Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 48835 dokumen yang sesuai dengan query
cover
Rusyda Fajarani
"Kerusakan tulang adalah salah satu penyebab utama kecacatan manusia yang secara keseluruhan menyebabkan penurunan kualitas hidup. Teknologi rekayasa jaringan telah dikembangkan untuk solusi kerusakan tulang dengan menerapkan perancah berbasis biomaterial. Berbagai material polimer alami dan sintesis dapat digunakan sebagai material perancah tulang untuk membantu adhesi dan proliferasi sel. Material konduktif berbasis karbon juga dapat dikombinasikan dalam perancah tulang dan telah diteliti dapat meningkatkan kekuatan mekanis perancah serta membantu proses pertumbuhan sel. Pada penelitian ini, dilakukan pengembangan perancah tulang menggunakan material kolagen, hydroxypropyl methylcellulose (HPMC), dan poly(vinyl alcohol) (PVA), dengan penambahan material multiwalled carbon nanotube (MWCNT) dan reduced graphene oxide (rGO). Material kolagen diekstraksi secara mandiri menggunakan metode deep eutectic solvent dari sumber ikan king kobia. Kolagen hasil ekstraksi dikarakterisasi secara fisika kimia dengan SEM, FTIR, XRD, dan DSC, dengan hasil karakterisasi menunjukkan kolagen mengandung gugus amida dan memiliki struktur triple helix khas kolagen. Dengan demikian kolagen king kobia hasil ekstraksi cocok untuk dilanjutkan sebagai material perancah. Fabrikasi perancah dilakukan menggunakan freeze-drying, kemudian dikarakterisasi secara fisika kimia dengan mengamati morfologi melalui SEM, identifikasi gugus fungsi melalui FTIR, sifat mekanik tekan, porositas, wettability, swelling, dan laju degradasi. Hasilnya menunjukkan perancah berpori dan struktur saling terhubung dengan kekuatan mekanik sekitar 9 MPa yang telah sesuai dengan tulang trabekular, porositas tinggi mencapai 90%, swelling tinggi mencapai 300% tetapi dapat tetap mempertahankan integritas perancah, laju degradasi yang sesuai dengan kehilangan massa perancah yang kurang dari 20% dalam 28 hari, serta sifat hidrofilik dengan sudut kontak air kurang dari 90o. Hasil ini menunjukkan perancah yang difabrikasi dapat menjadi kandidat yang potensial dalam aplikasi rekayasa jaringan tulang. Selain itu, karakteristik konduktivitas perancah dievaluasi melalui pengukuran elektrokimia menggunakan cyclic voltammetry (CV), menghasilkan perancah konduktif yang ditandai dengan pembentukan puncak redoks.

Bone damage is one of the leading causes of human disability which leads to an overall decrease in quality of life. Tissue engineering technology has been developed for bone damage solutions by applying biomaterial-based scaffolds. Various natural and synthetic polymeric materials can be used as bone scaffold materials to facilitate cell adhesion and proliferation. Carbon-based conductive materials can also be combined in bone scaffolds and have been investigated to increase the mechanical strength of the scaffold and assist the cell growth process. In this research, bone scaffolds were developed using collagen, hydroxypropyl methylcellulose (HPMC), and poly(vinyl alcohol) (PVA), with the addition of multiwalled carbon nanotube (MWCNT) and reduced graphene oxide (rGO) materials. Collagen material was extracted independently using deep eutectic solvent method from king cobia fish source. The extracted collagen was characterized