Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 89140 dokumen yang sesuai dengan query
cover
Benedict, Hizkia Juan
"With the rapid growing of Lithium-ion battery (LIB) across the world and in Australia for multiple purposes, LIB presents several emerging challenges such as sourcing the critical minerals (e.g., lithium, cobalt, nickel, manganese) and managing the end-of-life battery waste management. The purpose of this report is to design and develop a process that is able to recover lithium from end-of-life LIB. The proposed processing plant would be located at Townsville, Queensland. The feed that is introduced to the process plant would be 3000 t/y of cathode material. The objective of the process plant is to recycle lithium in the form of lithium phosphate (Li3PO4) and the plant is aim to produce 76.06 kg/hr of Li3PO4. The product is aim to have 99.9% of lithium. The crushing section comes following alkaline leaching through hydrometallurgy main process objective is to reduce the cathode sheets to 250 microns for further leaching processes downstream. 261.74 kg/hr of cathode sheets are entering from alkaline leaching and exit as black mass from the Node-200 at flowrate of 261.48 kg/hr. Main unit in the process is the hammer mill, which is used to reduce the sizes of the cathode sheets. Other units in the process consists of conveyor belts and compressors to transport solids and gas respectively into and exiting the hammer mill with the addition of a cyclone separator to collect black mass that is brought along when sending argon from the hammer mill out into the. The estimated cost of this plant section is 25,132,887 AUD with annual electricity usage of 52,488 kW/year.

Dengan pertumbuhan pesat baterai Lithium-ion (LIB) di seluruh dunia dan di Australia untuk berbagai tujuan, LIB menghadirkan beberapa tantangan baru seperti pengadaan mineral kritis (misalnya, lithium, kobalt, nikel, mangan) dan pengelolaan limbah baterai akhir masa pakai. Tujuan dari laporan ini adalah merancang dan mengembangkan proses yang dapat memulihkan lithium dari LIB akhir masa pakai. Pabrik pengolahan yang diusulkan akan berlokasi di Townsville, Queensland. Bahan baku yang dimasukkan ke pabrik pengolahan adalah 3000 ton per tahun material katoda. Tujuan pabrik pengolahan adalah mendaur ulang lithium dalam bentuk lithium fosfat (Li3PO4) dan pabrik ini bertujuan untuk menghasilkan 76,06 kg/jam Li3PO4. Produk tersebut ditargetkan memiliki 99,9% lithium. Bagian penghancuran mengikuti proses pelindian alkali melalui hidrometalurgi dengan tujuan utama mengurangi lembaran katoda menjadi 250 mikron untuk proses pelindian lebih lanjut di hilir. Sebanyak 261,74 kg/jam lembaran katoda masuk dari pelindian alkali dan keluar sebagai massa hitam dari Node-200 dengan laju aliran 261,48 kg/jam. Unit utama dalam proses ini adalah hammer mill, yang digunakan untuk mengurangi ukuran lembaran katoda. Unit lain dalam proses ini terdiri dari sabuk konveyor dan kompresor untuk mengangkut padatan dan gas masing-masing ke dalam dan keluar dari hammer mill dengan tambahan pemisah siklon untuk mengumpulkan massa hitam yang terbawa saat mengirimkan argon dari hammer mill keluar. Perkiraan biaya bagian pabrik ini adalah 25.132.887 AUD dengan penggunaan listrik tahunan sebesar 52.488 kW/tahun."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alyamitha Nadiyah Syafitri Baud
"Milling and LFP synthesis section (node 400) is a mechanochemical process used to grind mainly feed from node 300 (from stream 303) and node 200 (from stream 203) into a fine powder. Subsequently, solid glucose is also added to the ball mill to carbon coated the surface of regenerated LFP crystals. The LFP crystals are made by mixing FePO4 and LiFePO4 solid mixture and LiOH and Li2CO3 solution mixture under argon atmosphere. Using electrical and thermal energy solids, the feed is being mixed for 4 h using ball milling to achieve a more uniform distribution of components within the materials. At 200o C decomposed glucose promotes the reduction conversion of Fe3+ to Fe2+. After heating, LiFePO4/C is synthesised under 200 ºC. Due to the involvement of organic matter glucose in the reaction, CO2 is inevitably generated in this process. In addition to carbon dioxide, the exhaust gas also contains water vapor and argon gas. They are all transferred to be treated in the next step instead of emitting. The output from this process is the crystals solids of the regenerated LFP that has been coated with carbon, this is where the final product of the whole process produced. The objective of the final process is to create a regenerated carbon coated LFP at a rate of 1001.59 tonnes/yr.

