Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 194710 dokumen yang sesuai dengan query
cover
Muhammad Fachry Arrifqi
"Ester base oil merupakan pelumas alami yang telah diterima secara luas dikarenakan kemampuan pelumasannya yang tinggi, serta keunggulan seperti kinerja suhu rendah, indeks viskositas yang tinggi, pengurangan gesekan yang sangat baik, dan sifat anti aus. Proses sintesis ester base oil melibatkan dua tahapan utama, yaitu oligomerisasi dan esterifikasi. Penelitian ini bertujuan untuk mendapatkan rancangan serta mendesain pengendalian proses pada proses pre- treatment oligomerisasi pabrik ester base oil dengan multivariable model predictive control (MMPC) 4x4. Metode yang digunakan untuk mendapatkan model first order plus dead time (FOPDT) 4x4 adalah dengan cara dilakukan identifikasi sistem menggunakan metode Smith, metode Wade, dan metode Solver. Selanjutnya, ditentukan model FOPDT terbaik dengan membandingkan nilai root- mean-square error (RMSE) terkecil dari setiap metode. Metode tuning yang digunakan untuk MMPC adalah metode Shridhar-Cooper dilanjutkan dengan fine- tuning untuk mendapatkan nilai parameter P (prediction horizon), M (control horizon), dan T (sampling time). Parameter MMPC tersebut akan diuji berdasarkan respon kinerja pengendali terhadap pengujian set point (SP) tracking dan pengujian disturbance rejection. Kinerja MMPC juga akan dibandingkan dengan kinerja pengendali propotional-integral (PI) dengan perhitungan integral absolute error (IAE) dan integral square error (ISE). Hasil identifikasi sistem didapatkan model FOPDT terbaik menggunakan metode Smith yaitu M1V3, M2V1 ; metode Wade yaitu M1V2, M2V3, M2V4, M4V2 ; metode Solver yaitu M1V1, M1V4, M2V2, M3V1, M3V2, M3V3, M3V4, M4V1, M4V3, M4V4. Metode fine-tuning pada penyetelan MMPC menghasilkan parameter P, M, T terbaik masing-masing sebesar 350, 300, dan 2. Pada pengujian SP ttacking, MMPC menunjukkan kinerja terbaik dalam pengendalian suhu sedangkan kinerja pengendali PI lebih baik dalam pengendalian laju alir. Pada pengujian disturbance rejection, kinerja MMPC lebih baik dibandingkan pengendali PI dengan perbaikan kinerja pengendalian sebesar 7,16% - 61,35% untuk nilai IAE dan 13,96% - 88,60% untuk nilai ISE.

Ester base oil is a natural lubricant widely accepted due to its high lubricating ability, as well as advantages such as low-temperature performance, high viscosity index, excellent friction reduction, and anti-wear properties. The synthesis process of ester base oil involves two main stages, namely oligomerization and esterification. This research aims to obtain a design and design process control in the pre-treatment process of oligomerization in the ester base oil plant with multivariable model predictive control (MMPC) 4x4. The method used to obtain the first-order plus dead time (FOPDT) 4x4 model is by identifying the system using Smith's method, Wade's method, and Solver's method. Furthermore, the best FOPDT model is determined by comparing the smallest root-mean-square error (RMSE) values from each method. The tuning method used for MMPC is the Shridhar-Cooper method followed by fine-tuning to obtain the parameter values P (prediction horizon), M (control horizon), and T (sampling time). These MMPC parameters will be tested based on controller performance responses to set point (SP) tracking testing and disturbance rejection testing. The performance of MMPC will also be compared with proportional-integral (PI) controllers using integral absolute error (IAE) and integral square error (ISE) calculations. The results of the system identification obtained the best FOPDT model using Smith's method, namely M1V3, M2V1; Wade's method, namely M1V2, M2V3, M2V4, M4V2; Solver's method, namely M1V1, M1V4, M2V2, M3V1, M3V2, M3V3, M3V4, M4V1, M4V3, M4V4 .The fine-tuning method in MMPC tuning resulted in the best P, M, T parameters of 350, 300, and 2 respectively. In SP tracking testing, MMPC showed the best performance in temperature control while PI controller performance was better in flow rate control. In disturbance rejection testing, MMPC performance was better than PI controllers with performance improvement ranging from 7.16% to 61.35% for IAE values and 13.96% to 88.60% for ISE values."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dio Arif Alwafi
