Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 93755 dokumen yang sesuai dengan query
cover
Wiryanata Sunardi
"Quadcopter atau Quadrotor adalah sebuah jenis helikopter tanpa awak yang memiliki empat rotor yang terpasang dengan propeller. Pada quadcopter memiliki 2 buah rotor yang berputar searah jarum jam dan 2 buah rotor yang berputar berlawanan arah jarum jam. Pada sebuah quadcopter memiliki keseimbangan yang tidak stabil secara aerodinamis sehingga memerlukan komputer untuk mengkonversi perintah input menjadi perintah yang dapat mengganti kecepatan rotasi dari propeller sehingga menghasilkan gerakan yang diinginkan. Seiring dengan perkembangan teknologi, khususnya Artificial Intelligence dan Machine Learning, teknologi telah menjadi bagian penting serta berpengaruh secara signifikan dalam kehidupan manusia. Pengaplikassian Artificcial Intelligence seperti Neural Network juga tidak luput pengaplikasiannya di bidang Quadcopter Unmanned Aerial Vehicles (UAV). Dalam hal ini Neural Network digunakan sebagai basis dari metode pengendalian yang hendak diaplikasikan pada Quadcopter Unmanned Aerial Vehicles (UAV) yang disebut sebagai Pengendali Neural Network. Metode pengendalian Neural Network merupakan metode pengendalian yang memiliki model matematika yang disusun oleh Artificial Neural Network (ANN) dimana pengendali Neural Network terdiri dari dua buah komponen dasar yakni komponen inverse dan komponen identifikasi. Jenis pengendali yang digunakan untuk menstabilisasi manuver pada pergerakan Quadcopter UAV kemudian diuji dan diverifikasi melalui simulasi yang dilakukan dengan bahasa pemrograman MATLAB serta dilakukan perbandingan dengan pengendali Single Neuron Adaptive PID sebagai pembanding dalam hal performa pengendali.

A quadcopter, or quadrotor, is an unmanned helicopter with four rotors equipped with propellers. In a quadcopter, two rotors spin clockwise, and two rotors spin counterclockwise. A quadcopter has an aerodynamically unstable balance, which requires a computer to convert input commands into instructions that can change the rotation speed of the propellers to produce the desired movements. With the advancement of technology, especially Artificial Intelligence and Machine Learning, technology has become an integral and influential part of human life. Artificial Intelligence, such as Neural Networks, is also applied in the field of Quadcopter Autonomous Aerial Vehicles (UAV). In this context, Neural Networks are used as the basis for control methods to be applied to Quadcopter Unmanned Aerial Vehicles (UAV), referred to as Neural Network Controllers. The Neural Network Controller method is a control method with a mathematical model constructed by an Artificial Neural Network (ANN) consisting of two primary components: the inverse component and the identification component. The type of controller used to stabilize the maneuvers in the movement of the Quadcopter UAV is then tested and verified through simulations conducted in the MATLAB programming language and compared with Single Neuron Adaptive PID (SNAPID) controllers regarding controller performance."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bharindra Kamanditya
"Kemajuan teknologi mengiringi kemajuan Pesawat Tanpa Awak yang membuat peneliti terus mengembangkannya. Quadcopter merupakan Pesawat Tanpa Awak yang saat ini telah banyak digunakan untuk berbagai tujuan. Bentuknya yang ringkas serta beratnya yang ringan dengan empat buah baling-baling motor membuat quadcopter memiliki keunggulan dalam kemampuan dalam melakukan maneuver di udara. Tujuan dari penelitian skripsi ini adalah diajukannya sebuah ide menciptakam pengendali Jaringan Saraf Kendali Inverse Langsung NN ndash;DIC ndash; Neural Network Direct Inverse Control dengan algoritma Elman Recurrent untuk quadcopter, dan membandingkannya dengan pengendali berbasis algoritma Back Propagation Neural Network biasa. Dalam skripsi ini dikemukakan hasil simulasi dari identifikasi quadcopter dengan memodelkan secara black box, serta hasil dari dua jenis pengendali Inverse untuk quadcopter yaitu Elman Recurrent Neural Network Direct Inverse Control dan Back Propagation Neural Network Direct Inverse Control.