Bagian penggilingan dan sintesis LFP (node 400) adalah proses mekanokimia yang digunakan untuk menggiling terutama umpan dari node 300 (dari aliran 303) dan node 200 (dari aliran 203) menjadi bubuk halus. Selanjutnya, glukosa padat juga ditambahkan ke ball mill untuk melapisi permukaan kristal LFP yang diregenerasi dengan karbon. Kristal LFP dibuat dengan mencampurkan campuran padat FePO4 dan LiFePO4 serta campuran larutan LiOH dan Li2CO3 di bawah atmosfer argon. Menggunakan energi listrik dan termal, umpan dicampur selama 4 jam menggunakan ball milling untuk mencapai distribusi komponen yang lebih seragam di dalam bahan. Pada suhu 200°C, glukosa yang terdekomposisi mendorong konversi reduksi Fe3+ menjadi Fe2+. Setelah pemanasan, LiFePO4/C disintesis di bawah suhu 200°C. Karena keterlibatan bahan organik glukosa dalam reaksi, CO2 tidak dapat dihindari dihasilkan dalam proses ini. Selain karbon dioksida, gas buang juga mengandung uap air dan gas argon. Semuanya dipindahkan untuk diproses pada langkah berikutnya daripada dilepaskan. Hasil dari proses ini adalah kristal padat dari LFP yang diregenerasi yang telah dilapisi dengan karbon, di sinilah produk akhir dari seluruh proses dihasilkan. Tujuan dari proses akhir ini adalah untuk menghasilkan LFP yang dilapisi karbon dengan laju 1001.59 ton/tahun."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nicholas Axel Gratia Christie
"Dengan pertumbuhan pesat baterai Lithium-ion (LIB) di seluruh dunia dan di Australia untuk berbagai tujuan, LIB menghadirkan beberapa tantangan baru seperti sumber daya mineral kritis (misalnya, litium, kobalt, nikel, mangan) dan pengelolaan limbah baterai di akhir masa pakainya. Tujuan dari laporan ini adalah untuk merancang dan mengembangkan proses yang mampu memulihkan litium dari baterai LIB yang sudah habis masa pakainya. Pabrik pemrosesan yang diusulkan akan berlokasi di Townsville, Queensland. Umpan yang dimasukkan ke pabrik pemrosesan ini adalah 3000 ton/tahun material katoda. Tujuan dari pabrik pemrosesan ini adalah untuk mendaur ulang litium dalam bentuk lithium phosphate (Li3PO4) dan pabrik ini ditargetkan untuk memproduksi 76,06 kg/jam Li3PO4. Produk ini ditargetkan memiliki kandungan litium sebesar 99,9%. Bagian presipitasi yang mengikuti proses pencucian melalui hidrometalurgi memiliki tujuan utama untuk memulihkan litium dalam bentuk Li3PO4. 81,22 kg/jam Li2SO4 dari bagian pemurnian dan 54,09 kg/jam Na3PO4.12H2O dari tangki penyimpanan masuk ke dalam proses presipitasi. Produk dari bagian presipitasi terdiri dari 78,5 kg/jam Li3PO4 yang kemudian masuk ke bagian pencucian dan 52,3 kg/jam Na2SO4 yang keluar dari proses. Unit utama dalam proses ini adalah unit presipitasi, yang digunakan untuk memulihkan litium dengan cara mengendapkan Li2SO4 dengan Na3PO4.12H2O. Unit lain dalam proses ini terdiri dari pompa umpan/produk untuk mengangkut cairan ke/dari unit presipitasi dan tangki penyimpanan untuk menyimpan umpan/produk. Perkiraan biaya untuk bagian pabrik ini adalah 331.917,70 AUD dengan penggunaan listrik tahunan sebesar 16.704 kW/tahun.

