Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 157056 dokumen yang sesuai dengan query
cover
Dara Anindita
"Jumlah emisi CO2 di dunia terus meningkat, di mana kontributor terbesarnya adalah pembakaran bahan bakar fosil dan sektor transportasi. Di Indonesia, sektor transportasi menyumbangkan emisi sebesar 27% dari total keseluruhan emisi CO2 sehingga pemerintah Indonesia mendorong penggunaan kendaraan listrik untuk mencapai target net zero emission pada tahun 2050. Namun, pengisian daya mobil listrik memakan waktu yang lama sehingga dibutuhkan alternatif lain yang dapat melakukan pengisian daya mobil listrik dalam waktu yang cepat. Stasiun penukaran baterai kendaraan listrik umum (SPBKLU) dapat menjadi solusi karena hanya membutuhkan waktu ± 5 menit untuk menukar baterai kosong dengan baterai yang telah terisi penuh. Selain itu juga, dibutuhkan energi baru dan terbarukan untuk menghasilkan listrik, yaitu dengan menggunakan energi surya karena intensitas radiasi matahari yang tinggi di Indonesia. Oleh karena itu, penelitian ini akan membahas mengenai analisis risiko investasi pembangkit listrik tenaga surya pada atap SPBKLU di rest area jalan Tol Trans Jawa. Mobil listrik yang digunakan berkapasitas 58 kWh dengan jenis baterai Li-ion. Simulasi PLTS menunjukkan bahwa lokasi tempat SPBKLU akan dibangun adalah rest area KM626A di Waduan dengan daya listrik yang dihasilkan oleh panel surya sebesar 31,569 MWh/tahun. Biaya penukaran untuk sekali penukaran baterai mobil listrik adalah Rp50.000 dengan biaya listrik Rp2.446/kWh. Nilai parameter kelayakan investasi proyek pembangunan PLTS atap pada SPBKLU untuk mobil listrik yang dihasilkan adalah net present value (NPV) sebesar Rp11.044.951.738, internal rate of return (IRR) sebesar 23,659%, profitability index (PI) sebesar 2,28, dan payback period (PBP) selama 4 tahun 6 bulan. Dengan derajat keyakinan nilai parameter investasi lebih dari 50% pada simulasi Monte Carlo, menandakan bahwa proyek investasi layak untuk dijalankan. Komponen yang paling berpengaruh terhadap nilai parameter investasi NPV, IRR, PBP, dan PI adalah biaya dan banyak listrik yang digunakan, juga biaya dan banyaknya pertukaran baterai mobil listrik.

Global CO2 emissions caused by burning fossil fuels and the transportation sector have continuously increased. In Indonesia, the transportation sector accounts for 27% of the total greenhouse gas emissions. Therefore, the government has hastened the utilization of electric vehicles to achieve net-zero emissions by 2050. However, charging an electric car is a time-consuming process. Thus, public electric vehicle battery swapping stations (SPBKLU) are needed to combat that issue because they can swap the electric vehicle battery for approximately five minutes. Furthermore, renewable energy for electricity generation is also needed. Because of the high number of solar radiation and irradiance in Indonesia, solar PV system can be used as a source of electricity. In order to implement this technology in Indonesia, investment risk analysis of solar PV systems on the rooftop of a SPBKLU in a rest area of Trans Java Toll Road is required to determine the feasibility of the investment. The batteries for electric cars are Li-ion batteries with a capacity of 58 kWh. Solar PV simulation shows that the location where the SPBKLU will be built is in KM626A rest area in Waduan with energy generated by solar PV of 31,569 MWh/year. Each battery swap cost Rp50.000 and Rp2.446/kWh. The value of investment feasibility parameters are net present value (NPV) of Rp11.044.951.738, internal rate of return (IRR) of 23,659%, profitability index (PI) of 2,28 and payback period (PBP) for 4 years 6 months. With certainty levels over 50% using Monte Carlo Simulation, this indicates that the investment project is feasible. The most influential components of the investment parameter value (NPV, IRR, PBP, and PI) are the cost and amount of electricity used, as well as the cost and number of electric car battery swapping."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kania Putri Aurora
