Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 157762 dokumen yang sesuai dengan query
cover
Anatasya Shalsabilla
"Produksi amonia hijau dengan green hydrogen—elektrolisis air—dapat mempercepat penurunan emisi karbon sampai dengan 41% dari total produksi amonia global pada 2050. Namun, perbedaan penurunan nilai emisi berbagai skema sistem produksi dan rendahnya biaya produksi amonia hijau terhadap fossil-based ammonia mendorong penelitian aspek teknis sistem produksi amonia hijau dilakukan sebagai dasar analisis aspek lingkungan dan ekonomi dari variasi penggunaan sumber energi sistem produksi amonia hijau. Variasi sistem ditinjau dari tiga jenis sumber energi terbarukan, yaitu photovoltaic (PV)-baterai, pembangkit listrik tenaga panas bumi (PLTP), dan pembangkit listrik tenaga air (PLTA), sedangkan sistem secara keseluruhan terdiri atas unit elektrolisis air dengan teknologi alkaline electrolyser (AEL), unit separasi udara dengan metode distilasi kriogenik, dan unit sintesis amonia hijau dengan metode Haber-Bosch. Analisis aspek teknis dilakukan dengan simulasi proses ASPEN Plus, aspek lingkungan dengan metode life cycle assessment (LCA) serta ruang lingkup cradle-to-gate, dan aspek ekonomi dengan metode levelized cost untuk mendapatkan efisiensi energi sistem, nilai emisi CO2eq, dan levelized cost of ammonia (LCOA). Hasil penelitian menunjukkan bahwa efisiensi energi sistem pada konfigurasi sistem PLTA-AEL sebesar 39,16%, lebih tinggi secara signifikan dibandingkan PLTP-AEL (8,45%) dan PV-AEL (6,71%). Tinjauan aspek lingkungan menunjukkan bahwa PLTA-AEL dinilai paling menguntungkan dengan nilai emisi 0,84 kg CO2eq/kg NH3, diikuti oleh PLTP-AEL dan PV-AEL sebesar 0,87 kg CO2eq/kg NH3 dan 1,14 kg CO2eq/kg NH3 secara berurutan. Di sisi lain, PLTP-AEL menempati posisi teratas dari tinjauan aspek ekonomi dengan nilai LCOA 1.130 USD/ton NH3, diikuti oleh PLTP-AEL sebesar 1.179 USD/ton NH3 dan PV-AEL sebesar 1.356 USD/ton NH3. Aspek ekonomi pada ketiga konfigurasi sistem tersebut, yang belum mampu bersaing dengan grey ammonia, menjadi trade off atas keunggulan aspek lingkungan yang ditawarkan.

The production of green ammonia with green hydrogen—from water electrolysis— has the potential to accelerate the reduction of carbon emissions by up to 41% of the total global ammonia production by 2050. However, the differences in emission reduction values from various production system schemes and lower green ammonia production cost compared to fossil-based ammonia drive the research of technical aspects of green ammonia production systems. This serves as the basis for analyzing the environmental and economic aspects of the variations in energy sources used in green ammonia production systems. The variations in the system involve three types of renewable energy sources, namely photovoltaic (PV)-battery, geothermal power plant, and hydropower plant, while the overall system consists of an electrolysis unit using alkaline electrolyser technology (AEL), an air separation unit using cryogenic distillation methods, and a green ammonia synthesis unit using the Haber-Bosch method. Technical aspects are analyzed through process simulations using ASPEN Plus, environmental aspects through life cycle assessment (LCA) method with a cradle to gate scope, and economic aspects through the levelized cost method so the system energy efficiency, CO2eq emission values, and the levelized cost