physically and chemically by SEM, FTIR, XRD, and DSC, with the characterization results showing that collagen contains amide groups and has a typical triple helix structure of collagen. Thus, the extracted king cobia collagen is suitable to be continued as a scaffold material. The scaffolds were fabricated using freeze-drying and characterized physically and chemically by observing morphology through SEM, functional group identification through FTIR, compressive mechanical properties, porosity, wettability, swelling, and degradation rate. The results showed porous scaffolds and interconnected structures with mechanical strength of about 9 MPa which is compatible with trabecular bone, high porosity of up to 90%, high swelling of up to 300% but still maintaining the integrity of the scaffold, suitable degradation rate with mass loss of less than 20% in 28 days, and hydrophilic properties with water contact angle of less than 90o. These results suggest the fabricated scaffold could be a potential candidate in bone tissue engineering applications. In addition, the conductivity characteristics of the scaffolds were evaluated through electrochemical measurements using cyclic voltammetry (CV), resulting in conductive scaffolds characterized by the formation of redox peaks."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Maulana Ghiffary
"Osteoartritis merupakan penyakit kronis yang ditandai dengan kemunduran tulang rawan dan menyebabkan kekakuan, nyeri, dan gangguan pergerakan. Strategi rekayasa jaringan tulang menggunakan perancah dapat menjadi alternatif yang menjanjikan untuk regenerasi jaringan tulang yang rusak. Penelitian ini bertujuan untuk fabrikasi dan karakterisasi perancah dengan material chitosan (CS), hyaluronic acid (HA), hydroxyapatite (Hap) dengan kombinasi penambahan graphite (Gr), graphene oxide (GO), dan multiwalled carbon nanotube (MWNCT) untuk aplikasi rekayasa jaringan tulang. Dalam penelitian ini, dilakukan sintesis GO dan fungsionalisasi kimia dari material Gr dan MWNCT. Fabrikasi perancah dilakukan dengan metode freeze drying. Seluruh kelompok perancah dilakukan karakterisasi SEM dan FTIR, uji tekan dan porositas, uji swelling, wettability, dan laju degradasi. Fabrikasi perancah dibagi menjadi empat kelompok yaitu CS/HA/HAp, CS/HA/HAp/GO, CS/HA/HAp/f-Gr, dan CS/HA/HAp/f-MWNCT dengan ukuran diameter 1 cm, tinggi 1,5 cm, dan luas permukaan luas permukaan 4,71-6,28 cm2. Keseluruhan perancah memiliki ukuran pori yang bervariasi dan terdistribusi pada permukaan. Berdasarkan hasil FTIR, perancah mengandung gugus fungsi O-H, C=O, C-O-C, amida I, amida II, dan fosfat (PO43-). Pada uji kekuatan tekan, keseluruhan perancah memiliki CS/HA/HAp memiliki kekuatan tekan dan young modulus yang serupa dengan cancellous bone sebesar 5,76-6,14 MPa dan 3,95-471 MPa. Perancah memiliki laju porositas dengan rentang 13,8- 86,6%. Perancah memiliki kemampuan wettabiliy yang baik dengan rentang persentase 726-1069%. Rasio swelling perancah berada pada rentang 25,2-39,3%. Laju degradasi perancah cukup terkontrol dengan rentang 16,7-35,5%. Berdasarkan seluruh hasil karakterisitik, perancah CS/HA/HAp dengan penambahan GO merupakan kandidat terkuat sebagai perancah ideal pada penelitian ini. Perancah GO mempunyai karakteristik yang berada diantara perancah kontrol dan perancah f-MWNCT/f-Gr.

