Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 71242 dokumen yang sesuai dengan query
cover
Satrio Aziz Makarim
"Penelitian ini bertujuan untuk merancang sebuah sistem control dari sebuah robot inverted pendulum menggunakan Model Predictive Control. Dalam penelitian akan digunakan sensor sudut dan posisi sebagai data masukkan untuk komputasi nilai keluaran yang optimal yang perlu diberikan kepada servo dan motor. Komputasi akan dilakukan di komputer yang dihubungkan dengan robot menggunakan protokol komunikasi UART. Program pada komputer juga akan menampilkan kondisi robot. Model Dinamika yang digunakan akan disimulasikan terlebih dahulu sebelum digunakan. Robot dapat mengirimkan data dari sensor dan menjalankan keluaran optimal yang sudah dikomputasi.

This research is aimed to design a control system from inverted pendulum robot using Model Predictive Control. This research will be using angular and position sensor as input for computing the optimal output for the motor and servo. The computation will be done by a computer that is connected with the robot using UART Communication Protocol. The program that is runned by the computer will also display the robot condition. Dynamics model that will be used will be simulated first before real application. The inverted pendulum robot is able to send data from sensor to the computer and run the optimal output that has been computed."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Stefanus Manuel
"Robot Inverted Pendulum merupakan penelitian robot klasik yang menjadi banyak perhatian. Inverted Pendulum atau pendulum terbalik bekerja menggunakan prinsip kesetimbangan. Robot diasumsikan sebagai pendulum yang harus bisa melawan gaya gravitasi sehingga tetap stabil tanpa terjatuh. Banyak teori kontrol yang sudah dikembangkan dalam mengontrol robot ini, salah satunya yaitu Model Predictive Control. Model Predictive Control dapat memprediksi perilaku sistem ke depannya sehingga dapat mengantisipasi robot terjatuh. Oleh karena itu, penelitian ini bertujuan untuk merealisasikan robot inverted pendulum menggunakan Model Predictive Control. Robot dirancang dengan ukuran tinggi sekitar 50 cm dan lebar sekitar 30 cm. Robot memiliki lengan untuk membawa benda dengan luas penampang berukuran 8 x 8 cm dan massa 1 kg. Robot memiliki sudut kemiringan maksimum 30o. Robot ini dapat menahan beban 1 kg dengan safety factor minimum 3. Robot ini dikontrol dengan mikrokontroler ESP32. Sensor sudut MPU6050 dan sensor posisi Encoder 600PPR digunakan sebagai input untuk motor BLDC JGB37-3650 dan motor Dsservo DS 3225 yang dikendalikan.

The Inverted Pendulum Robot is a classic topic of robotic research that has garnered significant attention. The inverted pendulum operates on the principle of equilibrium. The robot is conceptualized as a pendulum that must counteract gravitational forces to remain stable without falling. Numerous control theories have been developed to manage this robot, one of which is Model Predictive Control (MPC). MPC predicts the future behavior of the system, enabling it to prevent the robot from falling. Thus, this research aims to implement an inverted pendulum robot using Model Predictive Control. The robot is designed with a height of approximately 50 cm and a width of about 30 cm. It features an arm capable of carrying objects with a cross-sectional area of 8 x 8 cm and a mass of 1 kg. The robot can maintain a maximum tilt angle of 30 degrees. It is designed to support a load of 1 kg with a minimum safety factor of 3. The robot is controlled using an ESP32 microcontroller. The MPU6050 angle sensor and the 600PPR Encoder position sensor are employed as inputs for the JGB37-3650 BLDC motor and the Dsservo DS 3225 motor."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Camacho, Eduardo F.
"Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors"
London: Springer, 2007
629.8 CAM m
Buku Teks  Universitas Indonesia Library
cover
Hafizh Malik H.T., author
"Hidrogen merupakan salah satu zat/gas yang sangat banyak kegunaannya, terutama dalam industri kimia. Banyaknya unit pada sebuah pabrik membuat banyak gangguan yang akan terjadi pada suatu proses pabrik, gangguan tersebut akan berdampak kepada keefektifan dan kestabilan operasi pabrik tersebut yang juga berpengaruh kepada lingkungan sekitar. Kompresor dan steam reformer merupakan unit-unit yang penting dalam pabrik biohidrogen dari biomassa. Kompresor berguna untuk mencapai tekanan tinggi pada kondisi operasi selanjutnya sedangkan Steam Reformer merupakan proses utama dari pabrik ini yang berguna untuk menghasilkan gas H2.
Model Predictive Control (MPC) merupakan suatu pengendali yang dapat bekerja dengan basis model yang diharapkan akan menghasilkan kinerja yang lebih baik daripada pengendali lainnya. Pemodelan proses dilakukan dengan menggunakan model empirik sedangkan proses optimasi dilakukan dengan penyetelan terhadap paramter-parameter pengendali MPC seperti waktu sampel (T), prediction horizon (P), dan control horizon (M). Hasil pengendalian tekanan kompresor dan suhu steam reformer adalah pengendali MPC memiliki kinerja yang lebih baik dari pada pengendali PI dengan melakukan reidentifikasi sistem untuk mendapatkan pemodelan yang sesuai.

Hydrogen is one of the substances / gases that used by people, especially in the chemical industry. The number of units in a factory making many distractions that will occur in a process plant, the interference will affect the effectiveness and stability of the plant's operations that also affect the surrounding environment. Compressors and a steam reformer are the important units in biohidrogen from biomass plant. The compressor is useful for achieving high-pressure operating conditions while Steam Reformer next is the main process of this plant are useful to produce H2 gas.
Model Predictive Control (MPC) is a controller that can work with the base model is expected to has better performance than other controllers. Process modeling is done by using the empirical model while the optimization process is done by setting the parameter-MPC controller parameters such as sample time (T), prediction horizon (P), and the control horizon (M). The results of the compressor pressure control and temperature control of steam reformer is the MPC controller has better performance than the PI controller by performing system reidentification to obtain appropriate model.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54815
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rickson Mauricio
"Proses dehidrasi gas merupakan salah satu proses yang umum dijumpai pada industri pengolahan gas. Unit dehidrasi gas ini tentu diharapkan dapat beroperasi pada kondisi produksi yang optimum sehingga dapat menghasilkan produk sales gas yang memberikan keuntungan bagi kedua belah pihak. Namun, adanya kandungan hidrokarbon dan uap air pada sales gas akan menyebabkan pembentukan hidrat yang bersifat korosif pada saluran pipa. Untuk mencegah hal tersebut, gas alam yang berasal dari reservoar perlu dikeringkan terlebih dahulu sebelum dijual sebagai sales gas. Oleh karena itu, dibutuhkan sistem pengendalian proses pada bagian-bagian yang penting pada unit dehidrasi gas agar kestabilan dan keselamatan proses produksi dapat terjaga. Sistem tersebut dirancang untuk menjaga keamanan operasi dan memastikan proses berjalan dengan optimal untuk mendapatkan kualitas produk sales gas yang baik. Selama ini pengendalian hanya dilakukan menggunakan pengendali Proporsional-Integral, akan tetapi belum optimal sehingga perlu digunakan pengendali Multivariabel MPC Model Predictive Control. Penyetelan pengendali menggunakan metode Non-Adaptif DMC dan fine tuning kemudian hasil penyetelan dengan metode yang lebih baik akan dibandingkan dengan pengendali PI. Evaluasi kineja pengendalian dilihat berdasarkan seberapa cepat respon pengendali dalam mengatasi perubahan set point dan menangani adanya gangguan serta berdasarkan nilai ISE Integral Square Error. Sebagai hasilnya, metode fine tuning lebih baik digunakan dengan konstanta penyetelan P Prediction Horizon, M Model Horizon, dan T Sampling Time yang optimum adalah 14, 5, dan 3, dengan nilai ISE pada perubahan set point pada pengendalian tekanan dan temperatur sebesar 55 dan 51, atau perbaikan kinerja pengendalian sebesar 11.29 dan 16.39 dibandingkan dengan kinerja pengendali PI.