"Pelumas dapat didefinisikan sebagai substansi yang ditempatkan di antara dua permukaan yang bergerak relatif untuk mengurangi gesekan di antara keduanya. Pelumas dapat mengurangi gesekan, tingkat keausan, dan konsumsi energi. Oleh karena itu, pelumas secara luas diterapkan di hampir semua bidang industri, terutama pada bidang transportasi, manufakur, hingga pembangkit listrik. Proses oligomerisasi dalam pembuatan ester minyak dasar dilakukan dengan menggabungkan senyawa asam karboksilat dengan poliol. Melalui reaksi oligomerisasi ini, jumlah cabang samping akan meningkat seiring pertumbuhan panjang rantai utama, yang pada gilirannya dapat meningkatkan viskositas ester minyak dasar. Penelitian ini bertujuan untuk mendapatkan rancangan serta mendesain pengendalian proses pada proses oligomerisasi pabrik ester base oil dengan multivariable model predictive control MMPC 100 (2×2) dan MMPC 101 (2×2) dengan identifikasi proses model first order plus dead time (FOPDT) dengan metode Smith, Wade, dan Solver. Selanjutnya, ditentukan model FOPDT terbaik dengan membandingkan nilai root-mean- square error (RMSE) terkecil dari setiap metode. Metode tuning yang digunakan untuk MMPC adalah metode Shridhar-Cooper dilanjutkan dengan fine tuning untuk mendapatkan nilai parameter P (prediction horizon), M (control horizon), dan T (sampling time) terbaik. Parameter MMPC tersebut akan diuji berdasarkan respon kinerja pengendali terhadap perubahan set point (SP) dan pengujian disturbance rejection dengan perhitungan integral absolute error (IAE) dan integral square error (ISE). Hasil identifikasi sistem didapatkan model FOPDT terbaik seluruhnya menggunakan metode Solver. Metode fine tuning pada penyetelan MMPC menghasilkan parameter T, P, M untuk MMPC 100 (2×2) sebesar 9, 120, dan 20 dan untuk MMPC 101 (2×2) sebesar 1, 230, dan 150. Pada pengujian Set Point (SP) tracking, MMPC merupakan pengendali terbaik untuk seluruh pengendalian dibandingkan pengendali PI. Pada pengujian disturbance rejection terhadap perubahan suhu inlet, pengujian dilakukan dengan membandingkan tiga kondisi, yaitu dengan adanya pengendalian pre treatment (Full Control), tanpa adanya pengendalian pre treatment (Local Control) dan PI. Didapatkan kinerja MMPC Full Control lebih baik dibandingkan kinerja MMPC Local Control dengan pemulihan kinerja pengendali sebesar 7,36%, 0,007%, 0,086%, dan 0,03% untuk nilai IAE dan 0,61%, 0,00%, 0,00%, dan 0,00% untuk nilai ISE.

A lubricant can be defined as a substance placed between two relatively moving surfaces to reduce the friction between them. Lubricants can reduce friction, wear rate, and energy consumption. Therefore, lubricants are widely applied in almost all industrial fields, especially in transportation, manufacturing, and power generation. The oligomerization process in the preparation of base oil esters is carried out by combining carboxylic acid compounds with polyols. Through this oligomerization reaction, the number of side branches will increase as the main chain length grows, which in turn can increase the viscosity of the base oil ester. This study aims to obtain the design and design of process control in the oligomerization process of base oil ester plant with multivariable model predictive control MMPC 100 (2×2) and MMPC 101 (2×2) with first order plus dead time (FOPDT) model process identification by Smith, Wade, and Solver methods. Next, the best FOPDT model is determined by comparing the smallest root-mean-square error (RMSE) value from each method. The tuning method used for MMPC is the Shridhar-Cooper method followed by fine tuning to get the best parameter values of P (prediction horizon), M (control horizon), and T (sampling time). MMPC parameters will be tested based on the controller performance response to set point (SP) changes and disturbance rejection testing with integral absolute error (IAE) and integral square error (ISE) calculations. The results of system identification obtained the best FOPDT model entirely using the Solver method. The fine-tuning method on MMPC tuning produces parameters T, P, M for MMPC 100 (2×2) of 9, 120, and 20 and for MMPC 101 (2×2) of 1, 230, and 150. In the Set Point (SP) tracking test, MMPC is the best controller for all controls compared to PI controllers. In testing disturbance rejection to changes in inlet temperature, testing is done by comparing two conditions, namely with the presence of pre-treatment control (Full Control) and without pre-treatment control (Local Control). MMPC Full Control performance is better than MMPC Local Control performance with controller performance recovery of 7.36%, 0.007%, 0.086%, and 0.03% for IAE values and 0.61%, 0.00%, 0.00%, and 0.00% for ISE values."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Adjisetya