With the rapid growing of Lithium-ion battery (LIB) across the world and in Australia for multiple purposes, LIB presents several emerging challenges such as sourcing the critical minerals (e.g., lithium, cobalt, nickel, manganese) and managing the end-of-life battery waste management. The purpose of this report is to design and develop a process that is able to recover lithium from end-of-life LIB. The proposed processing plant would be located at Townsville, Queensland. The feed that is introduced to the process plant would be 3000 t/y of cathode material. The objective of the process plant is to recycle lithium in the form of lithium phosphate (Li3PO4) and the plant is aim to produce 76.06 kg/hr of Li3PO4. The product is aim to have 99.9% of lithium. The precipitation section comes following washing through hydrometallurgy main process objective is to recover lithium in the form of Li3PO4. 81.22 kg/hr of Li2SO4 from the purification section and 54.09 kg/hr of Na3PO4.12H2O from the storage tank enters the precipitation process. The product of the precipitation section consists of 78.5 kg/hr of Li3PO4 which then enters the washing section and 52.3 kg/hr of Na2SO4 which exits the process. Main unit in the process is the precipitation unit, which is used to recover lithium by precipitating Li2SO4 with Na3PO4.12H2O. Other units in the process consists of feed/product pump to transport liquid to/from the precipitation unit and storage tank to store the feed/product. The estimated cost of this plant section is 331,917.70 AUD with annual electricity usage of 16,704 kW/year."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jason Anfernee Kaloh
"Mengikuti studi literatur, ekstraksi mangan dan litium dari larutan asam dapat dicapai dengan menggunakan natrium karbonat, menghasilkan presipitat karbonat mangan dan litium. Setelah reaksi, padatan disaring menggunakan filter pelat dari larutan asam. Subsistem filter reaktor kedua kemudian dipasang sebagai sejumlah besar litium yang tidak bereaksi dan litium karbonat terlarut yang tersisa. Dengan cara ini, produk padat mangan dan litium karbonat diperoleh pada 99,5% berat. Aliran daur ulang awalnya direncanakan. Namun, setelah pertimbangan dan penyelidikan lebih dalam dalam neraca massa dan spesifikasi peralatan, hal itu dipertimbangkan. Dengan demikian, aliran daur ulang dapat dianggap dilewati. Area pabrik ini mahal, memiliki total biaya tetap berdasarkan lokasi US$164.864.820 di Jakarta, Indonesia. Artinya, rencana proses ini masih memerlukan optimasi dan pertimbangan ulang. Pabrik ini juga mengeluarkan emisi karbon sebesar 80.910,20 kg CO2 per tahun. Dengan optimasi peralatan lebih lanjut, hal ini dapat dikurangi. Analisis bahaya awal menunjukkan bahwa bahaya yang ditimbulkan dalam proses ini agak minimal dan terkait dengan aliran dan bahan peralatan. Tumpahan, korosi, dan erosi adalah bahaya utama yang dapat dicegah dan dikurangi dengan perawatan dan pemeriksaan rutin.