"Permintaan listrik di Indonesia terus tumbuh 4,9% per tahun. Dalam menyukseskan Net-Zero Emission, bauran energi terbarukan di Indonesia ditingkatkan. Energi surya adalah salah satu energi baru dan terbarukan (EBT) yang jumlahnya berlimpah di Indonesia dan dapat dimanfaatkan sebagai sumber penghasil listrik melalui pembangkit listrik tenaga surya (PLTS). Permasalahan utama saat ini adalah dibutuhkan lahan yang luas. Sudah terdapat beberapa solusi, salah satunya adalah implementasi PLTS atap. Salah satu lokasi menarik untuk pemasangan PLTS atap adalah di atas bangunan SPBU. Surabaya merupakan kota yang memiliki potensi besar untuk pemasangan PLTS atap pada SPBU karena memiliki global horizontal irradiation yang cukup tinggi dan jumlah SPBU cukup banyak, yaitu 120 unit SPBU. Penelitian ini membahas tentang analisis risiko investasi PLTS atap pada SPBU di Kota Surabaya, Indonesia. Hasil perhitungan tarif biaya listrik menghasilkan LCOE sekitar 5 cent/kWh untuk setiap SPBU. Hasil perhitungan ekonomi dengan NPV, IRR, PBP, dan PI menunjukkan hasil bahwa pemasangan PLTS atap pada kelima SPBU, yaitu bp, Shell, Pertamina COCO, Pertamina CODO, Pertamina DODO, layak untuk dilaksanakan. Hasil analisis risiko dengan Monte Carlo menunjukkan bahwa derajat keyakinan parameter NPV, IRR, PBP, dan PI lebih dari 50% untuk kelima SPBU sehingga pemasangan PLTS atap layak untuk dilaksanakan. Berdasarkan hasil analisis sensitivitas, penghematan energi listrik dan biaya panel surya yang termasuk dari CAPEX adalah komponen yang paling berpengaruh terhadap nilai IRR dan PBP sedangkan WACC dan penghematan energi listrik adalah komponen yang paling berpengaruh terhadap nilai NPV dan PI.

Electricity demand in Indonesia continues to grow 4.9% per year. In order to achieve net-zero emissions, Indonesia is increasing its renewable energy mix. Solar energy is one of the most abundant new and renewable energies in Indonesia and can be used as a source of electricity through solar power plants (Solar PV Systems). The main problem is solar PV requires a large area of land. There are already several solutions, one of which is the implementation of a rooftop solar PV. One of the interesting locations for installing a rooftop solar PV is on top of a petrol/gas station building. Surabaya is a city that has great potential for installing rooftop solar PV at gas stations because it has quite high global horizontal irradiation and a large number of gas stations, namely 120 gas stations. This study discusses the risk analysis of rooftop solar PV investment at gas stations in the city of Surabaya, Indonesia. The results of the calculation of the electricity cost rate yield an LCOE of around 5 cents/kWh for each gas station. The results of economic calculations with NPV, IRR, PBP, and PI show that the installation of rooftop solar PV at the five gas stations, namely bp, Shell, Pertamina COCO, Pertamina CODO, Pertamina DODO, is feasible. The results of the risk analysis with Monte Carlo show that the degree of confidence for the NPV, IRR, PBP, and PI parameters is more than 50% for the five gas stations so that the installation of a rooftop PLTS is feasible. Based on the results of the sensitivity analysis, electricity savings and solar panel costs included in CAPEX are the components that have the most influence on the IRR and PBP values, while WACC and electricity savings are the components that have the most influence on the NPV and PI values."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Clarissa Stellavania
"Mengikuti perkembangan industri kendaraan listrik di Indonesia, PT Transportasi Jakarta (Transjakarta) telah menyediakan 52 unit bus listrik untuk beroperasi dengan suplai listrik yang disediakan oleh PLN seluruhnya. Sayangnya, 86,95% dari total produksi listrik di Indonesia pada tahun 2020 berasal dari bahan bakar fosil. Untuk mengatasi permasalahan emisi gas rumah kaca dan cadangan energi fosil yang menipis, Kementerian ESDM mencanangkan Kebijakan Energi Nasional (KEN) yang menargetkan pencapaian EBT sebesar 23% pada tahun 2025. Sayangnya, pemenuhan target tersebut masih cukup jauh dengan pemanfaatan energi surya sebagai PLTS di Indonesia masih sangat kecil, yaitu sekitar 0,2 GW dari potensi yang mencapai lebih dari 200 GW. Implementasi yang minim ini disebabkan oleh beberapa faktor seperti kebutuhan lahan dan kebutuhan modal. Salah satu solusi terhadap permasalahan ini adalah pemasangan PLTS pada kendaraan listrik. Hasil analisis teknis didukung oleh hasil perhitungan ekonomi dan analisis risiko dengan metode Monte Carlo menunjukkan bahwa pemasangan PLTS pada bus listrik Transjakarta dengan modul monocrystalline layak untuk dilaksanakan. Kelayakan investasi menghasilkan Net Present Value sebesar Rp54.777.292, Internal Rate of Return sebesar 13,02%, Payback Period sebesar 6,41 tahun, dan Profitability Index sebesar 1,47 untuk menghasilkan daya 12,275 MWh/tahun dengan derajat keyakinan parameter NPV, IRR, PBP, dan PI > 50%.