of ammonia (LCOA) can be obtained. The research results indicate that the overall system energy efficiency of the PLTA-AEL system configuration is 39.16%, significantly higher compared to PLTP-AEL (8.45%) and PV-AEL (6.71%). From an environmental point of view, PLTA-AEL is considered the most advantageous with an emission value of 0.84 kg CO2eq/kg NH3, followed by PLTP-AEL and PV-AEL with 0.87 kg CO2eq/kg NH3 and 1.14 kg CO2eq/kg NH3, respectively. On the other hand, PLTPAEL ranks highest from an economic point of view with an LCOA value of 1,130 USD/ton NH3, followed by PLTP-AEL at 1,179 USD/ton NH3 and PV-AEL at 1,356 USD/ton NH3. The economic aspects of the three system configurations, which are not yet able to compete with grey ammonia, become a trade-off against the environmental advantages they offer."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faiq Shahabi
"Pemanasan global semakin menjadi ancaman yang nyata. Salah satu kontributor terbesar dalam meningkatnya suhu bumi adalah meningkatnya kandungan gas polutan CH4 dan CO2. Pada skripsi ini, penulis akan meriset salah satu bentuk Carbon Capture, Utilization, and Storage (CCUS) menggunakan adsorpsi terhadap gas buang CH4 dan CO­2 dalam rasio 85% metana dan 15% karbon dioksida untuk simulasi kondisi gas buang. Adapun penelitian yang dilakukan adalah menggunakan MOF Aluminium Fumarate yang kemudian akan dikarakterisasi menggunakan uji FTIR, XRD, SEM, dan TGA, serta MOF Zn-DOBDC yang akan dikarakterisasi menggunakan XRD dan PSD untuk mengetahui karakteristik untuk kemudian dilakukan simulasi menggunakan software RASPA. Penelitian akan dilakukan dalam variasi temperature 300 – 323 K serta tekanan hingga 35 bar. Puncak uptake (g/g) didapatkan pada variasi temperature 300 K dan tekanan 35 bar, dimana uptake mencapai angka 0,51 g/g yang berarti 0,51 gram dari CH4 dan CO2 teradsorpsi untuk setiap 1 gram Zn-DOBDC. Didapatkan kesimpulan bahwa dengan meningkatnya temperature, uptake dalam satuan mmol/g mengalami penurunan, sementara dengan meningkatnya tekanan uptake mengalami kenaikan. Hasil adsorpsi juga kemudian akan dilakukan fitting terhadap korelasi adsorpsi isothermal Langmuir, Freundlich, dan Langmuir-Freundlich (sips) serta analisis terhadap panas adsorpsi dalam satuan kJ/mol. Hasil dari simulasi kemudian diteliti lebih lanjut menggunakan modelling Artificial Neural Network (ANN).

Global warming is increasingly becoming a real threat. One of the biggest contributors to increasing Earth's temperature is the increasing content of pollutant gases CH4 and CO2. In this thesis, the author will research a form of Carbon Capture, Utilization, and Storage (CCUS) using adsorption of CH4 and CO2 exhaust gases in a ratio of 85% methane and 15% carbon dioxide to simulate exhaust gas conditions. The research carried out is using Aluminum Fumarate MOF which will then be characterized using FTIR, XRD, SEM, and TGA, as well as the MOF Zn-DOBDC which will be characterized using XRD to identify its properties and to be later simulated using the software RASPA. The research will be carried out in temperature variations of 300 – 323 K and pressures of up to 35 bar. The absorption peak (g/g) was obtained at a temperature variation of 300 K and a pressure of 35 bar, where the absorption reached 0.51 g/g, which means 0.51 grams of CH4 and CO2 were adsorbed for every 1 gram of Zn-DOBDC. It was concluded that with increasing temperature, the absorption in mmol/g units decreased, while with increasing pressure the absorption increased. The adsorption results will then be adjusted to the Langmuir, Freundlich, and Langmuir-Freundlich isothermal adsorption correlations (sips) as well as analysis of heat adsorption in units of kJ/mol. The results of the simulation were then examined further using Artificial Neural Network (ANN) modeling."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Surya Ayuati Ning Asih