"Hidrogen merupakan salah satu gas yang memiliki banyak kegunaan. Salah satunya pada industri kimia. Pada pabrik biohidrogen, unit kompresor merupakan salah satu unit yang penting dalam pabrik biohidrogen dari biomassa. Kompresor berfungsi untuk mencapai tekanan tinggi pada kondisi operasi selanjutnya. Multivariable model predictive control (MMPC) digunakan untuk mengendalikan proses pada pabrik. Untuk mendapatkan pengendalian yang optimal, perlu dilakukan penyetelan. Penyetelan akan dilakukan pada Matlab-Simulink yang diintegrasikan dengan Aspen Plus Dynamics. Sistem pengendalian akan dibuat pada Simulink dan simulasi proses akan dilakukan pada Aspen Plus Dynamic. Penyetelan ini dilakukan dungeon metode Genetic Algorithm dungeon metode pencarian seleksi turnamen. Setelah itu, hasil penyetelan akan dijalankan juga dengan unisim design agar kinerja pengendalian dapat dibandingkan dengan penelitian sebelumnya. Model first order plus dead time (FOPDT) digunakan sebagai model prediksi MMPC. Pada penelitian ini, model FOPDT yang digunakan di MMPC pada Matlab harus dihasilkan dengan cara satuan tekanan keluaran kompresor terlebih dahulu diubah menjadi satuan persentase karena MMPC pada Matlab akan menginterpretasikan variabel-variabel perhitungan dalam satuan persen. Parameter time sampling (T), prediction horizon (P), dan control horizon (M) terbaik yang diperoleh dari metode penyetelan seleksi turnamen pada simulasi dengan unisim untuk perubahan set-point (SP) yaitu 1 detik, 18, dan 3. Untuk uji gangguan parameter T, P, dan M yang diperoleh dengan penyetelan fine tuning terbaik yaitu 1 detik, 341, dan 121. Pada simulasi Matlab-Simulink-Aspen Plus Dynamics, parameter T, P, dan M yang terbaik yaitu 0,05 detik, 18, dan 2 untuk perubahan SP dan 0,05 detik, 7, dan 1 untuk perubahan gangguan.

Hydrogen is one of the gases that has many uses, including in the chemical industry. In a biohydrogen plant, the compressor unit is one of the important units in the biomass-based biohydrogen plant. The compressor unit works to achieve high pressure for further operational conditions. Multivariable Model Predictive Control (MMPC) is used to control the processes in the plant. To obtain optimal control performance, tuning process is necessary. The tuning process will be conducted in Matlab-Simulink integrated with Aspen Plus Dynamics. The control system will be designed in Simulink, and the process simulation will be executed in Aspen Plus Dynamics. The tuning was done using the Genetic Algorithm with tournament selection search method. Subsequently, the tuning results will also be implemented in Unisim Design to compare the control performance with previous research. The First Order Plus Dead Time (FOPDT) model is applied as the prediction model for MMPC. In this study, the FOPDT model used in MMPC in Matlab must be generated by converting the compressor output pressure unit into a percentage unit due to the MMPC in Matlab will interpret the calculation variables in percent units. For the set-point change, the best time sampling (T), prediction horizon (P), and control horizon (M) parameters that were obtained from the tournament selection tuning method in the simulation with Unisim design are 1 second, 18, and 3. For disturbance testinwere obtainedest parameters are 1 second, 341, and 121 that obtained by fine-tuning method. In the Matlab-Simulink-Aspen Plus Dynamics simulation, the best parameters T, P, and M for set-point changes are 0.05 seconds, 18, and 2, and for disturbance changes are 0.05 seconds, 7, and 1."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hafizh Malik H.T., author
"Hidrogen merupakan salah satu zat/gas yang sangat banyak kegunaannya, terutama dalam industri kimia. Banyaknya unit pada sebuah pabrik membuat banyak gangguan yang akan terjadi pada suatu proses pabrik, gangguan tersebut akan berdampak kepada keefektifan dan kestabilan operasi pabrik tersebut yang juga berpengaruh kepada lingkungan sekitar. Kompresor dan steam reformer merupakan unit-unit yang penting dalam pabrik biohidrogen dari biomassa. Kompresor berguna untuk mencapai tekanan tinggi pada kondisi operasi selanjutnya sedangkan Steam Reformer merupakan proses utama dari pabrik ini yang berguna untuk menghasilkan gas H2.