Following a literature study, the extraction of manganese and lithium from an acidic solution can be achieved using sodium carbonate, producing carbonate precipitates of manganese and lithium. Following reaction, solids are filtered out using a plate filter from the acidic solution. A second reactor-filter subsystem is then set in place as a sizeable amount of unreacted lithium and dissolved lithium carbonate remain. In this way, a solid product of manganese and lithium carbonates are obtained at 99.5% by weight. A recycle stream was initially planned. However, after deeper consideration and investigation in mass balances and equipment specifications, it was considered. Thus, the recycle stream can be considered by-passed. This plant area is costly, having a locationfactored total fixed cost US$164,864,820 in Jakarta, Indonesia. This means that this process plan still requires optimisation and reconsiderations. This plant also gives off a carbon emission of 80,910.20 kg CO2 annually. With further equipment optimisation, this can be reduced. Preliminary hazard analysis shows that the hazards posed in this process are rather minimal and are related with flowrates and equipment materials. Spillage, corrosion, and erosion are the major hazards which can be prevented and mitigated by routine maintenance and check-up."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
David Febraldo
"Kendaraan listrik memerlukan energi listrik untuk beroperasi yang disimpan didalam baterai. Kendaraan listrik menghasilkan panas pada baterai yang digunakan. Panas baterai yang berlebih dapat mengurangi masa pakai dan menyebabkan terjadinya ledakan. Penggunaan pipa kalor sebagai sistem pendingin memiliki potensi menjadi solusi masalah panas berlebih pada kendaraan listrik. Tujuan penelitian adalah menyusun konsep keberlanjutan penerapan pipa kalor pada baterai kendaraan listrik. Pengujian dilakukan dengan membangun prototipe, analisis ekonomi melalui cost comparison serta analisis persepsi sosial melalui kuisioner. Hasil menunjukkan penggunaan pipa kalor mampu menjaga temperatur baterai dibawah 40 °C. Penggunaan pipa kalor dalam jangka panjang dapat memberikan keuntungan dan teknologi ini diterima secara sosial oleh peneliti dan para ahli. Saran untuk penelitian adalah perlu dilakukan penelitian lebih lanjut mengenai penerapan pipa kalor pada baterai, perlu adanya pengembangan kebijakan terkait lokasi pembuangan, mekanisme pengelolaan dan penyuluhan kepada masyarakat.

The increase in the use of electric vehicles is increasing over time. Electric vehicles require electrical energy to operate which is stored in the battery. Electric vehicles generate heat in the batteries used. Excessive battery heat can reduce its life and cause an explosion. The use of heat pipes as a cooling system has the potential to be a solution to the problem of overheating in electric vehicles. The aim of the research is to develop the concept of sustainability applying heat pipes to electric vehicle batteries. Testing is done by building prototypes, economic analysis through cost comparison and analysis of social perceptions through questionnaires. The results show that the use of heat pipes is able to maintain the battery temperature below 40 °C. The use of heat pipes in the long term can provide benefits and this technology is socially accepted by researchers and experts. Suggestions for research are that further research is needed regarding the application of heat pipes to batteries, it is necessary to develop policies related to disposal locations, management mechanisms and outreach to the community."
Jakarta: Sekolah Ilmu Lingkungan Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Afifah Rahma Tifani
"Konsumsi baterai litium-ion di seluruh dunia meningkat secara drastis dari tahun 2010 hingga tahun 2015 yaitu dari 4,6 milyar hingga 7 milyar. Tentunya, peningkatan ini disertai dengan peningkatan jumlah limbahnya. Dalam setiap unit baterai li-ion bekas terkandung beberapa bahan beracun elektrolit yang mudah terbakar yang berbahaya bagi lingkungan. Dalam limbah tersebut juga terkandung logam kobalt yang mencapai 5–20%, sebagai komposisi logam terbesar dalam baterai litium ion bekas. Daur ulang baterai litium ion bekas diperlukan untuk pengurangan penipisan sumber daya logam sekaligus mengurangi dampak kontaminasi lingkungan. Proses daur ulang yang sering digunakan adalah proses hidrometalurgi leaching. Pelarut yang digunakan biasanya berupa asam kuat, seperti asam sulfat dan agen pereduksi digunakan untuk mengurangi jumlah leaching agent yang digunakan. Untuk meningkatkan kemurnian logam kobalt, proses dilanjutkan dengan proses ekstraksi. Dalam penelitian ini, digunakan 2 M H2SO4, 0,25 M C6H8O6 pada kondisi operasi 80OC selama 100 menit, menghasilkan logam Co ter-leaching sebesar 96,22%. Larutan hasil leaching yang didapat kemudian dilakukan proses ekstraksi cair-cair menggunakan Cyanex 272 dan TBP sebagai ekstraktan. Hasil dari proses ekstraksi cair-cair dengan kondisi operasi konsentrasi ekstraktan Cyanex 272 sebesar 0,5 M + TBP 5% v/v, pH fasa akuatik sebesar 4,5 selama 30 menit ekstraksi, menghasilkan logam Co terekstraksi sebesar 95,93%.