"ABSTRAK
Pada penelitian ini dilakukan analisis teknis, lingkungan, dan ekonomi pada sistem pembangkit listrik batu bara dengan teknologi chemical looping dan metanol. Tujuan dari penelitian ini adalah mendapatkan efisiensi carbon capture, efisiensi sistem, faktor emisi, dan biaya produksi hidrogen dan metanol dari teknologi hidrogen yang berbeda. Simulasi dilakukan dengan perangkat Aspen Plus®. Divariasikan steam-to-carbon (S/C) dan Fe2O3-to-coal (OC/fuel) pada Coal Direct Chemical Looping (CDCL) untuk mendapatkan efisiensi carbon capture. CO2 dimanfaatkan menjadi metanol dengan ko-reaktan hidrogen dari Steam Methane Reforming (SMR) atau Solid Oxide Electrolysis Cell (SOEC). SOEC mendapat suplai listrik dari PV yang dilengkapi baterai. Hasil analisis memperlihatkan bahwa efisiensi carbon capture sebesar 93-99% didapat dengan peningkatan S/C. Faktor emisi pembangkit menurun dengan kenaikan S/C. Nilai optimum didapatkan pada S/C=0,93. Efisiensi energi sistem keseluruhan lebih tinggi dengan SOEC dibandingkan SMR, dengan nilai efisiensi 66,95% berbanding 50,30%. Emisi gas rumah kaca (GRK) sistem Coal to Power & Methanol dengan SOEC didapatkan lebih rendah dari SMR dengan nilai 0,45 terhadap 2,53 kgCO2eq/kgMeOH. Investasi PV dan elektroliser pada tahun 2019 masih sangat tinggi sehingga biaya produksi hidrogen SOEC lebih tinggi dibanding SMR. Biaya produksi hidrogen SOEC 5,7 $/kg dibanding SMR 1,7 $/kg menyebabkan biaya produksi metanol SMR 393 $/ton dan SOEC 1226 $/ton.

ABSTRACT
In this study, a technical, environmental, and economic analysis were carried on coal power generation system with chemical looping and methanol. The purpose of this study is to obtain carbon capture efficiency, system efficiency, emission factors, and cost of producing hydrogen and methanol from different hydrogen technologies. Simulations were carried with Aspen Plus®. Varying steam-to-carbon (S/C) and Fe2O3-to-coal (OC/fuel) in Coal Direct Chemical Looping (CDCL) to obtain carbon capture efficiency. CO2 is fed to methanol synthesis with hydrogen as co-reactants from Steam Methane Reforming (SMR) or Solid Oxide Electrolysis Cell (SOEC). SOEC electricity supplied from PV that is equipped with batteries. The result shows that carbon capture efficiency of 93-99% is obtained by increasing S/C. Power Plant emission factors decrease with increase in S/C. The optimum value is obtained at S/C = 0,93. The overall system energy efficiency is higher with SOEC than SMR, with a value of 66,95% compared to 50,30%. Greenhouse gas (GHG) emissions from Coal to Power & Methanol system with SOEC are lower than with SMR with a value of 0,45 to 2,53 kgCO2eq/kg MeOH. PV and electrolyzer investment in 2019 is still very high resulting cost of producing hydrogen with SOEC is higher than SMR. The value for hydrogen with SOEC is 5,7 $/kg compared to SMR 1,7 $/kg causing the cost of producing methanol with SMR 393 $/tonne and SOEC 1226 $/tonne."