Technological advances accompany the progress of Unmanned Aircraft that keeps researchers on the rise. Quadcopter is an Unmanned Aircraft that is now widely used for various purposes. Its compact shape and light weight with four motor propellers make the quadcopter has an advantage in the ability to maneuver in the air. The purpose of this thesis research is to propose an idea to create a controller of the Direct Inverse Control Neural Network NN ndash DIC with Elman Recurrent algorithm for quadcopter, and compare it with an ordinary Back Propagation Neural Netwok algorithm. In this thesis, the shown simulation results are those of quadcopter plant based on black box modeling identification, and the result of two types of Inverse controllers for quadcopter, Elman Recurrent Neural Netwok Direct Inverse Control and Back Propagation Neural Network Direct Inverse Control."
Depok: Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arifudin
"Pada skripsi ini dibahas tentang simulasi dan perancangan pengendalian sistem Tangki Berhubungan Multivariabel (3 x 3) dengan menggunakan Neural Network model Kendali lnvers Langsung (Direct Inverse Control / DIC). Pengendali Neural Network model Kendali Invers Langsung mencari invers dari plant sehingga pengendali NN model DIC yang dirangkai seri dengan plant menghasilkan fungsi alih satu satuan, sehingga keluaran sistem akan sama dengan sinyal referensi yang diberikan. Penghilangan interaksi (kopling) yang terjadi pada sistem Tangki Berhubungan Multivariabel dilakukan dengan perancangan dekopling yang menggunakan metode Relative Gain Matrix. Perancangan dan simulasi sistem pengendalian Neural Network model Kendali Invers Langsung ini menggunakan program Matlab versi 6.1. Perbandingan antara analisa tanggapan waktu terhadap sistem kendali yang dirancang dengan sistem kendali Proportional Integral Derivartive (PID) dan sistem kendali Logika Fuzzy menghasilkan tanggapan untuk mencapai keadaan steady srare,dan pada Neural Network model Kendali Invers langsung lebih cepat dibandingkan dengan tanggapan waktu yang dihasilkan oleh pengendali konvensional PID dan Fuzzy."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S40135
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risky Agung Septiyanto
"Emisi kendaraan terutama yang menggunakan mesin diesel merupakan masalah yang sudah tidak asing lagi. Nox, HC, O2, CO, CO2 dan asap yang merupakan zat- zat hasil pembakaran mesin diesel dapat di ukur melalui percobaan eksperimental. Tetapi tentunya percobaan eksperimental ini mempunyai beberapa kekurangan seperti pengoperasiannya yang mahal serta prosesnya yang memakan waktu cukup panjang.
Untuk mengatasi masalah itu semua, maka dibuatlah suatu metode pemodelan matematika menggunakan Artificial Neural Network (ANN). Metode ANN yang digunakan dalam skripsi ini adalah Backpropagation. Dengan dilakukannya penelitian ini diharapkan karakter emisi kendaraan mesin diesel dapat diprediksi secara akurat. Hasil dari penelitian ini membuktikan bahwa ANN cukup handal dalam memprediksi emisi bahan bakar mesin diesel.

Vehicle emissions, especially using diesel engine is not a strange problem anymore. NOx, HC, O2, CO, CO2 and smoke emissions comes from the combustion of substances in diesel engines can be measured through experimental test. Certainly this experimental test has several shortcomings such as the operation is expensive and time consuming process which is long enough.
To cope with this problem, then a mathematical modeling method using Artificial Neural Network (ANN) was made. ANN method used in this thesis is Backpropagation. This research expect to predict characters of diesel engine emissions accurately. The results of this study proves that ANN quite good to predict diesel engine emission.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S43928
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mendrofa, Gabriella Aileen
"Pilar adalah unit struktural penting yang digunakan untuk memastikan keselamatan penambangan di tambang batuan keras bawah tanah. Oleh karena itu, prediksi yang tepat mengenai stabilitas pilar bawah tanah sangat diperlukan. Salah satu indeks umum yang sering digunakan untuk menilai stabilitas pilar adalah Safety Factor (SF). Sayangnya, batasan penilaian stabilitas pilar menggunakan SF masih sangat kaku dan kurang dapat diandalkan. Penelitian ini menyajikan aplikasi baru dari Artificial Neural Network-Backpropagation (ANN-BP) dan Deep Ensemble Learning untuk klasifikasi stabilitas pilar. Terdapat tiga jenis ANN-BP yang digunakan untuk klasifikasi stabilitas pilar dibedakan berdasarkan activation function-nya, yaitu ANN-BP ReLU, ANN-BP ELU, dan ANN-BP GELU. Dalam penelitian ini juga disajikan alternatif pelabelan baru stabilitas pilar dengan mempertimbangkan kesesuaiannya dengan SF. Stabilitas pilar diperluas menjadi empat kategori, yaitu failed dengan safety factor yang sesuai, intact dengan safety factor yang sesuai, failed dengan safety factor yang tidak sesuai, dan intact dengan safety factor yang tidak sesuai. Terdapat lima input yang digunakan untuk setiap model, yaitu pillar width, mining height, bord width, depth to floor, dan ratio. Hasil penelitian menunjukkan bahwa model ANN-BP dengan Ensemble Learning dapat meningkatkan performa ANN-BP dengan average accuracy menjadi 86,48% dan nilai F2 menjadi 96,35% untuk kategori failed dengan safety factor yang tidak sesuai.

