Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 88501 dokumen yang sesuai dengan query
cover
Dewa Ferrouzi Diaz Zhah Pahlevi
"Pasar modal berkembang pesat di Indonesia dengan peningkatan 79 jumlah emiten saham baru dan peningkatan 17,9% jumlah investor baru. Perkembangan ini dipacu oleh Otoritas Jasa Keuangan yang meyakinkan bahwa setiap perusahaan terbuka selalu diawasi dengan cara mewajibkan perusahaan terbuka untuk menyampaikan laporan keuangan secara berkala. Akan tetapi pada kenyataannya, tindakan kecurangan laporan keuangan bukan menjadi hal yang langka. Association of Certified Fraud Examiner melaporkan bahwa 9,2% kecurangan di Indonesia merupakan kecurangan laporan keuangan dengan total kerugian hingga Rp242.260.000.000. Sementara, proses audit konvensional serta laporan yang menjadi 72% dari media deteksi saat ini membutuhkan 12 bulan untuk mendeteksi kasus kecurangan. Penelitian ini akan menggunakan metode ensemble learning berbasis optimasi metaheuristik untuk mengembangkan model deteksi kecurangan pada laporan keuangan. Beberapa metode klasifikasi digunakan untuk mengembangkan model, yaitu Random Forest dan XGBoost. Optimasi metaheuristik dengan metode Genetic Algorithm kemudian digunakan sebagai dasar dari proses hyperparameter tuning pada model tersebut. Hasil deteksi terbaik pada penelitian ini adalah model XGBoost dengan parameter teroptimasi yang menghasilkan akurasi sebesar 98,04% dan sensitivitas 99.02%.

The capital market is growing rapidly in Indonesia, gaining 79 new stock issuers and a 17.9% increase in the number of new investors in 2023. This development is driven by Otoritas Jasa Keuangan, which ensures that every public company is always monitored by requiring them to submit financial statements regularly. However, financial statement fraud is not uncommon. The Association of Certified Fraud Examiners reports that 9.2% of fraud cases in Indonesia involve financial statement fraud, with total losses amounting to Rp242,260,000,000. Meanwhile, conventional audit processes and reports, which account for 72% of current detection methods, take 12 months to detect fraud cases. This study will use an ensemble learning method based on metaheuristic optimization to develop a fraud detection model for financial statements. Several classification methods, namely Random Forest and XGBoost, are used to develop the model. Metaheuristic optimization using the Genetic Algorithm method is then applied as the basis for hyperparameter tuning in this model. The best detection result in this study is achieved by the XGBoost model with optimized parameters, yielding an accuracy of 98.04% and a sensitivity of 99.02%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syafiq Hidayattullah
"Laporan keuangan merupakan dokumen sangat penting yang menjadi basis dari keputusan berbagai stakeholder pada pasar modal. Ironisnya, fenomena fraud (kecurangan) pada laporan keuangan perusahaan bukan merupakan praktik yang tidak pernah terjadi. Data yang dilansir ACFE Chapter Indonesia pada tahun 2016 menunjukkan bahwa sekitar 40% dari kecurangan pada laporan keuangan menyebabkan kerugian yang mencapai lebih dari Rp. 10 milyar. Menurut laporanyang dirilis oleh ACFE pada tahun 2014, rata-rata waktu yang dibutuhkan untuk
mendeteksi kecurangan pada laporan keuangan adalah 24 bulan dengan total kerugian yang bisa mencapai US$ 150.000. Penelitian ini akan menggunakan pendekatan machine learning berbasis optimasi meta-heuristic untuk mengembangkan model prediksi fraud pada laporan keuangan. Terdapat beberapa metode klasifikasi yang dapat digunakan yaitu Neural Networks dan Support Vector Machine. Hasil prediksi terbaik pada penelitian ini berupa model Support Vector Machine dengan parameter teroptimasi dengan Genetic Algorithm yang mendapatkan akurasi sebesar 96.15%.