The consumption of lithium-ion batteries worldwide increased in 2015, from 4.6 billion to 7 billion. Of course, this increase is accompanied by an increase in the amount of waste. In each used li-ion battery unit contains several toxic electrolytes that are flammable which are harmful to the environment. The waste also contains cobalt metal which reaches 5–20%, as the largest metal composition in used lithium-ion batteries. The recycling of used lithium-ion batteries is necessary to reduce the depletion of metal resources while reducing the impact of environmental contamination. The recycling process that is often used is the hydrometallurgical leaching process. The solvent used is usually a strong acid, such as sulfuric acid and the reducing agent used is ascorbic acid. To increase the purity of cobalt metal, the process is followed by an extraction process. This research is using 2 M of H2SO4 and 0,25 M of C6H8O6, with the operating condition 80oC in 100 minutes leaching process resulting 96,22 % Co extracted. The solvent extraction is using Cyanex 272 and TBP as the extractant. The result from solvent extraction with 0,5 M of Cyanex 272 + 5% v/v TBP, pH aquatic phase 4,5 in 30 minutes extraction process is 95,93% Co being extracted."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratna Permata Sari
"[Telah dilakukan peningkatan konduktivitas listrik LiFePO4 dengan metode penambahan material logam nano Cu dan CNTs. Metode ini menjadi pilihan yang menarik karena mudah dan murah dalam proses pembuatannya. Proses sintesis dilakukan dengan mencampur serbuk LiFePO4 (komersil) dengan variasi presentase berat nano tembaga (komersil) 0, 1, 3, 5, 7 wt. % dan 5 wt. % nano karbon (komersil)
kemudian di proses vacuum mixing dan film applicator. Pengujian XRD, SEM dan EDX dilakukan pada serbuk yang diterima untuk mengkonfirmasi fasa, ukuran butir serta ada tidaknya impurities. Hasil XRD dan EDX pada serbuk nano Cu menunjukkan bahwa telah terjadi oksidasi dan terbentuk menjadi CuO dan Cu2O, serta ditemukan
adanya impurities elemen S sebesar 8.5 wt. %. Komposisi fasa yang dihasilkan dari proses penambahan didapat dari menganalisis pola difraksi XRD menunjukkan bahwa fasa yang terbentuk adalah
LiFePO4 namun ditemukan adanya impurities berupa Cu4O3 pada variasi penambahan 80 wt. % LiFePO4, 5 wt. % Cu, 5 wt. % C, dan 10 wt. % PVDF. Konduktivitas listrik diuji material katoda LiFePO4 dengan EIS, dan hasil uji menunjukkan bahwa konduktivitas listrik LiFePO4 meningkat seiiring dengan penambahan nano Cu namun tidak terlalu signifikan (dalam satu orde), hal ini dikarenakan efek oksidasi pada Cu.
Pada variasi penambahan nano C dan nano Cu terjadi peningkatan sebesar 3 orde dengan nilai konduktivitas sebesar 8.4 x 10-5 S/cm pada variasi penambahan 80 wt. % LiFePO4, 5 wt. % Cu, 5 wt. % C. Penambahan nano karbon pada LiFePO4 lebih efektif dalam peningkatan konduktivitas dibandingkan dengan penambahan nano Cu
dikarenakan efek oksidasi pada Cu yang tidak dapat dihindari. Morfologi material katoda dan distribusi nano Cu dan nano karbon dianalisis menggunakan SEM/EDX, menunjukkan material yang dicampur pada variasi penambahan nano Cu cukup homogen, struktur butir spherical, sedangkan pada variasi penambahan nano Cu dan
nano karbon struktur butir polyhedral dengan ukuran butir berada pada rentang 100- 500 nm. Struktur butir ini mempengaruhi hasil cole plot dimana pada variasi penambahan Cu terbentuk semicircle sedangkan pada penambahan nano C tidak;Improved of Electrical conductivity of LiFePO4 with the method of adding Cu Nano metal material and CNTs has been done. This method is an attractive option because it is easy and inexpensive in the manufacturing process. Synthesis process is
done by mixing the powder LiFePO4 (commercial) with a variation of the percentage by weight of Nano copper (commercial) 0, 1, 3, 5, 7 wt. % and 5 wt. % CNTs (commercial) and then process in vacuum mixing and film applicator. Testing XRD, SEM and EDX performed on the powder to confirm the phase, grain size and the presence or absence of impurities. Results of XRD and EDX on Nano Cu powder showed that there had been oxidation and formed into CuO and Cu2O, and discovered the existence of impurities elements S of 8.5 wt. %.