Model Predictive Control (MPC) merupakan suatu pengendali yang dapat bekerja dengan basis model yang diharapkan akan menghasilkan kinerja yang lebih baik daripada pengendali lainnya. Pemodelan proses dilakukan dengan menggunakan model empirik sedangkan proses optimasi dilakukan dengan penyetelan terhadap paramter-parameter pengendali MPC seperti waktu sampel (T), prediction horizon (P), dan control horizon (M). Hasil pengendalian tekanan kompresor dan suhu steam reformer adalah pengendali MPC memiliki kinerja yang lebih baik dari pada pengendali PI dengan melakukan reidentifikasi sistem untuk mendapatkan pemodelan yang sesuai.

Hydrogen is one of the substances / gases that used by people, especially in the chemical industry. The number of units in a factory making many distractions that will occur in a process plant, the interference will affect the effectiveness and stability of the plant's operations that also affect the surrounding environment. Compressors and a steam reformer are the important units in biohidrogen from biomass plant. The compressor is useful for achieving high-pressure operating conditions while Steam Reformer next is the main process of this plant are useful to produce H2 gas.
Model Predictive Control (MPC) is a controller that can work with the base model is expected to has better performance than other controllers. Process modeling is done by using the empirical model while the optimization process is done by setting the parameter-MPC controller parameters such as sample time (T), prediction horizon (P), and the control horizon (M). The results of the compressor pressure control and temperature control of steam reformer is the MPC controller has better performance than the PI controller by performing system reidentification to obtain appropriate model.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54815
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rickson Mauricio
"Proses dehidrasi gas merupakan salah satu proses yang umum dijumpai pada industri pengolahan gas. Unit dehidrasi gas ini tentu diharapkan dapat beroperasi pada kondisi produksi yang optimum sehingga dapat menghasilkan produk sales gas yang memberikan keuntungan bagi kedua belah pihak. Namun, adanya kandungan hidrokarbon dan uap air pada sales gas akan menyebabkan pembentukan hidrat yang bersifat korosif pada saluran pipa. Untuk mencegah hal tersebut, gas alam yang berasal dari reservoar perlu dikeringkan terlebih dahulu sebelum dijual sebagai sales gas. Oleh karena itu, dibutuhkan sistem pengendalian proses pada bagian-bagian yang penting pada unit dehidrasi gas agar kestabilan dan keselamatan proses produksi dapat terjaga. Sistem tersebut dirancang untuk menjaga keamanan operasi dan memastikan proses berjalan dengan optimal untuk mendapatkan kualitas produk sales gas yang baik. Selama ini pengendalian hanya dilakukan menggunakan pengendali Proporsional-Integral, akan tetapi belum optimal sehingga perlu digunakan pengendali Multivariabel MPC Model Predictive Control. Penyetelan pengendali menggunakan metode Non-Adaptif DMC dan fine tuning kemudian hasil penyetelan dengan metode yang lebih baik akan dibandingkan dengan pengendali PI. Evaluasi kineja pengendalian dilihat berdasarkan seberapa cepat respon pengendali dalam mengatasi perubahan set point dan menangani adanya gangguan serta berdasarkan nilai ISE Integral Square Error. Sebagai hasilnya, metode fine tuning lebih baik digunakan dengan konstanta penyetelan P Prediction Horizon, M Model Horizon, dan T Sampling Time yang optimum adalah 14, 5, dan 3, dengan nilai ISE pada perubahan set point pada pengendalian tekanan dan temperatur sebesar 55 dan 51, atau perbaikan kinerja pengendalian sebesar 11.29 dan 16.39 dibandingkan dengan kinerja pengendali PI.