Depok: Fakultas Teknik. Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Raihan Pratama
"Bioenergy with carbon capture and storage (BECCS) memiliki potensi besar dalam mengurangi emisi karbon dari atmosfer hingga dapat mencapai emisi negatif. Teknologi ini dapat diintegrasikan pada sistem poligenerasi pembangkit listrik biomassa dan green chemicals seperti metanol. Penelitian ini bertujuan untuk memperoleh efisiensi energi sistem secara keseluruhan, biaya produksi dan CO2 avoidance cost (CAC), serta nilai emisi CO2eq dari integrasi BECCS pada sistem poligenerasi. Aspen Plus v.11 digunakan untuk simulasi proses sistem poligenerasi, sedangkan unit CCS disimulasikan dengan Aspen HYSYS v.11. Dengan memvariasikan kapasitas produksi listrik, tandan kosong kelapa sawit (TKKS) digunakan sebagai bahan bakar pembangkit listrik biomass integrated gasification combined cycle (BIGCC) sehingga dihasilkan gas buang mengandung CO2 yang ditangkap untuk sintesis metanol dan CCS. Hidrogen untuk sintesis green methanol diproduksi melalui elektrolisis PEM dengan variasi dua sumber energi listrik terbarukan, yaitu energi surya (PV-PEM) dan energi geotermal (GEO-PEM). Analisis lingkungan dilakukan dengan metode life cycle assessment (LCA) dengan lingkup cradle-to-gate dan analisis keekonomian dilakukan dengan metode levelized cost. Hasil penelitian menunjukkan bahwa efisiensi sistem keseluruhan lebih tinggi pada skema PV-PEM (11,33%) daripada GEO-PEM (7,05%). Sistem BECCS yang diintegrasikan pada pembangkit listrik BIGCC menunjukkan emisi negatif (-1,00 sampai -0,76 kg CO2eq/kWh). Untuk sintesis metanol, nilai emisi dengan skema PV-PEM (-1,14 sampai -1,28 kg CO2eq/kg MeOH) lebih tinggi daripada skema GEO-PEM (-1,52 sampai -1,65 kg CO2eq/kg MeOH). Pembangkit dengan kapasitas 30,87 MW memiliki biaya produksi dan nilai CAC (0,181 USD/kWh dan 67,66 USD/ton CO2) yang lebih besar daripada kapasitas 50 MW (0,139 USD/kWh dan 56,06 USD/ton CO2). Skema PV-PEM menghasilkan biaya produksi metanol (1.011-1.049 USD/ton) yang lebih besar daripada skema GEO-PEM (967-1.005 USD/ton).

Bioenergy with carbon capture and storage (BECCS) has enormous potential to reduce carbon emissions from the atmosphere that may reach net-negative emissions. This technology may be integrated within the polygeneration system of biomass power plant and green chemicals, such as methanol. This research aims to obtain the system’s overall energy efficiency, the production and CO2 avoidance cost, as well as the emission factor of integrating BECCS in the polygeneration system. The processes of polygeneration system are simulated in Aspen Plus v.11; meanwhile, the CCS unit processes are simulated in Aspen HYSYS v.11. By varying the electricity production capacities, oil palm empty fruit bunches (OPEFB) are used as fuel for biomass integrated gasification combined cycle (BIGCC) power plant to produce exhaust gas containing CO2, which is captured for the methanol synthesis and CCS. Hydrogen for green methanol synthesis is produced through PEM electrolysis powered by two different renewable energy sources, i.e., solar (PV-PEM) and geothermal energy (GEO-PEM). The environmental aspects are assessed with the life cycle assessment (LCA) with a cradle-to-gate scope, and the economic aspects are analyzed with the levelized cost method. The research shows that the overall system efficiency is higher in the PV-PEM scheme (11.33%) than in the GEO-PEM scheme (7.05%). The BECCS system integrated into the polygeneration system exhibits negative emissions (-1.00 to -0.76 kg CO2eq/kWh). The emission value for the methanol synthesis with the PV-PEM scheme (-1.14 to -1.28 kg CO2eq/kg MeOH) is higher than that with the GEO-PEM (-1.52 to -1.65 kg CO2eq/kg MeOH). The 30,87 MW-capacity BIGCC has a higher production cost and CAC value (0.181 USD/kWh and 67.66 USD/ton CO2) than the 50-MW capacity (0.139 USD/kWh and 56.06 USD/ton CO2). The PV-PEM scheme results in higher methanol production costs (1,011-1,049 USD/ton) than of the GEO-PEM scheme (967-1,005 USD/ton)."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arief Surachman
"Dalam rangka upaya memenuhi target pemerintah yaitu pengembangan pembangkit listrik tenaga panas bumi PLTP pada tahun 2025 ditargetkan sebesar 7.242 MW, maka tentu saja akan diperlukan data tentang desain PLTP yang paling optimal yang dapat diterapkan pada seluruh kondisi sumber panas bumi. Dengan demikian, diperlukan panduan desain yang dibuktikan secara ilmiah untuk pembangunan PLTP. Dalam dekade terakhir ini, banyak peneliti yang menganalis atau merancang sistem energi dengan menggabungkan antara analisis energi, exergy dan thermoekonomik. Hal ini dimaksudkan dalam upaya peningkatan efisiensi serta mengurangi kerugian-kerugian yang ditimbulkan oleh ketidakefisienan sistem.