Gas dehydration process is one of the most common processes in gas processing industry. To produce sales gas that could benefit both parties, an optimum operation condition have to be obtained. However, the presence of hydrocarbon and water vapor on sales gas will lead to the formation of hydrates that are corrosive to the pipeline. Natural gas originating from the reservoir needs to be drained first before being sold as a sales gas to prevent the formation of hydrates. Therefore, a process controlling system is required in the critical parts of gas dehydration unit in order to maintain the stability and safety of the production process. This system is designed to maintain the security of operations and ensure the process runs optimally to get good quality sales gas. Current control system are mostly using Proportional Integral controller, but MPC Model Predictive Control controller is more preferable to optimize the process control. Adjustment of the controller were done using the DMC Non Adaptive method and fine tuning. The best tunning result from those two methods then will be compared with the PI controller. Evaluation of control performance is based on how fast controller could overcoming set point changes, handling disturbance and ISE Integral Square Error value. As a result, fine tuning methods are better used with P Prediction Horizon , M Model Horizon , and T Sampling Time optimization constants of 14, 5, and 3, with ISE values for set point changes in pressure control and temperatures are 55 and 51, or improvement in control performance by 11.29 and 16.39 compared to PI controller performance."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ilham Maulana
"Turbo expander TE dan Model Predictive Control MPC diusulkan untuk digunakan pada unit depropanizer untuk meningkatkan recovery propana dan memperbaiki kinerja pengendalian di unit tersebut. Model yang digunakan dalam MPC adalah model first-order plus dead time FOPDT, yang diuji kinerja pengendaliannya menggunakan pengujian perubahan set point SP dan gangguan, dengan ukuran kinerjanya menggunakan integral of absolute error IAE. Hasilnya menunjukkan bahwa penggunaan TE pada depropanizer mampu meningkatkan recovery propana sebesar 8,44 dari 82,11 menjadi 90,55. Sedangkan untuk struktur pengendalian, digunakan pengendalian tekanan pada TE menggunakan pengendali proportional-integral, PI, pengendalian komposisi propana pada aliran distilat menggunakan MPC dan pengendalian tekanan kolom depropanizer menggunakan MPC.
Setelah melakukan pengujian perubahan SP didapatkan bahwa kinerja pengendali MPC pada pengendali komposisi dan pengendali tekanan depropanizer dapat memperbaiki kinerja pengendali PI sebesar 1,62 dan 93,40. Sedangkan pada pengujian terjadinya gangguan didapatkan bahwa kinerja pengenali MPC pada pengendali komposisi dan pengendali tekanan depropanizer dapat memperbaiki kinerja pengendali PI sebesar 60,54 dan 6-,21 sehingga pengendali MPC lebih baik dibandingkan pengendali PI untuk digunakan pada pengendali komposisi dan pengendali tekanan pada depropanizer yang menggunakan Turbo Expander.

Turbo expander TE and Model Predictive Control MPC is suggested for depropanizer unit to increase propane recovery and improve control performance of the unit. The model used in the MPC is first order plus dead time FOPDT, which tested the performance of the control using set point and disturbance change test with measurement of the performance using integral of absolute error IAE. As a result, use of TE in the depropanizer able to increase recovery of propane of 8,44 from 82.11 to 90.55. As for the control structure, pressure control is use on the TE using proportional integral control, composition control in the distillate flow using MPC, and pressure control in depropanizer column using MPC.