As Indonesia's electric vehicle market grew, PT Transportasi Jakarta (Transjakarta) provided 52 electric bus units that run solely on PLN power. However, fossil fuels contributed to 86.95% of Indonesia's entire electricity output in 2020. In fact, 2.3% of the world's total greenhouse gas emissions came from Indonesia, where 1.24 gigatons of carbon dioxide were emitted. The Ministry of Energy and Mineral Resources proposed the National Energy Policy (KEN), which aims to reach a 23% share of renewable energy by 2025, in order to address the issues of greenhouse gas emissions and the dwindling amount of fossil fuel reserves. Unfortunately, this objective is still a long way off. One example is the relatively low adoption of solar energy as solar power plant in Indonesia, which currently at about 0.2 GW out of a potential of over 200 GW. There are a few reasons for this minimum implementation, including capital and land requirements. A potential solution to solve this issue is to install rooftop solar power systems on top of electric buses. The results of the technical analysis supported by the results of economic calculations and risk analysis with the Monte Carlo method show that the installation of PLTS on Transjakarta electric buses with monocrystalline modules is feasible to implement. The investment feasibility resulted in a Net Present Value of IDR 54,777,292, an Internal Rate of Return of 13.02%, a Payback Period of 6.41 years, and a Profitability Index of 1.47 to produce 12.275 MWh/year of power with a degree of confidence in the NPV, IRR, PBP, and PI parameters > 50%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Clarissa Stellavania
"Mengikuti perkembangan industri kendaraan listrik di Indonesia, PT Transportasi Jakarta (Transjakarta) telah menyediakan 52 unit bus listrik untuk beroperasi dengan suplai listrik yang disediakan oleh PLN seluruhnya. Sayangnya, 86,95% dari total produksi listrik di Indonesia pada tahun 2020 berasal dari bahan bakar fosil. Untuk mengatasi permasalahan emisi gas rumah kaca dan cadangan energi fosil yang menipis, Kementerian ESDM mencanangkan Kebijakan Energi Nasional (KEN) yang menargetkan pencapaian EBT sebesar 23% pada tahun 2025. Sayangnya, pemenuhan target tersebut masih cukup jauh dengan pemanfaatan energi surya sebagai PLTS di Indonesia masih sangat kecil, yaitu sekitar 0,2 GW dari potensi yang mencapai lebih dari 200 GW. Implementasi yang minim ini disebabkan oleh beberapa faktor seperti kebutuhan lahan dan kebutuhan modal. Salah satu solusi terhadap permasalahan ini adalah pemasangan PLTS pada kendaraan listrik. Hasil analisis teknis didukung oleh hasil perhitungan ekonomi dan analisis risiko dengan metode Monte Carlo menunjukkan bahwa pemasangan PLTS pada bus listrik Transjakarta dengan modul monocrystalline layak untuk dilaksanakan. Kelayakan investasi menghasilkan Net Present Value sebesar Rp54.777.292, Internal Rate of Return sebesar 13,02%, Payback Period sebesar 6,41 tahun, dan Profitability Index sebesar 1,47 untuk menghasilkan daya 12,275 MWh/tahun dengan derajat keyakinan parameter NPV, IRR, PBP, dan PI > 50%.