Financial statement is a critical document which form the basis of decisions of various stakeholders in the capital market. Ironically, the phenomenon of fraud (fraud) on the company's financial statements is not a practice that never happened. Data reported by ACFE Chapter Indonesia in 2016 showed that around 40% of the financial statement caused losses that reached more than Rp 10 billion. According to a report released by ACFE in 2014, the average time needed to detect fraud on financial statements is 24 months, with a total loss that could reach US$ 150,000. This study will use several machine learning approaches based on meta-heuristic optimization to develop fraud prediction models in financial statements. Two classification methods were utilized, namely, Back Propagation Neural Networks and Support Vector Machines. The best classifier in this study is a Support Vector Machine, which parameters are optimized with Genetic Algorithm resulting in 96.15% accuracy."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adila Afifah Rizki
"ABSTRAK
Laporan keuangan memiliki peranan yang penting bagi penggunanya dalam mengambil keputusan. Pentingnya fungsi dari laporan keuangan menyebabkan banyak pihak ingin melakukan tindak kecurangan seperti menyajikan dan merekayasa nilai material dari laporan keuangan untuk mendapatkan keuntungan. Kecurangan pada laporan keuangan menimbulkan kerugian yang tidak sedikit, yakni sekitar US$1,000,000. Kegiatan audit perlu dilakukan untuk mencegah kerugian tersebut, tetapi jumlah auditor yang tersedia saat ini terbatas, serta waktu audit tradisional yang dibutuhkan tidaklah sebentar. Pendekatan data mining yakni Support Vector Machine (SVM) serta Artificial Neural Network (ANN) digunakan untuk mendeteksi kecurangan pada laporan keuangan. ANN menghasilkan akurasi tertinggi untuk data tanpa feature selection, sedangkan SVM unggul pada data dengan feature selection

ABSTRACT
Financial statement has an important role for its users in taking decisions. The importance of the functions of the financial report caused many parties want to do acts of cheating like presents and manipulates the material value of the financial statements for profit. Cheating on financial statements result in losses that are not few, approximately US$1,000,000. Audit activities need to be done to prevent such losses, but the number of Auditors currently available is limited, and the time required for traditional audit is quite long. Data mining approaches like Support Vector Machine (SVM) and Artificial Neural Network (ANN) is used to detect fraud on financial statements. ANN produces the highest accuracy for data without feature selection, whereas the SVM excels at data with feature selection"
2016
S63313
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabila Ramadhani
"Corona Virus Disease 2019 (COVID-19) adalah penyakit yang menyerang tubuh manusia melalui virus Severe Acute Respiratory atau SARS-CoV-2. Munculnya wabah COVID-19 menimbulkan setidaknya 16,6 juta penduduk di dunia meninggal dunia serta tidak sedikit dari penderitanya mengidap Community Acquired Pneumonia (CAP). CAP adalah infeksi akut parenkim paru pada orang yang telah mendapatkan infeksi di masyarakat. Menurut World Health Organization (WHO), pneumonia menjadi penyebab utama kematian nomor tiga di negara miskin dan berkembang. Dengan adanya pendeteksian serta diagnosis lebih dini, pengidap CAP akibat terpapar oleh virus COVID-19 ini dapat ditangani lebih cepat sebelum menyebar luas. Oleh karena itu, analisis gambar medis sangat penting dalam upaya pengobatan CAP sedini mungkin. Adanya pengembangan teknologi deep learning dan computer vision dapat membantu dokter dalam melakukan pendeteksian lebih cepat serta akurat. Maka dari itu, penelitian ini mengusulkan model Convolutional Neural Network (CNN) dengan arsitektur ensemble model Xception, InceptionV3, NASNet Large, dan Inception Resnet-V2 dengan menggunakan metode pre-processing Principal Component Analysis (PCA) dalam melakukan pendeteksian COVID-19 tiga kelas pada gambar chest xray. Penggunaan metode PCA pada data pre-processing dapat membantu mengembangkan model yang lebih efisien serta akurat. Para peneliti telah mencoba pemrosesan gambar baik menggunakan gambar rontgen dada dan juga Computerized Tomography (CT scan) khususnya CNN. Penelitian sebelumnya telah membuat model CNN dengan arsitektur ensemble model yang terdiri dari Xception, Inception-V3, NASNet Large, dan Inception Resnet-V2 berbasis ensemble model. Namun, hasil akurasi dalam pendeteksiannya masih belum optimal. Oleh karena itu, penelitian ini mengusulkan penggunaan metode PCA untuk meningkatkan akurasi pendeteksian menjadi 88,95%. Akurasi pendeteksian meningkat sebesar 3,14% dari penelitian sebelumnya.