Gas dehydration process is one of the most common processes in gas processing industry. To produce sales gas that could benefit both parties, an optimum operation condition have to be obtained. However, the presence of hydrocarbon and water vapor on sales gas will lead to the formation of hydrates that are corrosive to the pipeline. Natural gas originating from the reservoir needs to be drained first before being sold as a sales gas to prevent the formation of hydrates. Therefore, a process controlling system is required in the critical parts of gas dehydration unit in order to maintain the stability and safety of the production process. This system is designed to maintain the security of operations and ensure the process runs optimally to get good quality sales gas. Current control system are mostly using Proportional Integral controller, but MPC Model Predictive Control controller is more preferable to optimize the process control. Adjustment of the controller were done using the DMC Non Adaptive method and fine tuning. The best tunning result from those two methods then will be compared with the PI controller. Evaluation of control performance is based on how fast controller could overcoming set point changes, handling disturbance and ISE Integral Square Error value. As a result, fine tuning methods are better used with P Prediction Horizon , M Model Horizon , and T Sampling Time optimization constants of 14, 5, and 3, with ISE values for set point changes in pressure control and temperatures are 55 and 51, or improvement in control performance by 11.29 and 16.39 compared to PI controller performance."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ira Mutiara Dewi
"Model Predictive Control (MPC) merupakan sistem pengendalian yang menggunakan model berdasarkan data hasil pengukuran keluaran (output) saat ini atau masa sebelumnya untuk memprediksi nilai dari variabel proses (input) pada masa yang akan datang. Pada penelitian ini, sistem pengendalian MPC digunakan untuk menangani pengendalian proses variabel jamak dalam unit operasi Continous Stirred Tank Reactor (CSTR) dengan reaksi pembuatan propylene glycol. Model dinamik sesuai dengan kondisi operasi yang dapat mewakili interaksi antara variabel jamak dibuat untuk diterapkan pada sistem pengendali. Sistem pengendalian proses disimulasikan dengan menggunakan perangkat lunak Unisim R390.1. Simulasi pengendalian proses dilakukan untuk menghasilkan performa pengendalian yang optimum dan untuk mengendalikan variable jamak yang saling berinteraksi dalam sistem pada CSTR. Optimasi pada sistem pengendalian dilakukan dengan cara tuning terhadap parameter-parameter MPC seperti model horizon (N), waktu sampel (T), prediction horizon (P), dan control horizon (M).
Hasil dari simulasi menunjukkan Model F sebagai model dinamik terbaik pada pengendali MPC multivariable mampu menangani jangkauan perubahan setpoint dalam rentang perubahan yang kecil dari 0,33 ke 0,331 dengan IAE sebesar 0,10602. Secara keseluruhan, pengendali MPC belum dapat mengendalikan sistem CSTR secara optimum berdasarkan nilai IAE, namun pengendali MPC lebih mampu menjaga kestabilan sistem dibandingkan dengan pengendali PI.
Model Predictive Control (MPC) are control system which use model based on value output variable at present or past to predict value of future process variable. In this research, MPC control system use to handle multivariable process control in unit operation Continous Stirred Tank Reactor (CSTR) with propylene glycol reaction system. Dynamics model based on operating condition which representative interaction between multivariable are made to implement in control system. Process control system simulating in Unisim R390.1 software. The simulation of process control aims to achieve optimum performance of controller and to control interaction between multivariable in CSTR system. Optimasion will be doing in system control with MPC parameters tuning such as model horizon (N), time sampling (T), prediction horizon (P), and control horizon (M).
The Results show that Model F as the best model in MPC multivariable can control the change of setpoint in short length from 0,33 to 0,331 with 0,10602 IAE. Overall, MPC controller can?t controlled CSTR system with optimum result based on IEA value, but MPC can make system more stabile than PI controller.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43763
UI - Skripsi Open  Universitas Indonesia Library
cover
Ferdi Fajrian Adicandra
"Optimalisasi pabrik regasifikasi liqufied natural gas LNG penting dilakukan untuk meminimilasi biaya, khususnya biaya operasional. Oleh karena itu penting untuk memilih desain pabrik regasifikasi LNG dan mendapatkan kondisi operasi yang optimum serta mempertahankan kondisi operasi yang optimum tersebut melalui implementasi model predictive control MPC. Kriteria optimalnya adalah minimumnya jumlah energi yang digunakan dan atau integral of square error ISE.