As Indonesia's electric vehicle market grew, PT Transportasi Jakarta (Transjakarta) provided 52 electric bus units that run solely on PLN power. However, fossil fuels contributed to 86.95% of Indonesia's entire electricity output in 2020. In fact, 2.3% of the world's total greenhouse gas emissions came from Indonesia, where 1.24 gigatons of carbon dioxide were emitted. The Ministry of Energy and Mineral Resources proposed the National Energy Policy (KEN), which aims to reach a 23% share of renewable energy by 2025, in order to address the issues of greenhouse gas emissions and the dwindling amount of fossil fuel reserves. Unfortunately, this objective is still a long way off. One example is the relatively low adoption of solar energy as solar power plant in Indonesia, which currently at about 0.2 GW out of a potential of over 200 GW. There are a few reasons for this minimum implementation, including capital and land requirements. A potential solution to solve this issue is to install rooftop solar power systems on top of electric buses. The results of the technical analysis supported by the results of economic calculations and risk analysis with the Monte Carlo method show that the installation of PLTS on Transjakarta electric buses with monocrystalline modules is feasible to implement. The investment feasibility resulted in a Net Present Value of IDR 54,777,292, an Internal Rate of Return of 13.02%, a Payback Period of 6.41 years, and a Profitability Index of 1.47 to produce 12.275 MWh/year of power with a degree of confidence in the NPV, IRR, PBP, and PI parameters > 50%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marini Altyra Fakhri
"Indonesia dikenal dengan negara yang berada pada garis khatulistiwa yang memiliki potensi sinar matahari yang besar sehingga bisa di manfaatkan sebagai salah satu sumber energi baru terbarukan di Indonesia, yaitu PLTS Pembangkit Listrik Tenaga Surya. Guna meningkatkan perkembangan energi baru dan terbarukan, maka diperlukan pihak swasta untuk dapat menjalin kerjsama dan bersedia menanamkan modalnya atau investasi dalam pengembangan energi baru dan terbarukan. Penelitian ini secara umum secara analisis keekonomian menggunakan metode NPV, IRR, Payback Periode, dan WACC terhadap tiga skenario yang berbeda, skenario pertama sesuai dengan harga yang sesuai power purchase agreement PPA pada tahun 2014, skenario kedua melakukan financing scheme dengan diberikannya isentif terhadap perubahan harga beli listrik oleh pemerintah pada tahun 2017, dan skenario ketiga melakukan penyesuain terhadap teknologi solar panel terhadap fluktuatif itensitas radiasi matahari.
Berdasarkan hasil perhitungan keekonomian diperoleh untuk skenario pertama didaptakan IRR sebesar 14,47 dan NPV sejumlah 2.821.177 dengan masa pengembalian selama 6,37 tahun, skenario kedua IRR sebesar 12,27 dan NPV sejumlah 1.304.373 dengan masa pengembalian selama 7,65 tahun, dan skema ketiga dengan IRR sebesar 14,89 dan NPV sejumlah 3.056.457 dengan masa pengembalian selama 6,23 tahun. Untuk Analisis risiko menggunakan metode analisis sensitivitas dan teridentifikasi risiko yang berpotensi dapat menggangu parameter resiko investasi IRR, NPV, dan Payback Periode adalah political risk dan natural and climate risk.

Indonesia is known as a country that is on the equator which has great sunlight potential so that it can be utilized as one of renewable energy source in Indonesia, that is Solar Power Plant. This study is generally analyzed economically using the NPV, IRR, Payback Period, and WACC methods against three different scenarios, the first scenario corresponds to the appropriate power purchase agreement PPA price in 2014, the second scenario financing scheme with the incentive Changes in electricity purchase price by the government in 2017, and the third scenario is adjusting the solar panel technology to fluctuating solar radiation itensity.