Corona Virus Disease 2019 (COVID-19) is a disease that attacks the human body through the SARS-CoV-2 virus. The emergence of the COVID-19 outbreak has caused at least 16.6 million people worldwide to die, and many of them suffer from Community Acquired Pneumonia (CAP). CAP is an acute lung parenchyma infection in people who have been infected in the community. According to World Health Organization (WHO), pneumonia is the third leading cause of death in poor and developing countries. With earlier detection and diagnosis, CAP sufferers due to exposure to the COVID-19 virus can be treated more quickly before it spreads widely. Therefore, medical image analysis is crucial in the effort to treat CAP as early as possible. The development of deep learning and computer vision technology can help doctors to perform faster and more accurate detection. Hence, this research proposes a Convolutional Neural Network (CNN) model with ensemble architectures of Xception, InceptionV3, NASNet Large, and Inception Resnet-V2, using Principal Component Analysis (PCA) pre-processing method to perform three-class COVID-19 detection in chest x-ray images. The use of the PCA method in pre-processing data can help develop a more efficient and accurate model. Researchers have tried image processing using both chest X-ray images and also Computerized Tomography (CT scan), especially CNN. Previous research has created a CNN model with an ensemble model architecture consisting of Xception, Inception-V3, NASNet Large, and Inception Resnet-V2 based on the ensemble model. However, the results of the accuracy in the detection are still not optimal. Therefore, this study proposes the use of the PCA method to increase the detection accuracy to 88.95%. Detection accuracy increased by 3.14% from previous studies."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Qusyairi Ridho Saeful Fitni
"Dalam beberapa tahun terakhir, keamanan data pada sistem informasi organisasi telah menjadi perhatian serius. Banyak serangan menjadi kurang terdeteksi oleh firewall dan perangkat lunak antivirus. Untuk meningkatkan keamanan, intrusion detection systems (IDS) digunakan untuk mendeteksi serangan dalam lalu lintas jaringan. Saat ini, teknologi IDS memiliki masalah kinerja mengenai akurasi deteksi, waktu deteksi, pemberitahuan alarm palsu, dan deteksi jenis serangan baru atau belum diketahui. Beberapa studi telah menerapkan pendekatan pembelajaran mesin (machine learning) sebagai solusi, dan mendapat beberapa peningkatan. Penelitian ini menggunakan pendekatan pembelajaran ensemble (ensemble learning) yang dapat mengintegrasikan manfaat dari setiap algoritma pengklasifikasi tunggal. Pada penelitian ini, dibandingkan tujuh pengklasifikasi tunggal untuk mengidentifikasi pengklasifikasi dasar yang digunakan untuk model ensemble learning. Kemudian dataset IDS terbaru dari Canadian Institute for Cybersecurity yaitu CSE-CIC-IDS2018 digunakan untuk mengevaluasi model ensemble learning. Hasil percobaan menujukan bahwa implementasi metode ensemble learning khususnya majority voting dengan tiga algoritma dasar (gradient boosting, decision tree dan logistic regression) dapat meningkatkan nilai akurasi lebih baik dibandingkan implementasi algoritma klasifikasi tunggal, yaitu 0,988. Selanjutnya, implementasi teknik pemilihan fitur spearman-rank order correlation pada dataset CSE-CIC-IDS2018 menghasilkan 23 dari 80 fitur, dan dapat meningkatkan waktu pelatihan model, yaitu menjadi 11 menit 4 detik dibanding sebelumnya 34 menit 2 detik.