Hasilnya, disain yang optimum adalah menggunakan skema 2 dengan penghematan energi sebesar 40. Sedangkan kondisi operasi yang optimum terjadi jika suhu keluaran vaporizer sebesar 6oC. Untuk mempertahankan kondisi optimum tersebut diperlukan MPC dengan setelan parameter P prediction horizon , M control horizon dan T sampling time sebagai berikut: pengendali tekanan tangki penyimpanan: 90, 2, 1; tekanan produk: 95, 2, 1; suhu vaporizer: 65, 2, 2; dan suhu heater: 35, 6, 5, dengan nilai ISE pada set point tracking masing-masing 0,99, 1792,78, 34,89 dan 7,54, atau peningkatan kinerja pengendalian masing-masing sebesar 4,6 , 63,5 , 3,1 dan 58,2 dibandingkan kinerja pengendali PI.
Penghematan energi yang dapat dilakukan pengendali MPC saat terjadi gangguan pada kenaikan suhu air laut 1oC adalah 0,02 MW dan pengendali MPC juga mengurangi error terhadap kualitas produk sebesar 34,25 dibandingkan dengan menggunakan pengendali PI.

Optimization of liquified natural gas LNG regasification plant is important to minimize costs, especially operational costs. Therefore, it is important to select the LNG regasification plant design and obtain optimum operating conditions while maintaining the optimum operating conditions through the implementation of model predictive control MPC. The optimal criterion is the minimum amount of energy used and or the integral of square error ISE.
As a result, the optimum design is to use scheme 2 with an energy savings of 40 . While the optimum operating conditions occur if the vaporizer output temperature is 6oC. In order to maintain the optimum conditions, MPC is required with parameter setting P prediction horizon, M control horizon and T sampling time as follows tank storage pressure controller 90, 2, 1 product pressure 95, 2, 1 temperature vaporizer 65, 2, 2 and temperature heater 35, 6, 5, with ISE value at set point tracking respectively 0.99, 1792.78, 34.89 and 7.54, or improvement of control performance respectively 4.6, 63.5 , 3.1 and 58.2 compared to PI controller performance.
The energy savings that MPC controllers can make when there is a disturbance in sea temperature rise of 1oC is 0.02 MW and MPC controller also reduces error to product quality by 34.25 compared to the PI controller.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68639
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fachri Akbar
"Pelumas merupakan senyawa yang digunakan untuk mengurangi gaya gesek dan keausan antar komponen yang berkontak satu sama lain. Base oil merupakan komponen penting dalam pelumas sehingga pemilihan base oil dapat menentukan sifat dari pelumas tersebut. Kolom distilasi pada proses separasi base oil ester memiliki potensi bahaya yang cukup tinggi sehingga perlu adanya pengendalian pada unit tersebut. Pada penelitian ini, Multivariable Model Predictive Control (MMPC) digunakan sebagai pengendali tingkat lanjut untuk mengendalikan 4 pasangan manipulated variable (MV) dan controlled variable (CV) pada unit distilasi. Penyetelan pengendali dilakukan dengan pemodelan first order plus derivative time (FOPDT) dengan metode Smith, Wade, Lilja, dan Solver yang dilanjutkan dengan penentuan parameter MMPC. Penentuan parameter MMPC dengan metode fine-tuning menghasilkan prediction horizon (P) sebesar 375, control horizon (M) sebesar 245, dan sampling time (T) sebesar 1. Pengendalian dengan MMPC 4×4 hasil fine-tuning mampu mengurangi nilai Integrated Absolute Error (IAE) sebesar 3,31 – 80,40% dan nilai Integrated Squared Error (ISE) sebesar 2,77 – 81,33% dibandingkan hasil pengendalian PI pada pengujian set point tracking. Selain itu, pengendalian MMPC juga dapat mengurangi nilai IAE sebesar 3,17 – 77,48% dan nilai ISE sebesar 23,83 – 88,44% dibandingkan hasil pengendalian PI pada pengujian disturbance rejection.