Melalui analisa yang komprehensif dengan menggabungkan analisa energi, exergy, exergoeconomics serta exergoenvironment, maka diharapkan dapat menjadi panduan desain yang paling optimum dengan mempertimbangkan segala aspek, baik aspek teknologi, ekonomi dan lingkungan yang dapat diaplikasikan untuk berbagai kondisi sumber panas bumi di Indonesia. Untuk itulah pada disertasi ini dilakukan analisa dan optimasi 3E exergy,economic,environment. Pemodelan dan optimasi sistem PLTP dilakukan menggunakan software EES dan diintegrasikan dengan MATLAB.
Dari hasil analisis 3E, dapat diketahui bahwa komponen seperti turbin dan cooling tower merupakan komponen yang menyumbang nilai exergy destruction, total cost dan exergoenvironment yang paling besar dibandingkan komponen lainnya.

In order to reach the government 39;s target of building geothermal power plant PLTP in 2025 of 7,242 MW, then it will need data about the most optimal PLTP design that can be applied to all geothermal conditions. Thus, the design required for the construction of PLTP. In the last decade, many researchers have analyzed and discussed energy systems with energy, exergy and thermoeconomic analyzes. This is necessary in an effort to increase and reduce the losses caused by system inefficiencies.
Through a comprehensive analysis with energy analysis, exergy, exergoeconomics and exergoenvironment, it is expected to be the most optimal design with good aspects, economics and environment that can be used for various geothermal conditions in Indonesia. For analysis, it was conducted 3E exergy, economy, environment analysis on this dissertation. By using EES software and integrated with MATLAB, the PLTP system can be modeled and optimized.
From the results of 3E analysis, it can be seen that components such as turbines and cooling towers are the components that contribute the largest value of total exergy destruction, total cost and exergoenvironment compared to other components.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
D2483
UI - Disertasi Membership  Universitas Indonesia Library
cover
Khalafi Xenon Abdullah
"Kilang bio dengan carbon capture and storage memiliki potensi dalam mengurangi emisi karbon dari atmosfer. Penelitian ini bertujuan untuk memperoleh efisiensi energi keseluruhan sistem, biaya produksi (etanol, xilitol, dan listrik), CO2 avoidance cost (CAC), serta nilai emisi CO2eq dari integrasi sistem kilang bio dengan carbon capture and storage(CCS). Aspen Plus v.11 digunakan untuk simulasi proses produksi etanol dan xilitol dengan teknologi hidrolisis asam, sedangkan unit CCS disimulasikan dengan Aspen HYSYS v.11. Penelitian ini menggunakan dua skema, yaitu skema produksi tunggal etanol (1) dan skema koproduksi etanol-xilitol (2). Analisis lingkungan dilakukan dengan metode life cycle assessment (LCA) dengan lingkup cradle-to-gate dan analisis keekonomian dilakukan dengan metode levelized cost. Hasil penelitian menunjukkan bahwa efisiensi energi sistem keseluruhan  lebih tinggi pada skema 1 (35,8%) daripada skema 2 (33,7%). Nilai emisi sistem kilang bio dengan CCS pada skema 1 (-3,55 kgCO2eq/L etanol) lebih negatif daripada skema 2 (-2,20 kgCO2eq/L etanol). Skema 1 memiliki biaya produksi etanol dan nilai CAC (0,64 USD/L etanol dan 69,50 USD/ton CO2eq)  yang lebih besar daripada skema 2 (0,60 USD/L etanol dan 63,98 USD/ton CO2eq). Skema 1 menghasilkan nilai LCOE (0,15 USD/kWh) yang lebih tinggi daripada skema 2 (0,14 USD/kWh). Pada skema 2 diperoleh biaya produksi xilitol seharga 2,73 USD/kg xilitol. Oleh karena itu, skema 2 memiliki potensi komersial yang lebih baik.