In recent years, data security in organizational information systems has become a serious concern. Many attacks are becoming less detectable by firewall and antivirus software. To improve security, intrusion detection systems (IDSs) are used to detect anomalies in network traffic. Currently, IDS technology has performance issues regarding detection accuracy, detection times, false alarm notifications, and unknown attack detection. Several studies have applied machine learning approaches as solutions. This study used an ensemble learning approach that integrates the benefits of each single classifier algorithms. We made comparisons with seven single classifiers to identify the most appropriate basic classifiers for ensemble learning. Then the latest IDS dataset from the Canadian Institute for Cybersecurity, CSE-CIC-IDS2018, was used to evaluate the ensemble learning model. The experimental results show that the implementation of the ensemble learning method, especially majority voting with three basic algorithms (gradient boosting, decision tree and logistic regression) can increase the accuracy rate better than the implementation of a single classification algorithm, which is 0.988. Furthermore, the implementation of the spearman-rank order correlation feature selection technique in the CSE-CIC-IDS2018 dataset produced 23 of the 80 features, and could increase the model training time, which was 11 minutes 4 seconds compared to 34 minutes 2 seconds before."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Faiz Nur Fitrah Insani
"Dalam persaingan e-commerce Indonesia yang sangat kompetitif, PT XYZ merupakan salah satu perusahaan yang bergerak pada e-commerce yang memiliki permasalahan tingginya biaya promosi yang naik sebesar 134% pada bulan agustus tapi tidak memberikan dampak yang besar terhadap jumlah pengguna yang melakukan transaksi. Menjawab permasalahan tersebut identifikasi calon pembeli potensial sangat penting untuk menerapkan strategi pemasaran yang efektif dan mengoptimalkan biaya. Penelitian ini mengatasi tantangan ini dengan mengeksplorasi potensi pembelajaran mesin dalam memprediksi perilaku pengguna dalam melakukan transaksi. Metode klasifikasi yang dipilih adalah ensemble learning, dengan secara spesifik penelitian ini mengusulkan pendekatan yang memanfaatkan algoritma Random Forest, XGBoost, dan LGBM, untuk mengklasifikasikan pengguna berdasarkan kemungkinan mereka melakukan transaksi di dalam platform e-commerce. Temuan dalam penelitian ini menunjukkan bahwa penggabungan beberapa algoritma dapat meningkatkan nilai performa klasifikasi. Kombinasi model XGBoost dan LGBM memiliki nilai presisi tertinggi dibanding kombinasi lainnya, yaitu 89,8%. Kepentingan fitur juga dinilai pada penelitian ini, yang menunjukkan bahwa fitur yang paling berpengaruh dalam prediksi pembeli potensial adalah semakin lama durasi seorang pengguna dalam menghabiskan waktu di dalam platform e-commerce semakin tinggi kemungkinan untuk melakukan pembelian atau transaksi.