After doing SP changed test, the result showed performance of MPC controller at composition control and pressure control in depropanizer can improve performance compared by PI controller of 1.62 and 93.40. and then for disturbance rejection test, the result showed the MPC controller perfromance can improve PI controller performance at composition control and pressure control in depropanizer is able to improve PI controller performance by 60.54 and 60.21. So that, MPC controller is better than PI controller if it use at composition controller and pressure controller in depropanizer unit with Turbo Expander.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Denis Yanuardi
"Kemampuan produksi minyak di Indonesia semakin menurun sejak tahun 1997 hingga sekarang sedangkan kebutuhan produk minyak/ BBM menunjukkan kecenderungan yang semakin meningkat. Maka produk dimetil eter (DME) dapat digunakan sebagai sumber energi alternatif yang lebih ramah lingkungan dan berkelanjutan. Pada pabrik purifikasi DME ini, umpan dengan komposisi DME, metanol dan air akan dipisahkan sehingga diperoleh DME murni dengan konsentrasi 99%. Dalam proses produksinya, unit-unit proses mengalami banyak gangguan yang berdampak pada menurunnya efisiensi dan kestabilan operasi dan juga berpengaruh pada aspek keselamatan.
Pada penelitian ini, pengendali Model Predictive Control (MPC) memiliki kinerja yang lebih baik dibanding pengendali PI dalam mengatasi gangguan dengan penurunan integral of absolute error (IAE) sebesar 40,08% hingga 96,26% dari pengendali PI. Parameter penyetelan (tuning) pada pengendali MPC yang berupa sampling time (T), prediction horizon (P), dan control horizon (M) dicari menggunakan metode non-adaptive dan fine tuning. Analisis kelaikan ekonomi pemasangan MPC menunjukkan bahwa payback period adalah sebesar 14,5 tahun dan 13,4 tahun serta net present value (NPV) sebesar -11juta rupiah dan -9,3 juta rupiah pada skenario gangguan umpan 5% dan 8% secara berturut-turut, sehingga penggantian pengendali dari PI menjadi MPC pada pabrik purifikasi DME secara ekonomi tidak menguntungkan.

Oil and gas production in Indonesia always decreasing since 1997 until now, and yet the need of oil and fuel product show increasing trajectory. Dimethyl ether (DME) can be used as altenative energy source, it is environmentally safe and sustainable. In this DME purification plant, feed stream containing DME, methanol, and water mixture is separated to obtain DME with 99% purity. In its production process, process unit in DME plant must get disturbances that will affect to the decreasing of process efficiency, operation stability and even safety aspect.
In this research, Model Predictive Control (MPC) has better performance than PI controller in order to overcome disturbances with error (IAE) reduction ranging from 40,08% up to 96,26% than PI controller. Tuning parameters in MPC controller, which are sampling time (T), prediction horizon (P) and control horizon (M), are estimated by both non-adaptive and fine tuning method. Economic feasibility analysis on MPC controller implementation shows that the payback period is 14,5 years and 14,3 years, then NPV -11 million rupiah and -9,3 million rupiah in disturbance scheme of 5% and 8% respectively . Hence, it is not economically feasible to change PI controller into MPC controller on dimethyl ether purification plant.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S65714
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ridwan Fahrudin
"Model Predictive Control (MPC) merupakan salah satu metode pengendali prediktif berbasis model yang populer digunakan pada dunia industri. Beberapa keuntungan yang ditawarkan oleh pengendali ini diantaranya adalah kemampuannya dalam menangani sistem multivariabel dengan cukup mudah dan juga kemampuannya untuk memberikan constraints atau batasan tertentu baik pada sinyal pengendali maupun pada keluaran sistem.
Sistem Heat Exchanger yang akan digunakan pada tesis ini juga merupakan sistem multivariabel berorde tinggi yang mempunyai dua masukan dan dua keluaran. Model sistem yang dipakai berupa model linear diskrit yang didapat dari linearisasi model linearnya. Hasil pengendalian menggunakan MPC constraints akan dibandingkan dengan MPC unconstraints.