Biorefinery with carbon capture and storage has great potential in reducing carbon emissions from the atmosphere. This study aims to obtain the overall system energy efficiency, production costs (ethanol, xylitol, and electricity), CO2 avoidance cost (CAC), and CO2eq emission from the integration of biorefinery system with carbon capture and storage (CCS). Aspen Plus v.11 was used to simulate the ethanol and xylitol production processes using acid hydrolysis, while the CCS unit was simulated with Aspen HYSYS v.11. This study uses two schemes, namely a single ethanol production scheme (1) and an ethanol-xilitol coproduction scheme (2). Environmental analysis was conducted using the life cycle assessment (LCA) method with a cradle-to-gate scope, and economic analysis was conducted using the levelized cost method. The results showed that the overall system energy efficiency was higher in scheme 1 (35.8%) than scheme 2 (33.7%). The emission value of the biorefinery system with CCS in scheme 1 (-3.55 kgCO2eq/L ethanol) was more negative than scheme 2 (-2.20 kgCO2eq/L ethanol). Scheme 1 has higher ethanol production costs and CAC values (0.64 USD/L ethanol and 69.50 USD/ton CO2eq) than scheme 2 (0.60 USD/L ethanol and 63.98 USD/ton CO2eq). Scheme 1 produced a higher LCOE value (0.15 USD/kWh) than scheme 2 (0.14 USD/kWh). In scheme 2, the production cost of xylitol is 2.73 USD/kg xylitol. Therefore, scheme 2 has better commercial viability."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alif Nuzulul Hidayat
"PLTP memiliki potensi berupa limbah panas yang masih terkandung dalam kondensat atau brine yang biasanya diinjeksikan kembali ke dalam bumi melalui sumur reinjeksi. Dalam penelitian ini dilakukan analisis tekno-ekonomi terhadap pemanfaatan potensi limbah panas PLTP Kamojang untuk proses penyulingan minyak akar wangi yang terletak di Kabupaten Garut. Berdasarkan hasil penelitian diketahui bahwa secara teknis kondensat PLTP Kamojang dapat dimanfaatkan untuk penyulingan akar wangi. Namun, akan lebih efektif apabila dapat ditemukan sumur yang mengandung brine. Total biaya kapital dan operasional yang dibutuhkan untuk skema brine secara berturut-turut adalah Rp42.727.999.500 dan Rp549.801.000, sedangkan untuk skema kondensat adalah Rp28.382.845.500 dan Rp420.174.000.
Secara ekonomi, penggunaan kondensat tidak layak untuk penyulingan minyak akar wangi. Skema pemanfaatan limbah panas bumi untuk penyulingan minyak akar wangi yang paling menguntungkan adalah menggunakan brine pada jarak maksimal 1 km dari sumber panas serta didanai 70% dari hibah dan 30% dari pemerintah dengan NPV Rp 1.057.899.500, IRR 10,16% dan PBP pada tahun ke-8. Emisi gas CO2 yang dapat dihindari dari penggunaan brine untuk proses penyulingan minyak akar wangi adalah sebanyak 213,5 ton CO2/tahun.

Geothermal power plant potential in the form of waste heat which is still contained in the condensate or brine is usually injected back into the earth through reinjection wells. In this research, techno-economic analysis of waste heat utilization from geothermal power flant for vetiver oil production located in Garut is conducted. The result of this research revealed that condensate of Kamojang geothermal power plant technically can be used to supply heat for vetiver oil production. However, it would be more effective if wells that contain brine can be found. Total of capital and operating costs required for the brine scheme are Rp42.727.999.500 and Rp549.801.000, while the condensate scheme are Rp28.382.845.500 and Rp420.174.000, respectively.
