produk dari pembakaran bahan bakar fosil. Ada banyak penemuan mengenai pengembangan penyimpanan energi seperti baterai. Penggunaan baterai lithium-ion dapat menjanjikan untuk aplikasi yang membutuhkan daya tinggi dan salah satu kandidat untuk mengalihkan penggunaan bahan bakar fosil. Lithium titanat adalah bahan yang menjanjikan untuk digunakan sebagai bahan anoda. Penambahan silikon yang memiliki kapasitas teoritis 4200 mAh g-1 telah membuat lithium titanat dan silikon untuk saling melengkapi dan bersinergi satu sama lain. Lithium titanate disintesis menggunakan metode sol-gel dan metode solid state. Peracikan dengan elemen silikon dalam slurry dapat mencegah perubahan fase dari silikon menjadi SiO2. Kadar silikon dibagi menjadi tiga komposisi 10 , 20 dan 30 dengan nomenklatur LTO-Si10 sr, LTO-Si20 sr dan LTO-Si30 sr untuk setiap sampel memiliki konten yang berbeda dari silikon masing-masing. Kapasitas tertinggi terkait dengan tingkat C rate yang berbeda adalah LTO-Si20 sr dan Diikuti oleh LTO-Si10 sr yang dimana kapasitas saat C rate berbeda LTO-Si30 memiliki kapasitas yang terbilang buruk.

The consumption of fossil fuel has been considered as one of our main necessity. The use of fossil fuel could damage our environment with the produce of pollution as the combustion product of fossil fuel. There are many inventions regarding the development of energy storage such as battery. The use of lithium ion has been promising for high power application and one of the candidates to divert the usage of fossil fuel. Lithium titanate is a promising material to be used as anode material. The addition of silicon which has theoretical capacity of 4200 mAh g 1 has made lithium titanate and silicon to compliment and synergize with one another. The lithium titanate was synthesized using sol gel and solid state methods. The compounding with silicon element was in the slurry making to prevent any phase changes of silicon to be SiO2. The silicon content was divided into three compositions of 10, 20 and 30 with the nomenclature of LTO Si10 sr, LTO Si20 sr and LTO Si30 sr for each sample having different content of silicon respectively. The highest capacity associated with different C rate is LTO Si20 sr and followed by LTO Si10 sr with LTO Si30 sr having poor overall capacity."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69280
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siringoringo, Raynilda
"Penelitian ini mengembangkan metode untuk mendeteksi anomali pada degradasi baterai lithium-ion dengan memanfaatkan dataset kapasitas baterai sehat sebagai data pelatihan dan validasi. Model Long Short-Term Memory (LSTM)-Autoencoder dirancang dan dilatih untuk mengenali penyimpangan dalam pola degradasi baterai. Model ini berhasil mencapai akurasi tinggi dengan threshold Mean Squared Error (MSE) sebesar 0,083, yang mampu membedakan kondisi baterai normal dan anomali secara efektif. Analisis menggunakan confusion matrix menunjukkan performa model yang sangat andal tanpa adanya false positive maupun false negative. Konfigurasi hyperparameter dilakukan untuk memastikan kombinasi terbaik pada model dengan dataset yang digunakan. Namun, keterbatasan dataset yang digunakan menunjukkan pentingnya validasi lebih lanjut untuk penerapan model pada data yang lebih beragam dan kompleks.

This study proposes a method to detect anomalies in lithium-ion battery degradation using a dataset of healthy battery capacity as training and validation data. A Long Short-Term Memory (LSTM)-Autoencoder model was developed and trained to identify deviations in battery degradation patterns. The model achieved high accuracy, with a mean squared error (MSE) threshold of 0.083, effectively separating normal and anomalous battery conditions. Confusion matrix analysis confirmed the model's reliability, showing no false positives or negatives. The hyperparameters were optimized for performance, ensuring efficient convergence within 30 epochs. While the results demonstrate the potential of this approach for anomaly detection, dataset limitations highlight the need for further validation on diverse and complex data.
"
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gde Ngurah Renaldi Shantika
"Perkembangan luas baterai lithium-ion (LIB) telah menarik banyak minat dari banyak peneliti. Peningkatan khusus penelitian baterai ini dapat dilihat dari LIB yang mulai digunakan dalam sistem grid yang disebut battery energy storage system (BESS). Proyek tesis ini bertujuan untuk menentukan jenis LIB apa yang cocok untuk digunakan dalam sistem jaringan yang berbeda. Untuk memilih jenis LIB mana yang cocok untuk sistem, efisiensi siklus dan mekanisme degradasi LIB harus dipelajari. Saat ini, jenis LIB yang digunakan untuk BESS adalah Lithium Iron Phosphate (LFP) dan Lithium Nickel Manganese Cobalt (NMC).
Terlepas dari kemampuan LFP dan NMC, mekanisme degradasi mereka masih merupakan bagian penting dari batasan BESS. Selain itu, degradasi LFP dan NMC dipengaruhi oleh suhu dan laju arus sehingga peningkatan kedua parameter akan menghasilkan degradasi yang lebih tinggi. Variasi suhu dan laju arus membuktikan bahwa LFP memiliki stabilitas yang unggul dibandingkan NMC, meskipun memiliki kapasitas lebih rendah dari NMC. Oleh karena itu, dapat disimpulkan bahwa LFP lebih cocok untuk sistem bersiklus tinggi, sementara NMC lebih cocok untuk sistem yang memiliki penyimpanan kapasitas tinggi sebagai perhatian utama mereka.

The vast development of lithium-ion batteries (LIB) has gained a lot of interest from many researchers. The particular improvement of LIB research is that LIB is starting to be used in a grid system called battery energy storage system (BESS). This thesis project aims to determine what type of LIB is suitable to be used in different grid systems. To choose which type of LIB that is suitable for the system, the cycling efficiency and the degradation mechanism of the LIB must be studied. Currently, the types of LIB used for BESS are Lithium Iron Phosphate (LFP) and Lithium Nickel Manganese Cobalt (NMC).
Despite the capability of LFP and NMC, their degradation mechanism is still an essential part of the limitation of the BESS. Additionally, the degradation of LFP and NMC are affected by temperature and current rate (C-rate) such that increasing both parameters will result in higher degradation. The variation of temperature and C-rate proves that LFP has superior stability compared to NMC, despite having lower capacity than NMC. Therefore, it can be concluded that LFP is more suitable for a high cycling system while NMC is more suitable for system which has high capacity storage as their primary concern.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>