Model Predictive Control is one of the predictive control methods that popular for being used in industry. Some advantages offered by this controller are its ability to easily handle multivariable system easier and also its ability to give constraints or certain limitation of controller signal/ on output system.
Heat exchanger system which will be controlled here is also high-order multivariable system with two inputs and two outputs. The system model that use is discrete linear model which is get from linearization of linear model. The result of controller using MPC constraints will be compare with MPC unconstraints.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
T27754
UI - Tesis Open  Universitas Indonesia Library
cover
Antoni Aldila
"Sistem tata udara presisi atau yang lebih dikenal dengan Precision Air Conditioning (PAC) merupakan mesin refrigerasi yang bekerja berdasarkan konsep termodinamika. Sistem tata udara presisi digunakan di ruang pusat data untuk menjaga temperatur dan kelembaban di dalam kabinet agar peralatan IT di dalam kabinet tidak cepat rusak. Temperatur ideal yang harus dicapai di dalam kabinet berkisar antara 20º - 25ºC, sedangkan kelembaban relatif (RH) yang harus dijaga di dalam kabinet berkisar antara 45-55%. Namun untuk mencapai keadaan tersebut, dibutuhkan pengendalian sistem supaya sistem dapat bekerja dengan keluaran seperti yang diinginkan.
Model predictive control merupakan salah satu metode pengendali prediktif yang populer digunakan di dunia indutri. Sistem tata udara presisi yang dikendalikan dalam penelitian ini merupakan sistem multi input single output (MISO) dengan masukan berupa kecepatan putaran kipas kompresor dan kecepatan aliran udara volumetrik, dan keluaran yang dikendalikan adalah suhu keluaran dari kondenser kedua yang menuju kabinet dari sistem tata udara presisi. Diuji tiga model sistem tata udara presisi, model linier, model nonlinier tanpa beban heat sensible peralatan IT, dan model nonlinier dengan beban sensible peralatan IT yang divariasikan dengan pendekatan model linier biasa hasil identifikasi PO-MOESP dan model linier dengan vektor bias hasil identifikasi menggunakan metode kuadrat terkecil.
Hasil pengendalian MPC untuk ketiga plant sistem tata udara presisi menujukkan performa yang baik dalam pengendalian, dilihat dari keluaran sistem yang mengikuti trajektori acuan yang diberikan.

Precision Air Conditioning (PAC) is a refrigerant machine that works based on thermodynamics concept. PAC is in implemented data center in order to stabilize the temperature and the humidity in cabinet in order to prevent IT damage integrated in the cabinet. The desired ideal temperature for the cabinet is from 20oC to 25oC and the desired relative humidity (RH) is from 45-55%. However, to achieve such a state, it takes control of the system so that the system can work with the output as desired.
Model predictive control is a predictive control method which is popularly used in industries world. Precision air conditioning system are controlled in this study is a multi-input single output (MISO) system with input in the form of fan rotation speed of the compressor and the air volumetric flow rate, and the controlled output is the temperature of the output of the second condenser to the cabinet of the precision air conditioning system. Tested three models of precision air conditioning system, linear models, nonlinear models without the burden of sensible heat IT equipment, and nonlinear models with variation of sensible heat IT equipment load with ordinary linear model approach to the identification of PO-MOESP and linear models with bias the results of identification using the method least squares.
MPC control results for the third plant of PAC systems showed good performance in control, viewed from the system output to follow a given reference trajectory.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T36013
UI - Tesis Membership  Universitas Indonesia Library
cover
Lumban Gaol, Abdon Jonas
"Pengendalian level fluida di dalam tabung dan pengendalian aliran fluida antar beberapa tabung merupakan permasalahan dasar dalam industri proses. Masukan aliran fluida ke dalam tabung dan antar tabung haruslah dijaga pada kondisi tertentu sehingga keluaran sistem bisa sesuai dengan yang diinginkan. Berbagai macam pengendali dirancang untuk mengendalikan level fluida ini dengan baik, sehingga error yang dihasilkan pun semakin bisa diminimalisir. Pengendali PID dan MPC merupakan contoh pengendali yang bisa digunakan dalam mengontrol level fluida tersebut.