Osteoarthritis is a chronic disease characterized by the deterioration of cartilage and causes stiffness, pain, and impaired movement. The bone tissue engineering strategy using scaffolds can be a promising alternative for the regeneration of damaged bone tissue. This study aims to fabricate and characterize scaffolds with chitosan (CS), hyaluronic acid (HA), hydroxyapatite (Hap) with a combination of addition of graphite (Gr), graphene oxide (GO), and multiwalled carbon nanotubes (MWNCT) for tissue engineering applications. In this study, GO synthesis and chemical functionalization of Gr and MWNCT materials were carried out. Scaffolding was done by freeze drying method. All groups of scaffolds were characterized by SEM and FTIR, compressive and porosity tests, swelling, wettability, and rate of degradation tests. Scaffolding was divided into four groups, namely CS/HA/HAp, CS/HA/HAp/GO, CS/HA/HAp/f-Gr, and CS/HA/HAp/f-MWNCT with a diameter of 1 cm, height 1, 5 cm, and a surface area of ​​4.71-6.28 cm2. The entire scaffold has varying pore sizes and is distributed over the surface. Based on the results of FTIR, the scaffold contains functional groups O-H, C=O, C-O-C, amide I, amide II, and phosphate (PO43-). In the compressive strength test, all scaffolds having CS/HA/HAp had similar compressive strength and young modulus with cancellous bone of 5.76-6.14 MPa and 3.95-471 MPa. Scaffolds have porosity rates in the range of 13.8-86.6%. Scaffolds have good wetability with a percentage range of 726-1069%. The swelling ratio of the scaffolds was in the range of 25.2-39.3%. The rate of degradation of the scaffold was quite controlled with a range of 16.7-35.5%. Based on all the characteristic results, the CS/HA/HAp scaffold with the addition of GO was the strongest candidate as the ideal scaffold in this study. The GO scaffold has characteristics that are between the control scaffold and the f-MWNCT/f-Gr scaffold."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chen, Daniel X. B.
"This book introduces readers to the theory and practice of extrusion bio-printing of scaffolds for tissue engineering applications. The author emphasizes the fundamentals and practical applications of extrusion bio-printing to scaffold fabrication, in a manner particularly suitable for those who wish to master the subject matter and apply it to real tissue engineering applications. Readers will learn to design, fabricate, and characterize tissue scaffolds to be created by means of extrusion bio-printing technology."
Switzerland: Springer Cham, 2019
e20502997
eBooks  Universitas Indonesia Library
cover
Rendria Arsyan Labde
"Dalam penyembuhan jaringan yang rusak dalam tubuh manusia, sebuah teknik bernama tissue engineering digunakan sebagai “jalur” yang di implantasikan kedalam tubuh sebagai jalur untuk regenerasi. Ini disebut dengan scaffold. Dalam bidang tissue engineering, sebuah metode bernama Organ Printing dikembangkan oleh Dr. Gabor Forgasc. Organ printing adalah sebuah teknik yang dikembangkan untuk mencetak sel baru yang dapat diimplantasikan ke dalam tubuh manusia untuk menggantikan fungsi jaringan organ yang rusak. Tujuan utama dari penelitian ini adalah untuk mencetak organ dengan material hydrogel gelatin. Sebuah system esktrusi dibuat untuk mencetak scaffold berbahan gelatin. Gelatin yang terekstrusi di karakterisasi dengan mengatur kecepatan dan konsentrasinya. Hasil yang optimal didapat pada kecepatan 800 mm/min dan konsentrasi 25%. Setelah itu, parameter yang optimal tersebut digunakan untuk memfabrikasi scaffold 2 dimensi dengan pola heksagonal dan kuadratik.Lebar garis dan ketebalan yang didapatkan adalah 364 μm dan 8.83 μm.