Phase composition as the result from adding process obtained with analyzing the XRD diffraction pattern showed that the phase formed is LiFePO4 yet found any impurities in the form of Cu4O3 on variations LiFePO4 addition of 80 wt. %, 5 wt. % Cu, 5 wt. % C, and 10 wt. % PVDF. The electrical conductivity of LiFePO4 cathode material was tested by EIS, and the results showed that the electrical conductivity of LiFePO4 increased with the addition of Nano-Cu but not too significant (still on the same order), this is because the effects of oxidation on Cu. On the addition of Nano C and Nano Cu variation there is an increase of 3 order with conductivity value 8.4 x 10-5 S / cm at variations LiFePO4 addition of 80 wt.%, 5 wt.% Cu, 5 wt.% C. The addition of CNTs is more effective in LiFePO4 conductivity increase, compared to the addition
of Nano-Cu due to the effects of oxidation on Cu are unavoidable. Cathode material morphology and distribution of CNTs and Nano Cu analyzed using SEM / EDX, showed mixed material on the variation of the addition of Nano Cu quite homogenous, spherical grain structure, while the variation of the addition of Nano Cu and CNTs structures polyhedral grains with a grain size in the range 100-500 nm. This affects the grain structure results in a variation of Cole plot where the addition of Cu is formed semicircle, while the addition of Nano C is not.;Improved of Electrical conductivity of LiFePO4 with the method of adding Cu
Nano metal material and CNTs has been done. This method is an attractive option
because it is easy and inexpensive in the manufacturing process. Synthesis process is
done by mixing the powder LiFePO4 (commercial) with a variation of the percentage
by weight of Nano copper (commercial) 0, 1, 3, 5, 7 wt. % and 5 wt. % CNTs
(commercial) and then process in vacuum mixing and film applicator. Testing XRD,
SEM and EDX performed on the powder to confirm the phase, grain size and the
presence or absence of impurities. Results of XRD and EDX on Nano Cu powder
showed that there had been oxidation and formed into CuO and Cu2O, and discovered
the existence of impurities elements S of 8.5 wt. %.
Phase composition as the result from adding process obtained with analyzing
the XRD diffraction pattern showed that the phase formed is LiFePO4 yet found any
impurities in the form of Cu4O3 on variations LiFePO4 addition of 80 wt. %, 5 wt. %
Cu, 5 wt. % C, and 10 wt. % PVDF. The electrical conductivity of LiFePO4 cathode
material was tested by EIS, and the results showed that the electrical conductivity of
LiFePO4 increased with the addition of Nano-Cu but not too significant (still on the
same order), this is because the effects of oxidation on Cu. On the addition of Nano C
and Nano Cu variation there is an increase of 3 order with conductivity value 8.4 x 10-
5 S / cm at variations LiFePO4 addition of 80 wt.%, 5 wt.% Cu, 5 wt.% C. The addition
of CNTs is more effective in LiFePO4 conductivity increase, compared to the addition
of Nano-Cu due to the effects of oxidation on Cu are unavoidable. Cathode material
morphology and distribution of CNTs and Nano Cu analyzed using SEM / EDX,
showed mixed material on the variation of the addition of Nano Cu quite homogenous,
spherical grain structure, while the variation of the addition of Nano Cu and CNTs
structures polyhedral grains with a grain size in the range 100-500 nm. This affects the
grain structure results in a variation of Cole plot where the addition of Cu is formed
semicircle, while the addition of Nano C is not., Improved of Electrical conductivity of LiFePO4 with the method of adding Cu
Nano metal material and CNTs has been done. This method is an attractive option
because it is easy and inexpensive in the manufacturing process. Synthesis process is
done by mixing the powder LiFePO4 (commercial) with a variation of the percentage
by weight of Nano copper (commercial) 0, 1, 3, 5, 7 wt. % and 5 wt. % CNTs
(commercial) and then process in vacuum mixing and film applicator. Testing XRD,
SEM and EDX performed on the powder to confirm the phase, grain size and the
presence or absence of impurities. Results of XRD and EDX on Nano Cu powder
showed that there had been oxidation and formed into CuO and Cu2O, and discovered
the existence of impurities elements S of 8.5 wt. %.