Di dalam seminar tesis ini akan dirancang pengendali PID (Proportional-Integral-Derivative) dan Model Predictive Control (MPC) untuk mengendalikan level fluida di dua tangki terhubung. Sebelum pengendali PID dan MPC ini dirancang, model non-linier terlebih dahulu dibentuk bedasarkan sistem dua masukan aliran fluida dan dua keluaran sistem berupa ketinggian level fluida pada kedua tabung. Model non-linier sistem multivariabel (Two Input Two Output - TITO) ini kemudian dilinierisasi pada titik kerja yang dipilih untuk memperoleh nilai ruang keadaan A, B, C dan D yang kemudian digunakan untuk membentuk fungsi alih sistem. Selain proses linierisasi, identifikasi dengan metode Kuadrat Terkecil juga dilakukan untuk menghasilkan model linier sistem yang baru sebagai pendekatan dalam mengontrol model non-linier sistem dengan MPC.
Dalam sistem multivariabel coupled-tanks ini masih terdapat interaksi yang kuat antar variabel masukan-keluaran, sehingga fungsi alih dekopler pun dirancang untuk mengurangi atau menghilangkan efek kopling antar variabel masukan-keluaran ini. Pengendali PID dan MPC yang dirancang akan digunakan dalam simulasi untuk mengendalikan model linier/fungsi alih (dengan dekopler) dan model non-linier sistem.
Hasil simulasi pengendali PID dan MPC untuk model linier menunjukkan respon sistem yang baik, dimana waktu settling-nya cenderung relatif kecil. Juga hasil simulasi pengendali PID dan MPC untuk model non-linier, meskipun menunjukkan respon sistem yang cenderung lambat, masih bisa dikatan relatif baik. Setelah membandingkan hasil simulasi sistem dengan pengendali PID dan MPC yang dirancang, maka MPC merupakan pengendali yang lebih baik digunakan untuk mengendalikan sistem multivariabel coupled-tanks ini.

The control of liquid level in tanks and flow between tanks is a basic problem in the process industries. The amount of liquid flowed into tanks and the flow of liquid between tanks has to be maintained at certain conditions in order to meet the desired performances. Many controllers have been designed to control the liquid level in tanks with the intention of reducing errors during and or after control process. PID controller and MPC are two of many controllers that could be designed to control the liquid level in tanks.
In this Master's thesis, PID (Proportional-Integral-Derivative) controller and Model Predictive Control (MPC) are designed to control the liquid levels in two coupled tanks. Before designing PID controller and MPC, the complete nonlinear dynamic model of the plant needed to be introduced for a case involving two input flows of liquid and two output variables, which are the level of the liquid in two tanks.
This multivariable (Two Input Two Output - TITO) nonlinear model would be then linearised based on selected operating point in order to obtain the value of state-space variables A, B, C and D. These values are converted to transfer function form. Besides that, system identification with Least Square method is also used to yield a new state-space model as an approach model to control the nonlinear model with MPC. Due to the high interactions between input-output variables, decoupler needed to be designed with the aim of reducing or eradicate these between input-output variables coupling effects. Afterwards, the designed PID controller and MPC will be used in simulation in controlling the linear model/transfer function (with decoupler) and the nonlinear model of the coupled-tanks multivariable system.
The result of simulation using PID controller and MPC in controlling the linear model of the system shows good performance in terms of rise time and settling time. In Addition, the result of simulation using nonlinear model, despite the slow system's response, shows satisfactory performance in terms of steady-state behavior, in which the output signals eventually meets the desired reference signals. After comparing the results of system simulation both with PID Controller and MPC, the writer may then infers that MPC is the better one to control this coupled-tanks multivariable system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T34991
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>