Lubricants are compounds used to reduce friction and wear between components in contact with each other. Base oil is an important component in lubricants so that the selection of base oil can determine the nature of the lubricant. The distillation column in the ester base oil separation process has a high potential hazard, so it is necessary to control the unit. In this study, Multivariable Model Predictive Control (MMPC) is used as an advanced controller to control 4 pairs of manipulated variables (MV) and controlled variables (CV) in the distillation unit. Controller tuning is done by first order plus derivative time (FOPDT) modeling with Smith, Wade, Lilja, and Solver methods followed by MMPC parameter determination. The determination of MMPC parameters with the fine-tuning method results in a prediction horizon (P) of 375, a control horizon (M) of 245, and a sampling time (T) of 1. Control with MMPC fine-tuning results can reduce the Integrated Absolute Error (IAE) value by 3.31 – 80,40% and the Integrated Squared Error (ISE) value by 2.77 – 81,33% compared to the PI control results in the set point tracking test. In addition, MMPC  control can also reduce the IAE value by 3.17 – 77,48% and the ISE value by 23.83 – 88,44% compared to the PI control results in the disturbance rejection test."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Camacho, Eduardo F.
"Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors"
London: Springer, 2007
629.8 CAM m
Buku Teks  Universitas Indonesia Library
cover
Hermanto Ang
"Pada sistem kendali konvensional, batasan-batasan seperti amplitudo dan slew rate sinyal kendali tidak diperhitungkan pada proses pengendalian. Hal ini tentu dapat menyebabkan hasil kendali menjadi kurang baik, terutama jika terjadi pemotongan paksa terhadap sinyal kendali sebelum masuk ke plant. Untuk mengatasi hal tersebut dirancanglah suatu pengendali Model Predictive Control (MPC). Dengan MPC, keluaran proses yang akan datang dapat diprediksi dan batasan-batasan yang ada tidak diabaikan sehingga keluaran sistem menjadi bagus. Selain keluaran sistem menjadi bagus, adanya batasan juga dapat membuat kinerja alat menjadi optimal.
Skripsi ini bertujuan untuk merancang jenis pengendali Model PredictiveControl (MPC) yang akan diterapkan pada sebuah sistem nyata Level/Flow and Temperature Process Rig 38-003 dengan metode Quadratic Programming. Dalam merancang pengendali MPC untuk Level/Flow and Temperature Process Rig 38-003 ini, penulis menggunakan model yang berbentuk ruang keadaan yang didapat dengan menggunakan metode Kuadrat Terkecil berdasarkan pada data masukan dan data variabel keadaan alat. Masukan sistem adalah tegangan untuk mengatur kondisi servo valve dan keluran yang akan dikendalikan adalah temperatur air hasil keluaran Heat Exchanger sebelum masuk ke sistem Radiator Cooler.
Dari uji eksperimen terbukti bahwa metode pengendali MPC dengan constraints memberikan hasil yang lebih baik dibandingkan dengan metode pengendali Ruang Keadaan. Hal tersebut dapat dilihat dari tanggapan sistem hasil pengendalian MPC dengan constraints yang lebih halus dibandingkan dengan tanggapan sistem hasil pengendalian dengan metode pengendali Ruang Keadaan. Perubahan sinyal kendali pengendali MPC dengan constraints juga jauh lebih halus dibandingkan dengan perubahan sinyal kendali pengendali Ruang Keadaan. Kondisi ini akan meningkatkan ketahanan fisik sistem selama uji eksperimen.

In conventional control system, some constraints such as amplitude and control signal?s slew rate are not included in the controlling process. So, the result of the control process is not good enough especially if the control signal is forcibly cut before entering the plant. In order to overcome this problem, a Model Predictive Controller is designed. In this MPC control scheme, the few next steps of process output are going to be predicted and some constraints will be ignored so the system output will become precise. In other hand, the occurrence of constraints will improve system?s performance into an optimum condition.
The final purpose of this thesis is to design a Model Predictive Controller (MPC) using Quadratic Programming method which will be applied on a real time system of Level/Flow and Temperature Process Rig 38-003. In designing MPC controller for Level/Flow and Temperature Process Rig 38-003, the writer uses system?s model on state space form which is obtained by using Least Square method in the basis of input and state variables data of the plant. Input for the plant is voltage which will be used to control the position of servo valve whereas the controlled output is water temperature on the pipe that connects Heat Exchanger's output line and Radiator Cooler's input line.
Experiments conducted prove that MPC with constraints controlling scheme will give a better results than State Controller controlling scheme. Generally, it can be seen that system response to MPC controller is much smoother than system response to State Controller. MPC controller also has smoother control signal variance compared to State Controller control signal variance. This condition will actually raise the system's physical reliability during the experiment.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40479
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>