Phase composition as the result from adding process obtained with analyzing
the XRD diffraction pattern showed that the phase formed is LiFePO4 yet found any
impurities in the form of Cu4O3 on variations LiFePO4 addition of 80 wt. %, 5 wt. %
Cu, 5 wt. % C, and 10 wt. % PVDF. The electrical conductivity of LiFePO4 cathode
material was tested by EIS, and the results showed that the electrical conductivity of
LiFePO4 increased with the addition of Nano-Cu but not too significant (still on the
same order), this is because the effects of oxidation on Cu. On the addition of Nano C
and Nano Cu variation there is an increase of 3 order with conductivity value 8.4 x 10-
5 S / cm at variations LiFePO4 addition of 80 wt.%, 5 wt.% Cu, 5 wt.% C. The addition
of CNTs is more effective in LiFePO4 conductivity increase, compared to the addition
of Nano-Cu due to the effects of oxidation on Cu are unavoidable. Cathode material
morphology and distribution of CNTs and Nano Cu analyzed using SEM / EDX,
showed mixed material on the variation of the addition of Nano Cu quite homogenous,
spherical grain structure, while the variation of the addition of Nano Cu and CNTs
structures polyhedral grains with a grain size in the range 100-500 nm. This affects the
grain structure results in a variation of Cole plot where the addition of Cu is formed
semicircle, while the addition of Nano C is not.]"
Fakultas Teknik Universitas Indonesia, 2015
T43699
UI - Tesis Membership  Universitas Indonesia Library
cover
Michael
"ABSTRAK
Baterai adalah komponen listrik yang digunakan untuk menyimpan listrik. Saat ini, baterai yang paling banyak digunakan adalah baterai Lithium Ion. Baterai lithium memiliki kepadatan energi yang relatif tinggi dibandingkan pendahulunya, tetapi sangat beracun dan berbahaya bagi organisme hidup dan memerlukan penanganan yang hati-hati dalam operasinya, salah satunya adalah dengan menggunakan sistem manajemen baterai. Dalam tesis ini, dirancang perlindungan overcharging dan sistem manajemen baterai balancing pasif untuk baterai Lithium seri terhubung. Pengujian prototipe dilakukan dengan menguji kemampuan perlindungan pengisian berlebih dengan memantau setiap tegangan sel dan nilai saat ini saat diisi. Pengujian kemampuan balancing pasif dilakukan dengan mengukur setiap tegangan sel saat diisi. Berdasarkan dari data pengujian prototipe sirkuit balancing overcharging dan pasif, disimpulkan bahwa prototipe mampu memberikan perlindungan pengisian daya yang berlebihan dan mampu menyeimbangkan secara pasif setiap seri sel baterai terhubung pada 3,75 Volt menggunakan 0,2 Ampere arus pengisian.