In the highly competitive Indonesian e-commerce landscape, PT XYZ is one of the e-commerce companies that faces the problem of high promotion costs, which increased by 134% in August but did not have a significant impact on the number of users who made transactions. To address this problem, the identification of potential buyers is essential for implementing effective marketing strategies and optimizing costs. This study addresses this challenge by exploring the potential of machine learning in predicting user behavior in making transactions. The classification method chosen was ensemble learning, and specifically this study proposes an approach that utilizes the Random Forest, XGBoost, and LGBM algorithms to classify users based on their likelihood of making a transaction within the e-commerce platform. The findings of this study show that combining multiple algorithms can improve the classification performance value. The combination of the XGBoost and LGBM models has the highest precision value compared to other combinations, at 89.8%. Feature importance was also evaluated in this study, which showed that the most influential feature in the prediction of potential buyers is the longer the duration of a user's time spent within the e-commerce platform, the higher the likelihood of making a purchase or transaction."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Jauzak Hussaini Windiatmaja
"Sumber informasi di jejaring berita daring adalah instrumen yang memungkinkan individu membaca berita, menerbitkan berita, dan berkomunikasi. Hal ini sudah menjadi tren dalam masyarakat yang sangat mobile. Oleh karena itu, proses verifikasi fakta suatu pemberitaan menjadi sangat penting. Dengan pertimbangan tersebut, sebuah tools berbasis web service untuk verifikasi fakta menggunakan metode deep learning dengan teknik ensemble dibangun. Penggunaan teknik ensemble pada model deep learning adalah proses beberapa model pembelajaran mesin digabungkan secara strategis untuk menyelesaikan masalah menggunakan lebih dari satu model. Untuk melatih model, dibangun sebuah dataset. Dataset berisi pasangan klaim dan label. Klaim dibangun dengan data crawling di kanal berita berbahasa Indonesia. Tiga model deep learning dibangun dan dilatih menggunakan dataset yang dibuat, dengan arsitektur jaringan dan hyperparameter yang berbeda. Setelah model dilatih menggunakan dataset, ketiga model diagregasikan untuk membentuk sebuah model baru. Untuk memastikan bahwa model agregat berfungsi lebih baik daripada model tunggal, performa model deep learning ensemble dibandingkan dengan model deep learning dasar. Hasil penelitian menunjukkan bahwa model ensemble memiliki akurasi 85,18% sedangkan model tunggal memiliki akurasi 83,9%, 83,19%, dan 81,94%. Hasil ini menunjukkan bahwa model ensemble yang dibangun meningkatkan kinerja verifikasi fakta dari tiga model tunggal. Hasil penelitian juga menunjukkan bahwa metode deep learning mengungguli performa metode machine learning lain seperti naive bayes dan random forest. Untuk memvalidasi kinerja tools yang dibangun, response time dari web service diukur. Hasil pengukuran menunjukkan rata-rata response time 6.447,9 milidetik.

Information sources on social networks are instruments that allow individuals to read news, publish news, and communicate. This is a trend in a highly mobile society. Therefore, the process of verifying facts is very important. With these considerations, we built a web service-based tool for fact verification using deep learning methods with ensemble technique. The use of ensemble techniques in deep learning models is a process in which several machine learning models are combined to solve problems. To train the model, we created a dataset. Our dataset of Indonesian news contains pairs of claims along with labels. Claims are built by crawling data on Indonesian news channels. Three deep learning models have been built and trained using the previously created dataset with different network architectures and hyperparameters. After the model is trained, three models are aggregated to form a new model. To ensure that the aggregated model performs better than the single model, the deep learning ensemble model is compared to the single models. The results showed that the ensemble model has an accuracy of 85.18% while the single models have an accuracy of 83.9%, 83.19%, and 81.94% consecutively. These results indicate that the ensemble model built improves the fact-verification performance of the three single models. The results also show that by using the same dataset, deep learning methods outperform other machine learning methods such as naive bayes and random forest. To validate the performance of the tools we created, the response time of the web service is measured. The measurement result shows an average response time of 6447.9 milliseconds."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Watulingas, Benedicto Matthew