Economically, the use of condensate is not feasible for the vetiver oil production. The most profitable scheme of geothermal waste heat utilization for vetiver oil production is to use brine at a maximum distance of 1 km from the source of heat and funded 70% of grant & 30% of government with NPV Rp1.057.899.500, IRR 10,16% and PBP on the 8th year. CO2 Emissions can be avoided from the use of brine for vetiver oil production is as much as 213,5 tonnes of CO2/year.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63994
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Luthfi Fitris
"Fluida panas bumi dari pembangkit listrik tenaga panas bumi (PLTP) selalu disertai oleh gas yang tidak dapat dikondensasikan/Noncondensable gas (NCG). Gas-gas ini meningkatkan tekanan kondensor, berkontribusi terhadap backpressure pada turbin, dan mengurangi produksi daya pembangkit. Untuk menghilangkan NCG dari kondenser, PLTP membutuhkan utilisasi dan optimisasi Gas Removal System (GRS). PT. X menggunakan sistem dual ejector (SJE) untuk gas removal system (GRS). Karena berbagai kondisi uap, banyak motive steam yang digunakan dan tekanan kondenser meningkat. Hal ini menyebabkan penuruan produksi daya. Namun, pembangkit PT. X memiliki liquid ring vacuum pump (LRVP) yang dapat digunakan dengan dual ejector sebagai sistem hibrida (hybrid system). Pembahasan ini bertujuan untuk optimisasi GRS dengan tujuan peningkatan produksi listrik dan didasarkan pada analisis termodinamika dan Cycle Tempo 5.0.
Hasil menunjukkan bahwa hybrid system memiliki kinerja yang lebih tinggi daripada sistem dual ejector. Dengan mempertahankan tekanan kondenser yang sama pada 0,08 bar, PLTP dengan sistem dual ejector menghasilkan daya bersih sebesar 42,9 MW sedangkan PLTP dengan hyrbid system menghasilkan daya bersih sebesar 44,5 MW. Kesimpulannya, analisis termodinamika menunjukkan bahwa hybrid system lebih cocok untuk digunakan di PT. X demi peningkatan produksi daya.

Geothermal fluids of geothermal power plants (GPP) are always accompanied by non-condensable gases (NCG). These gases do not condense inside the condenser which will increase the condenser pressure, contribute to backpressure on the turbine, and thereby decreasing the power generation of the plant. In order to remove these NCG from the condenser, GPP would need to utilize and optimize Gas Removal System (GRS). Currently PT. X utilizes a dual ejector gas removal system (GRS). Due to various steam conditions, more motive steam is needed and the condensers pressure rises up. These problems will eventually lead to lower power production. However, the GPP possesses a liquid ring vacuum pump on standby which could be utilized with the ejector as a hybrid system. This study aims to optimize the gas removal system for an improved GPPs overall power production that is based on thermodynamic analysis and uses Cycle Tempo 5.0 for modeling and simulation.
The result shows that hybrid system has higher performance than the dual ejector system. By maintaining the same condenser pressure at 0.08 bar, the GPP with dual ejector system produces nett power of 42.9 MW while the GPP with hybrid system produces nett power of 44.5 MW. In conclusion, the thermodynamic analysis justifies that hybrid gas removal system is more suitable to be utilized in PT. X in order to gain higher power producion.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adrian Danar Wibisono
"Total kapasitas terpasang PLTP (Pembangkit Listrik Tenaga Panas Bumi) di Indonesia baru mencapai 1.341 MW, sekitar 4.8% dari seluruh potensi panas bumi yang ada. Salah satu penyebab terbesar masalah tersebut adalah masalah keekonomian dari PLTP. Penelitian ini ingin menemukan cara agar PLTP skala kecil dapat menjadi salah satu alternatif yang diperhitungkan bagi sumber listrik lokal pada tingkat harga yang kompetitif dengan sumber-sumber lain di tingkat konsumen.