ABSTRACT
atteries are electrical components that are used to store electricity. Currently, the most widely used battery is a Lithium Ion battery. Lithium batteries have a relatively high energy density compared to their predecessors, but are highly toxic and dangerous to living organisms and require careful handling in their operations, one of which is to use a battery management system. In this thesis, designed overcharging protection and passive battery balancing management system for connected series Lithium batteries. Prototype testing is done by testing the overcharging protection capability by monitoring each cell voltage and current value when charged. Passive balancing capability testing is done by measuring every cell voltage when filled. Based on the prototype overcharging and passive balancing circuit testing data, it was concluded that the prototype is able to provide excessive charging protection and is able to passively balance each series of battery cells connected at 3.75 Volts using 0.2 Amperes of charging current."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Baghaskara Surendra
"Litium Titanat, Li4Ti5O12 (LTO) adalah kandidat yang menjanjikan sebagai bahan anoda baterai lithium ion. Dalam penelitian ini, Li4Ti5O12 akan disintesis dengan menggunakan metode solid-state dengan menggunakan komersial TiO2 dan komersial litium hidroksida (LiOH). Setelah itu, komersial bubuk nikel dipanaskan pada suhu 600oC selama 4 jam untuk mendapatkan NiO sebagai logam oksida transisi. Penambahan NiO ke LTO kepada semua sampel sebesar 3%. Tiga variasi penambahan lama waktu proses sintering sebesar 4 jam, 8 jam, 10 jam, diberi label sampel LTO/NiO 3% (4 jam), LTO/NiO 3% (8 jam) and LTO/NiO 3% (10 jam). Karakterisasi dilakukan menggunakan XRD dan SEM untuk mengamati efek penambahan NiO pada struktur dan morfologi sampel yang dibuat. Hasil karakterisasi sampel menunjukkan bahwa penambahan NiO 3% memiliki konduktivitas lebih baik. Hasil dari tes Electrochemical Impedance Spectroscopy juga menunjukkan LTO/NiO 3% (4 jam) memiliki konduktivitas terbaik dengan nilai resistansi terkecil

Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. In this investigation, Li4Ti5O12 was synthesized with solid-state method by using TiO2 with the help of lithium hydroxide (LiOH) and nickel powder as the precursor materials, resulting in LTO. Commercial nickel powder was heated at 600oC for 4 hours to obtain NiO as transition metal oxide. NiO addition to the LTO for all samples is 3% in weight%. Three variations of different sintering holding time for 4 hours, 8 hours and 10 hours labelled as LTO/NiO 3% (4 hours), LTO/NiO 3% (8 hours) and LTO/NiO 3% (10 hours), respectively. The characterizations were made using XRD and SEM testing. These were performed to observe the effect of NiO addition and different holding time on structure and morphology of the resulting samples. The result showed that the addition of NiO will make the samples have better conductivity. According to Electrochemical Impedance Spectroscopy, LTO/NiO 3% (4 hours) also has the best conductivity with the lowest resistivity."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faisal Aldy
"Li4Ti5O12 lithium titanate disintesis menggunakan metode sol-gel dan hidrotermal dengan memakai sumber ion lithium LiOH. Anoda komposit Li4Ti5O12/Sn dipreparasi menggunakan metode ball mill dengan 3 variasi Sn. XRD menunjukkan fasa spinel, TiO2, dan Sn. SEM memperlihatkan bahwa partikel Li4Ti5O12 memiliki ukuran berkisar 20-50 ?m dan ukuran partikel Sn berkisar 2-70 ?m. Nilai hambatan elektrolit terendah didapatkan pada kadar Sn terbesar. Peningkatan kadar Sn dapat meningkatkan kapasitas spesifik dari baterai pada uji CV. Reaksi alloying dan dealloying LixSn mengakomodasi peningkatan kapasitas spesifik pada C/D. Namun, volume ekspansi dari LixSn menyebabkan hilangnya kapasitas saat C rate meningkat. Kapasitas terbesar pada laju charge/discharge rendah dan tinggi didapatkan pada kadar Sn terbesar.

Li4Ti5O12 lithium titanate were synthesized by sol gel and hydrothermal method with LiOH as lithium ion source. Li4Ti5O12 Sn composites anode were preparared by ball mill method with three of Sn variation. XRD shows spinel, TiO2, and Sn phases. SEM shows that Li4Ti5O12 particles are around 20 50 m size and Sn particles are around 2 70 m size. The lowest electrolyte resistance obtained at the highest Sn value. With the increasing Sn value, the specific capacity of battery can be increased from CV. Alloying and dealloying reaction of LixSn accomodate the increased specific capacity from C D. However, volume expansion from LixSn leads to loss of capacity when the C rate increases. The capacity at low and high charge discharge rate obtained at the highest Sn value.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66450
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>