Based on the economic calculations obtain for the first scenario is obtain IRR of 14.47 and NPV of 2,821,177 with a payback period of 6.37 years, the second scenario is obtain IRR of 12.27 and NPV of 1,304,373 with a payback period of 7.65 years and the third scenario is obtain IRR of 14.89 and NPV of 3,056,457 with a payback period of 6.23 years.For risk analysis using sensitivity analysis methods and identified risks that could potentially disrupt investment risk parameters IRR, NPV, and Payback Period are political risk and natural and climate risk."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66805
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nayla Yaumisita
"Kebutuhan listrik di Indonesia masih menjadi isu terkini karena akses yang masih belum menyeluruh ke beberapa daerah. Sumber energi fosil masih dominan digunakan sebagai bahan bakar utama dalam pembangkitan listrik. Dengan begitu penggunaan panel surya (PV) dapat menjadi solusi. Menurut Kementerian ESDM, Indonesia memiliki potensi pemanfaatan energi surya yang tinggi dengan potensi energi mencapai 207,8 GW. Adanya teknologi baru seperti panel surya bifacial (BPV) dapat meningkatkan efisiensi pembangkitan. Selain itu pemanfaatan atap gedung serta badan air seperti danau, sungai, waduk, dll dapat dijadikan salah satu solusi pemanfaatan lahan mengingat kian banyaknya permintaan lahan. Studi ini bertujuan untuk mengetahui bagaimana perbandingan performa antara sistem PLTS Terapung berbasis modul bifacial dan sistem PLTS Atap berbasis modul monofacial, pengaruh penggunaan modul bifacial dan modul monofacial, serta mengetahui konfigurasi paling optimal dari pemasangan PLTS Terapung atau Atap khususnya di daerah tropis. Berdasarkan hasil pengukuran dan perhitungan, ditunjukkan bahwa performa modul bifacial memiliki nilai lebih tinggi dibandingkan modul monofacial ditunjukkan dengan nilai PR sebesar 68,59%. Nilai PR PLTS Atap memiliki nilai lebih tinggi dibandingkan nilai PR keseluruhan PLTS Terapung dengan nilai sebesar 76,48%. Hasil simulasi PVsyst menunjukkan bahwa konfigurasi PLTS Atap dengan modul bifacial memiliki performa terbaik dengan produksi energi tahunan sebesar 87100 kWh/tahun dan nilai PR 95,1%. Sistem tersebut juga memiliki nilai LCOE terendah sebesar Rp 1079,462/kWh dan payback rate tercepat selama 10,3 tahun.

The need for electricity in Indonesia is still an ongoing issue since its access is still limited in several regions. Fossil energy sources are still dominantly used as the main fuel in electricity generation. The use of solar panels (PV) can be the solution. According to the Ministry of Energy and Mineral Resources, Indonesia has a very high potential for utilizing solar energy, reaching 207.8 GW. The existence of new technologies such as bifacial solar panels (BPV) can increase generation efficiency. In addition, the utilization of rooftops on buildings and water bodies such as lakes, rivers, reservoirs, etc. can be used as a solution for land use, considering the increasing demand for land. This study aims to find out how the performance compares between bifacial-based floating PV system and monofacial-based rooftop PV system, the effect of using bifacial modules and monofacial modules, and the most optimal configuration for floating PV or rooftop PV installations, especially in the tropical region. Based on the results of measurements and calculations, it is shown that the performance of the bifacial module has a higher value than the monofacial module ones, with a PR value of 68.59%. The PR factor of rooftop PV has a higher value than the overall PR factor of floating PV, with a value of 76,48%. The PVsyst simulation results show that the rooftop PV configuration with bifacial module has the best performance, with a yearly energy production of 87100 kWh/yr and a PR factor of 95,1%. The system also has the lowest LCOE value of IDR 1079,462/kWh and the fastest payback rate of 10,3 years."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Iqbal Ramli
"Sebagai pasar yang berkembang pesat, PV memiliki potensi untuk memberikan nilai tambah dalam rantai pasokan jika dimanfaatkan sepenuhnya. Penelitian ini membahas tentang smiling curves untuk mengukur dan menunjukkan potensi untuk menghasilkan nilai tambah bervariasi secara signifikan di seluruh rantai nilai Solar PV. Menggunakan analisis Tabel Input-Output dari OECD, ditunjukkan bahwa ketika investasi dalam PLTS sebesar 4,68 GWp sesuai rencana bisnis PLN dalam RUPTL 2021-2030, pada skenario Business as Usual sektor hulu memberikan nilai tambah yang sangat kecil. Hal ini menunjukkan ketergantungan sektor manufaktur Modul PV pada input impor. Penelitian ini juga melihat kondisi nilai tambah yang dihasilkan apabila keseluruhan fasilitas produksi PV Modul dibuat di Indonesia, didapatkan selisih sebesar 231.29 Juta USD. Untuk masing-masing skenario, didapatkan nilai tambah pada tahap pra-produksi dalam hal ini riset dan pengembangan, hampir sama sekali tidak memberikan nilai tambah yang signifikan. Terakhir penelitian ini juga menghitung berapa banyak jumlah tenaga kerja yang diserap dari kedua skenario tersebut, berapa banyak energi yang di produksi dan emisi CO2 yang direduksi, serta rekomendasi dan strategi dalam rangka meningkatkan nilai tambah di sepanjang rantai pasok Industri Panel Surya.