In the healing of damaged tissue in humans, a technique called tissue engineering uses a "track" that is implanted in the body as a pathway for regenerating. This “track” is called scaffold. In the field of tissue engineering, a method called Organ Printing was developed by Dr. Gabor Forgasc. Organ printing is a technique that was developed to print new cells that can be implanted inside human body to replace the function of the damaged organ tissue. The main purpose of this research is to print organs with gelatin hydrogel material. An extrusion system is realized to print gelatin scaffold. The extruded gelatin is characterized by modifying its speed and concentration. An optimal result is achieved at the speed of 800 mm/min and 25% concentration. Moreover, the optimal parameter is used to fabricate a 2-dimensional scaffold with hexagonal and quadratic patterns. The line width and thickness that is achieved are 364 !m and 8.83 !m respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46397
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christoforus Steven Dwinovandi
"Ekstrak flavonoid yang terkandung didalam propolis telah terbukti dapat meningkatkan fungsi jantung pasca myocardial infarction (MI). Penelitian ini bertujuan untuk mempelajari pengaruh propolis terhadap karakteristik swelling, profil rilis, degradasi, dan toksisitas hidrogel polivinil alkohol (PVA)-gelatin untuk aplikasi perancah patch jantung. Perancah hidrogel PVA/gelatin difabrikasi menggunakan metode freeze thaw dengan penambahan propolis sebanyak 3%, 7%, dan 10%. Inkorporasi propolis didalam matriks hidrogel menyebabkan penurunan swelling ratio hidrogel menjadi sekitar 254%, 221% dan 190% saat penambahan propolis sebanyak 3%, 7%, dan 10% secara berurutan. Kemampuan swelling ini mampu menjadikan hidrogel sebagai sistem penghantar obat yang melepas propolis melalui mekanisme sustained released. Dalam durasi 6 jam, perancah hidrogel mampu melepas propolis sebanyak 4,30%, 4,86%, dan 5,68% seiring dengan meningkatnya kandungan propolis 3%, 7%, dan 10%.  Penambahan konsentrasi propolis terbukti memodifikasi laju degradasi hidrogel dimana seiring penambahan propolis, weight loss yang diamati semakin tinggi. Sampel dengan propolis 3%, 7%, dan 10% mengalami pengurangan berat sebanyak 31%, 41%, dan 48% secara berurutan. Degradasi yang terjadi pada hidrogel mengikuti mekanisme surface erosion sehingga memampukan patch terdegradasi dalam lingkungan biologis seiring perbaikan jaringan jantung. Hasil uji sitotoksisitas mendapati nilai viabilitas sel pada kadar propolis 3%, 7% dan 10%, adalah 77%, 94%, dan 80% secara berurutan.  Nilai viabilitas sel menunjukkan bahwa propolis tidak menghambat metabolisme sel HEK-293 dan tidak bersifat toksik. Penelitian ini menunjukkan propolis dapat dienkapsulasi ke dalam matriks hidrogel sebagai sistem penghantaran obat maupun sebagai perancah patch jantung yang berpotensi mempercepat regenerasi jaringan baru.

Flavonoid extracts contained in propolis have been shown to improve heart function after myocardial infarction (MI). This study aims to study the effect of propolis on swelling characteristics, release profile, degradation, and toxicity of hydrogels made from polyvinyl alcohol (PVA)-gelatin for cardiac patch scaffold applications. The PVA/gelatin hydrogel scaffolds were fabricated using the freeze thaw method with the addition of 3%, 7% and 10% propolis. The incorporation of propolis in the hydrogel matrix led to a decrease in the swelling ratio of the hydrogel to around 254%, 221% and 190% when the concentration of propolis was 3%, 7% and 10% respectively. This swelling behavior turns the hydrogel into a drug delivery system that releases propolis through a sustained release mechanism. Within 6 hours, the hydrogel scaffolds were able to release 4.30%, 4.86%, and 5.68% of propolis as the propolis concentration increased by 3%, 7%, and 10%. The addition of propolis concentration has been shown to modify the hydrogel degradation rate as when propolis is added, the observed weight loss is higher. Samples with 3%, 7%, and 10% propolis experienced a weight reduction of 31%, 41%, and 48%, respectively. The degradation that occurs in the hydrogel follows the surface erosion mechanism so that it enables the patch to degrade in a biological environment as cardiac tissue repairs. Cytotoxicity test results found cell viability values at propolis levels of 3%, 7% and 10% were 77%, 94% and 80% respectively. This research shows that propolis can be incorporated into a hydrogel matrix as a drug delivery system or as a cardiac patch scaffold which has the potential to accelerate the regeneration of new tissue."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cornelia Kasper, editor
"This book about the cell-surface interaction, studying cell-surface interactions In vitro : a survey of experimental approaches and techniques, harnessing cell-biomaterial interactions for obsteochondral tissue regeneration, interaction of cells with decellularized biological materials, evaluation of biocompatibility using In vitro methods : interpretation and limitations, artificial scaffolds and mesenchymal stem cells for hard tissues, bioactive glass-based scaffolds for bone tissue engineering, microenvironment design for stem cell fate determination, stem cell differentiation depending on different surfaces, designing the biocompatibility of biohybrids, interaction of cartilage and ceramic matrix, and bioresorption and degradation of biomaterials."