"Indonesia, sebagai salah satu negara pengekspor ikan terbesar di dunia, menghadapi tantangan serius dalam sektor perikanan akibat illegal, unreported, unregulated (IUU) fishing. Meskipun telah ada pengawas yang ditugaskan, namun praktik ini masih ditemukan, sehingga perlu teknologi pengawasan di atas kapal. Telah dikembangkan model yang dapat mengklasifikasikan jenis ikan di kapal melalui video CCTV namun masih perlu dilengkapi dengan kemampuan memprediksi berat ikan. Dengan metode ensemble learning yang dipilih karena memiliki kinerja yang lebih baik dibanding model individual, penelitian ini bertujuan untuk membangun model prediksi berat melalui citra dari sistem CCTV. Kemampuan untuk memprediksi berat ikan akan memberikan metode bagi pemerintah untuk melakukan pengecekan apakah hasil tangkapan yang dilaporkan sesuai dengan tangkapan yang terjadi di lapangan. Dari pengujian yang dilakukan, algoritma Catboost Regression menunjukkan kinerja terbaik di antara semua model yang diuji. Pada dataset gabungan, dengan rasio data split 90:10, CatBoost mencapai  score 0.986, MAE 9.794, MSE 293.493, dan RMSE 17.132. Untuk dataset cumi dengan rasio 90:10, nilai metrik yang diperoleh adalah  0.025, MAE 18.451, MSE 660.629, dan RMSE 25.702. Sementara pada dataset ikan dengan rasio 90:10, CatBoost menunjukkan kinerja sangat baik dengan  0.980, MAE 5.825, MSE 146.713, dan RMSE 10.129. Model yang dipilih dengan kinerja yang paling baik adalah model dengan dataset ikan dengan MAE 5.825, yang berarti nilai error dari rata-rata berat ikan yang ditimbang adalah 1.29%. Hasil ini menunjukkan bahwa Catboost Regression mampu memprediksi berat ikan dengan akurasi yang tinggi dibandingkan model regresi lainnya pada dataset yang digunakan, dengan pemilihan rasio data split yang optimal.

Indonesia, as one of the largest fish-exporting countries in the world, faces serious challenges in its fisheries sector due to illegal, unreported, and unregulated (IUU) fishing. Despite having monitoring officers assigned, these practices are still found, necessitating the use of surveillance technology on vessels. A model has been developed that can classify fish species on ships using CCTV footage, but it still needs to be enhanced with the ability to predict the weight of the fish. Ensemble learning methods, chosen for their superior performance compared to individual models, are being used in this research to build a weight prediction model using images from the CCTV system. The ability to predict fish weight will provide the government with a method to verify whether the reported catches match what is caught at sea. From the tests conducted, the Catboost Regression algorithm demonstrated the best performance among all tested models. On the combined dataset with a 90:10 train-test split ratio, CatBoost achieved an  score of 0.986, MAE of 9.794, MSE of 293.493, and RMSE of 17.132. For the squid dataset with a 90:10 ratio, the metrics obtained were an  of 0.025, MAE of 18.451, MSE of 660.629, and RMSE of 25.702. Meanwhile, for the fish dataset with the same ratio, CatBoost showed excellent performance with an  of 0.980, MAE of 5.825, MSE of 146.713, and RMSE of 10.129. The best-performing model is the one with the fish dataset, achieving an MAE of 5.825, which translates to an error rate of 1.29% in the average weight of the fish weighed. These results indicate that Catboost Regression can predict fish weight with high accuracy compared to other regression models used on the dataset, with optimal data split ratio."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Wirawan Putra
"ABSTRAK
Tujuan penelitian ini adalah mendeteksi kemungkinan perusahaan melakukan fraud laporan keuangan dengan menggunakan rasio-rasio keuangan dan prediksi kebangkrutan. Rasio keuangan dihitung menggunakan 5 rasio keuangan berdasarkan Kanapickiené dan Grundiené (2015). Prediksi kebangkrutan dihitung dengan menggunakan Z score dari Altman (1968). Pengujian hipotesis dengan model regresi logit 62 perusahaan terbuka tahun 2010-2015. Hasil penelitian menunjukkan rasio profitabilitas, rasio aktivitas, dan rasio struktur aset dapat memprediksi secara signifikan kemungkinan terjadinya fraud. Sedangkan prediksi kebangkrutan dengan menggunakan Z score tidak dapat memprediksi probabilitas terjadinya fraud pada laporan keuangan.