As a rapidly growing market, PV has the potential to add value to the supply chain if fully utilized. This study examines smiling curves to measure and demonstrate the potential for generating value-added significantly across the Solar PV value chain. Using the Input-Output Table analysis from the OECD, it is shown that when the investment in PLTS is 4.68 GWp according to the PLN business plan in the RUPTL 2021-2030, in the Business as Usual scenario the upstream sector provides very little value-added. This shows the dependence of the PV Module manufacturing sector on imported inputs. We also see the value-added results if the entire PV Module production facility is made in Indonesia, which gets a difference of 231.29 million USD. For each scenario, an increase in value-added at the pre-production stage, in this case research and development, was found to provide almost no significant value-added. Finally, this study also calculates how much labour is absorbed from the two scenarios, how much energy is produced and CO2e emissions reduced, as well as recommendations and strategies in order to increase value-added along the supply chain of the Solar Panel Industry."
Jakarta: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Risky Mirwandhana
"Pembangkit Listrik Tenaga Surya (PLTS) merupakan pembangkit yang memanfaatkan energi matahari untuk membangkitkan tenaga listrik. Energi matahari termasuk energi terbarukan yang ramah lingkungan dibandingkan energi fossil. Pemerintah melalui Peraturan Presiden No. 79 Tahun 2014, membuka peluang bagi pelaku industri, bisnis, komersial, hingga pemerintahan turut berperan dalam penggunaan energi yang ramah lingkungan, salah satunya adalah energi surya. Salah satu industri yang turut menggunakan energi surya adalah PT. Kahatex, yang menggunakan PLTS atap on-grid. Secara umum, PLTS terdiri atas 3 peralatan utama, yang terdiri atas: modul surya, inverter, dan panel distribusi. Energi dari matahari ditangkap oleh modul surya dan mengubah energi tersebut menjadi energi listrik. Proses pembangunan PLTS atap di PT. Kahatex mengikuti tahap-tahap mulai dari pengumpulan data, instalasi PLTS, pengujian, hingga serah terima dengan pengguna barang dan jasa. Dalam pelaksanaannya, faktor keselamatan kesehatan kerja dan lingkungan (K3L) merupakan faktor utama. Sehingga diperlukan analisis terhadap resiko menggunakan metode HIRA. Persiapan pekerjaan diperlukan sebelum memulai eksekusi pembangunan PLTS atap, berupa: penempatan kantor kerja, pemasangan scaffolding, dan peralatan alat angkut barang. Setelah persiapan selesai, maka proses instalasi modul surya, inverter, dan panel distribusi dapat dilakukan. Selama proses instalasi PLTS, para personel wajib mengutamakan prinsip K3L dalam eksekusinya.

Solar power plant is a power plant which utilize solar energy to generate electricity. Solar energy is part of renewable energy which is environment friendly compared to fossil energy. Indonesian Government through Peraturan President No. 79 Tahun 2014, provides opportunity for industry, commercial, business, and also governance sectors to participate in utilization of green energy, such as solar energy. One of the industry sectors that utilizes solar energy is PT. Kahatex which implements rooftop on-grid solar power plant. Generally, there 3 main equipments used in solar power plant, such as: solar module, inverter, and distribution panel. Solar energy is absorbed by solar module and convert it to electrical energy. The process of rooftop solar power plant construction based on following steps: data collections, solar power plant installation, testing, and finally handover to end user. During construction process, environment, health, and safety (EHS) are crucial factors. Analysis of EHS is needed by using HIRA method. Preparation before the construction consists of: placement of work office, scaffolding installation, and lifting equipment preparation. After that, installation of solar module, inverter, and distribution panel are performed. During installation process, all teams must follow safety procedures."
Depok: Fakultas Teknik Universitas Indonesia, 2022
PR-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Ralfi Wibowo Rachmad
"

Algoritma MPPT dengan Teknik Perturb and Observe akan memiliki akurasi yang lebih baik namun metode Constant Voltage akan menawarkan implementasi yang lebih sederhana. Diperlukan perbandingan antara kedua algoritma tersebut dalam variasi kondisi lingkungan sehingga dapat menjadi aspek pertimbangan untuk implementasi metode algoritma MPPT pada panel surya. Pada penelitian ini akan dirancang sistem integrasi panel surya dan synchronous buck converter. Synchronous buck converter akan diuji terlebih dahulu kemampuan penurunan tegangan beserta efisiensi konversi daya dan dibandingkan dengan Asynchronous Buck Converter. Pada sistem integrasi synchronous buck converter akan mengatur karakteristik pembebanan dengan penerapan metode Perturb and Observe dan Constant Voltage untuk pelacakan titik daya maksimum panel surya. Hasil sistem integrasi dengan synchronous buck converter dengan implementasi metode Perturb and Observe dan Constant Voltage akan diberikan nilai iradiasi yang bervariasi untuk melihat karakteristik pelacakan dari kedua metode. Pada penelitian ini, hasil implementasi MPPT pada synchronous buck converter menunjukkan bahwa teknik Perturb and Observe memiliki akurasi yang lebih baik dibandingkan dengan teknik Constant Voltage dengan rata rata daya 3392,79 W dalam beberapa variasi iradiasi dibandingkan dengan rata rata daya teknik Constant Voltage 3060,75 W.