Heidelberg : Springer, 2012
e20406231
eBooks  Universitas Indonesia Library
cover
Bojana Obradovic, redactor
"Cell and tissue engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field.
The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of functional tissue equivalents based on the integrated use of isolated cells, biomaterials, and bioreactors. The book also reviews novel techniques for cell and tissue imaging and characterization, some of which are described in detail such as atomic force microscopy"
Berlin: [, Springer], 2012
e20418158
eBooks  Universitas Indonesia Library
cover
Bronzino, Joseph D.
Boca Raton, FL: CRC Press/Taylor & Francis Group, 2015
610BROM001
Multimedia  Universitas Indonesia Library
cover
Lacroix, Damien
"This book focuses on the mechanobiological principles in tissue engineering with a particular emphasis on the multiscale aspects of the translation of mechanical forces from bioreactors down to the cellular level. The book contributes to a better understanding of the design and use of bioreactors for tissue engineering and the use of mechanical loading to optimize in vitro cell culture conditions. It covers experimental and computational approaches and the combination of both to show the benefits that computational modelling can bring to experimentalists when studying in vitro cell culture within a scaffold. With topics from multidisciplinary fields of the life sciences, medicine, and engineering, this work provides a novel approach to the use of engineering tools for the optimization of biological processes and its application to regenerative medicine. The volume is a valuable resource for researchers and graduate students studying mechanobiology and tissue engineering. For undergraduate students it also provides deep insight into tissue engineering and its use in the design of bioreactors. The book is supplemented with extensive references for all chapters to help the reader to progress through the study of each topic."
Singapore: Springer Singapore, 2019
e20502131
eBooks  Universitas Indonesia Library
cover
Harahap, Ahmad Indra Sakti
"ABSTRAK
Fabrikasi mikro merupakan teknologi advanced untuk manufaktur produk ukuran kecil yang kini telah diaplikasikan luas dalam berbagai bidang termasuk kesehatan. Tissue engineering adalah salah satu bidang dari aplikasi teknologi ini dengan berfokus pada rekayasa fabrikasi scaffold. Scaffold yang ideal dipersyaratkan memiliki konstruksi yang mirip dengan lingkungan jaringan target dengan struktur 3D, biodegradable, berpori dan vaskularis. Saat ini, hidrogel gelatin merupakan salah satu material biomatriks yang tepat untuk fabrikasi scaffold. Gelatin tersebut dibentuk dengan metode photo-patterning menggunakan sensitizer rose bengal pada panjang gelombang cahaya tampak. Penelitian ini bertujuan untuk mengembangkan dan merealisasikan bentuk scaffold 2D sebagai dasar pembentukan struktur jaringan 3D. Karakterisasi hasil photo-patterning dilakukan dengan mengukur dimensi pattern width, ketebalan resolusi dan intensitas. Proses ini menghasilkan daerah kerja optimum pada konsentrasi 2% dengan waktu 3 menit.

ABSTRACT
Microfabrication is an advanced technology for manufacturing products of small size that has now been widely applied in various fields including health area. Tissue engineering becomes ones application of this technology focused on engineering scaffold fabrication. The ideal scaffold required to have a construction similar to the target network environment with a 3D structure, biodegradable, porous and vaskularize. At present, the gelatin hydrogel is appropriate biomatrix material for fabricating the scaffold. Gelatin is formed by photo-patterning method using the sensitizer rose bengal at visible light’s wavelength. This study aims to develop and realize the basic shape of the scaffold 2D as 3D tissue structure formation. Characterization results of photo-patterning is done by measuring the dimensions of the pattern width, thickness and intensity resolution. This process resulted in optimum working area at a concentration of 2% with a time of 3 minutes."
Fakultas Teknik Universitas Indonesia, 2014
S53262
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>