ABSTRACT
The objective of this research is to detect corporate financial statement fraud's probability with financial ratios and bankcruptcy prediction. The financial ratios will be measured with five financial ratios based on Kanapickiené dan Grundiené (2015). The bankcruptcy prediction will be measured with Z score from Altman (1968). The 62 public company between 2010-2015 will be tested with logit regression model. The result shows that profitability ratio, activity ratio, and assets composition ratio can predict the probability of fraud significantly. Meanwhile, the bankcruptcy prediction with Z score can not predict the probability of financial statement fraud."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2016
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Diwandaru Rousstia
"Risiko serangan siber berbanding lurus dengan pertumbuhan aplikasi dan jaringan komputer. Intrusion Detection System (IDS) diimplementasikan agar dapat mendeteksi serangan siber dalam lalu lintas jaringan. Akan tetapi terdapat permasalahan pada pendeteksian serangan yang belum diketahui atau jenis serangan baru. Selain itu juga terdapat masalah kinerja tentang waktu deteksi, akurasi deteksi, dan false alarm. Dibutuhkan deteksi anomali dalam lalu lintas jaringan untuk mengurangi permasalahan tersebut dengan pendekatan machine learning. Pengembangan dan pemanfaatan IDS dengan machine learning telah diterapkan dalam beberapa penelitian sebagai solusi untuk meningkatkan kinerja dan evaluasi prediksi deteksi serangan. Memilih pendekatan machine learning yang tepat diperlukan untuk meningkatkan akurasi deteksi serangan siber. Penelitian ini menggunakan metode homogeneous ensemble learning yang mengoptimalkan algoritma tree khususnya gradient boosting tree - LightGBM. Dataset Communications Security Establishment dan Canadian Institute of Cybersecurity 2018 (CSE-CIC-IDS 2018) digunakan untuk mengevaluasi pendekatan yang diusulkan. Metode Polynom-fit SMOTE (Synthetic Minority Oversampling Technique) digunakan untuk menyelesaikan masalah ketidakseimbangan dataset. Penerapan metode spearman’s rank correlation coefficient pada dataset menghasilkan 24 fitur subset dari 80 fitur dataset yang digunakan untuk mengevaluasi model. Model yang diusulkan mencapai akurasi 99%; presisi 99,2%, recall 97,1%; F1-score 98,1%; ROC-AUC 99,1%; dan average-PR 98,1% serta meningkatkan waktu pelatihan model dari 3 menit 25,10 detik menjadi 2 menit 39,68 detik.

The risk of cyberattacks is directly proportional to the growth of applications and computer networks. An Intrusion Detection System (IDS) is implemented to detect cyber attacks in network traffic. However, there are problems detecting unknown attacks or new types of attacks. In addition, there are performance issues regarding detection time, detection accuracy, and false alarms. A machine learning approach takes anomaly detection in network traffic to reduce these problems. The development and utilization of IDS with machine learning have been applied in several studies to improve performance and evaluate attack detection predictions. Choosing the right machine learning approach is necessary to improve the accuracy of cyberattack detection. This research uses a homogeneous ensemble learning method that optimizes tree algorithms, especially gradient boosting tree - LightGBM. The Communications Security Establishment and Canadian Institute of Cybersecurity 2018 (CSE-CIC-IDS 2018) dataset evaluated the proposed approach. The Polynom-fit SMOTE (Synthetic Minority Oversampling Technique) method solved the dataset imbalance problem. The application of spearman's rank correlation coefficient method to the dataset resulted in 24 subset features of the 80 dataset features used to evaluate the model. The proposed model achieves 99% accuracy; precision 99.2%, recall 97.1%; F1-score 98.1%; ROC-AUC 99.1%; and an average-PR of 98.1% and increased the training time of the model from 3 minutes 25.10 seconds to 2 minutes 39.68 seconds."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>