Dalam penelitian ini, kapasitas PLTP skala kecil akan divariasikan sebesar 1 MW, 2 MW, 3 MW, 4 MW, dan 5 MW, dengan interval variasi dari suhu uap panas bumi berkisar antara 100°C sampai 340°C dan variasi kecepatan alir (flowrate) uap panas bumi berkisar antara 300 kg/s sampai 1000 kg/s.
Analisis dilakukan dengan melakukan perhitungan Biaya Pokok produksi (BPP) serta penilaian kelayakan investasi pengusahaan PLTP berdasarkan Internal Rate of Return (IRR), Net Present Value (NPV), dan Analisis Sensitivitas atas sumur panas bumi yang sebelumnya dinilai tidak ekonomis oleh satu dan lain sebab.

The total installed capacity of geothermal power plants in Indonesia reached 1,341 MW, approximately 4.8 % of the existing geothermal potential. One of the biggest causes of such problems is economic of electricity from geothermal power plants.
This study wants to find ways to make small-scale geothermal power plants could be an alternative source of electricity that is taken into account for local at a rate competitive with other sources at the consumer level. In this study, small-scale geothermal power plant capacity will be varied at 1 MW, 2 MW, 3 MW, 4 MW and 5 MW. While the interval of variation of temperature geothermal steam 100°C to 340°C ranges. While the range of variation of the flow velocity (flowrate) geothermal steam ranged from 300 kg/s to 1000 kg/s.
The analysis was performed by calculating the cost of electricity production and valuation of investment feasibility is based on the Internal Rate of Return ( IRR ), Net Present Value ( NPV ), and Sensitivity Analysis for marginal geothermal steam well.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55176
UI - Skripsi Membership  Universitas Indonesia Library
cover
Prashanti Amelia Anisa
"Penelitian ini bertujuan untuk mengetahui keekonomian dari proyek Pembangkit Listrik Tenaga Panas Bumi (PLTP) serta untuk mengetahui jalan untuk menjadikan bisnis panas bumi yang berdaya saing tinggi. Daya saing panas bumi terhadap batu bara juga di evaluasi dengan membandingkan biaya produksi listrik dari tiap-tiap pembangkit listrik. Dalam usaha meningkatkan keekonomian dan daya saing panas bumi, dianalisis pengaruh faktor insentif dari pemerintah, pengaplikasian CDM (Clean Development Mechanism) serta penerapan pajak karbon terhadap batu bara.
Hasil penelitian menunjukkan bahwa faktor insentif dari pemerintah, penerapan CDM (Clean Development Mechanism) serta penerapan pajak karbon terhadap batu bara dapat membantu meningkatkan keekonomian dan daya saing panas bumi. Efek dari pembebasan bea masuk impor, pembebasan PPN, penerapan investment tax credit, dan insentif survey awal oleh pemerintah masing-masing dapat menurunkan harga jual listrik panas bumi sebesar $0,75 sen/kWh, $0,91 sen/kWh, $0,23 sen/kWh dan $0,69 sen/kWh.

This study aims to determine the economics of the Geothermal Power Plant project and to investigate ways to make geothermal business more competitive. The ability of geothermal plant to compete with coal is assessed by evaluating and comparing the production cost for each type of power plants. In an effort to improve the economics and competitiveness of geothermal, the influence of incentives from the government, the application of the CDM (Clean Development Mechanism) and the implementation of carbon tax on coal are analyzed.
The results showed that the factor of incentives from the government, implementation of CDM (Clean Development Mechanism) and the implementation of carbon tax on coal could help improve the economics and competitiveness of geothermal energy. The effect of duty free, VAT free, implementation of investment tax credit, and pre survey incentive by the government respectively can decrease the geothermal selling price $0,75 sen/kWh, $0,91 sen/kWh, $0,23 sen/kWh dan $0,69 sen/kWh.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S52071
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>