MPPT algorithm with Perturb and Observe technique will have a better accuracy than Constant Voltage, but because of its indirect tracking, Constant Voltage will have a simpler implementation. More comparison between the two is needed in various operating conditions for further consideration in implementing MPPT algorithms on solar panel. In this research, the integration of solar panel and synchronous buck converter will be designed. Firstly, the synchronous buck performance will be analyzed compared to the conventional asynchronous buck. In the integrated solar panel system, synchronous buck converter will be used to control solar panel load characteristics with the implementation of Perturb and Observe and Constant Voltage method. The implementation of the two methods will be analyzed under various irradiance to observe the tracking characteristics of the two methods. Results shows that Perturb and Observe technique is more efficient in tracking the Maximum Power Point than Constant Voltage technique with 3392.79 W average solar panel power output in varying irradiation compared to 3060.75 W average solar panel power output of the Constant Voltage technique."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Deborah Sotya Larasati
"Instalasi solar panel terapung memberikan dampak berupa terhalangnya cahaya matahari, yang merupakan sumber energi fitoplankton untuk melakukan fotosintesis, masuk ke badan air. Perubahan dalam aktivitas fitoplankton akan memengaruhi produktivitas primer serta konsentrasi sejumlah nutrien yang terlibat. Penelitian ini bertujuan untuk menganalisis pengaruh penutupan permukaan badan air berupa solar panel terapung terhadap perubahan produktivitas primer dan konsentrasi nutrien yaitu nitrat, amonia, dan fosfat perairan, serta hubungan antara produktivitas primer dan konsentrasi tiap nutrien. Penelitian dilakukan dengan objek studi Danau Mahoni UI dengan jumlah pengambilan sampel sebanyak 8 kali dalam kurun waktu delapan minggu. Analisis data dilakukan dengan menggunakan uji parametrik independent t test dan uji korelasi Pearson's. Penutupan permukaan danau oleh solar panel terapung memberi pengaruh yang signifikan secara statistic terhadap penurunan produktivitas primer danau dengan rata-rata penurunan produktivitas primer danau -79,79%, dan pengaruh yang tidak signifikan secara statistik terhadap peningkatan konsentrasi nutrien dengan rata-rata peningkatan konsentrasi nitrat 3,45%, amonia 18,96%, dan fosfat 4,87%. Korelasi produktivitas primer dengan konsentrasi nitrat dan amonia danau lebih kuat pada keadaan tanpa penutupan permukaan danau, sementara korelasi produktivitas primer dengan konsentrasi fosfat danau lebih kuat pada keadaan dengan penutupan permukaan danau.

Floating solar panel installation has an impact of blocking the sunlight, which serves as the source of energy for phytoplankton photosynthesis, to reach the water bodies. Changes in phytoplankton activities will affect water primary productivity and the concentration of involved nutrients. This study aims to analyze the effect of covering water bodies by floating solar panel on water primary productivity and nutrients (nitrate, ammonia, phosphate) concentration changes, and the relationship between water primary productivity and each nutrient concentration. The study is carried out with Lake Mahoni UI as the study object, with 8 times sampling in the span of eight weeks. Data analysis uses independent t test and Pearson's correlation. The covering of lake by floating solar panel has statistically significant effect on the decrease of lake primary productivity with average decrease of -79,79%, and statistically insignificant effect on the increase of lake nutrient concentration with average increase of 3,45% on nitrate concentration, 18,96% on ammonia concentration, and 4,87% on phosphate concentration. The correlation between lake primary productivity and nitrate and ammonia concentration is stronger without the covering of water bodies, while the correlation between lake primary productivity and phosphate concentration is stronger with the covering of water bodies."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>