Pillars are important structural units used to ensure mining safety in underground hard rock mines. Therefore, precise predictions regarding the stability of underground pillars are required. One common index that is often used to assess pillar stability is the Safety Factor (SF). Unfortunately, such crisp boundaries in pillar stability assessment using SF are unreliable. This paper presents a novel application of Artificial Neural Network-Backpropagation (ANN-BP) and Deep Ensemble Learning for pillar stability classification. There are three types of ANN-BP used for the classification of pillar stability distinguished by their activation functions: ANN-BP ReLU, ANN-BP ELU, and ANN-BP GELU. This research also presents a new labeling alternative for pillar stability by considering its suitability with the SF. Thus, pillar stability is expanded into four categories: failed with a suitable safety factor, intact with a suitable safety factor, failed without a suitable safety factor, and intact without a suitable safety factor. There are five inputs used for each model: pillar width, mining height, bord width, depth to floor, and ratio. The results showed that the ANN-BP model with Ensemble Learning could improve ANN-BP performance with an average accuracy of 86.48% and an F2-score of 96.35% for the category of failed with a suitable safety factor."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Indrio Tjahjo
"PT.X telah memiliki pengalaman operasional dan reputasi yang balk selama berpuluh tahun dalam menggeluti bidang bisnis Percetakan Security khususnya uang kertas yang sangat vital dan memiliki pasar yang captive.
PT.X secara teoritis memiliki kapasitas produksi diatas permintaan, namun masih memiliki permasalahan dalam hal ketepatan penyerahan produknya. Perrnasalahan ini diakibatkan terjadinya penyimpangan performa standar dari unit Flokulasi ( pengolah limbah tinta ) yang berdampak pada menurunnya kinerja permesinan di unit cetak Intaglio. Disisi lain PT.X berupaya untuk meningkatkan kemampulabaan dan kemamputumbuhan , oleh karena itu upaya yang diambil PT.X adalah memperbaiki sekaligus meningkatkan kinerja sistim produksinya.
Untuk mengatasi permasalahan tersebut, maka dikembangkan suatu bentuk Strategi Manufaktur yang diimplementasikan melalui langkah - langkah perbaikan pada sistim pengendalian proses Flokulasi. Adapun langkah pertama yang dilakukan adalah untuk mengetahui kondisi aktual perusahaan termasuk kinerja dari lini permesinannya, dimana metode yang dipakai adalah analisa kuantitative atas laporan keuangan dan analisa kinerja bisnis yaitu analisa SWOT.
Sedangkan kondisi kinerja Manufaktur dari unit Produksi diukur dengan memakai rasio MCE (Manufacturing Cycle Effectiveness) , rasio Machine Effectiveness dan sebagai pembanding dilakukan analisa Benchmarking atas dua Industri sejenis.
Metode yang dipakai untuk meningkatkan mutu sistim pengendalian proses Flokulasi adalah dengan mengembangkan suatu bentuk teknologi berberbasis Artificial Neural Network, yang memiliki kemampuan untuk memprediksi hasil akhir/output dari proses Flokulasi yang sedang berlangsung.
Semua ini akan menunjang usaha peningkatan kemampulabaan ,kemamputumbuhan terutama dari segi mutu produk dan ketepatan waktu penyerahan produk sesuai dengan tuntutan konsumen.

PT.X has many years of operational experience and a good reputation in the business of Security Printing especially paper money and has a Captive market.
Theoretically PT.X has a production capacity exceeding the demand , but has problem in the delivery time. This in turn lowers the machinery performance in the Intaglio printing section, which is basically due to the deviation of the performance standard of the Flocculation unit from the water treatment plant.
PT.X expect to increase profitability and growth by enhancing the performance of the production system.
To solve this problem by developing a form of Manufacturing Strategy implemented through remedial steps taken in the process control system of the Flocculation unit. The first step is to know the actual condition of the company including the production line machinery . This is done through the quantitative analysis from the financial reports and qualitative analysis of business performances using a SWOT analysis. The next step is to measures the manufacturing performance from the capability of production facility by Manufacturing Cycle Effectiveness ratio, Machine Effectiveness ratio and Benchmarking analysis .
The method used in order to enhance quality of the Flocculation process is through the development of technology based on Artificial Neural Network, which is to predict the output of Flocullation process.
We concluded that new system will be useful to help improvement effort for the company to increase profitability and growth, such as product quality and delivery time in accordance with the requirement."
Depok: Fakultas Teknik Universitas Indonesia, 2001
T9465
UI - Tesis Membership  Universitas Indonesia Library
cover
Wahyu Hutomo Nugroho
"Proses segmentasi organ secara manual memakan waktu dan hasilnya subyektif terhadap definisi batas-batas kontur. Pemanfaatan teknologi Machine Learning (ML) berjenis 3D convolutional neural network (3D CNN) untuk mensegmentasi organ secara otomatis dapat mempercepat dan menstandarisasi hasil segmentasi organ. Penelitian ini mengimplementasilan network ML berbasis VoxResNet dan memanfaatkan 60 dataset CT Scan toraks dari Grand Callenge AAPM 2017 untuk melatih, memvalidasi, dan menguji model-model ML dengan berbagai variasi hyperparameter. Pengaruh variasi hyperparameter terhadap hasil segmentasi model juga dipelajari. Dataset dibagi menjadi 3 yaitu, 36 untuk perlatihan, 12 untuk validasi, dan 12 untuk pengujian. Dalam penelitian ini paru-paru kiri dan paru-paru kanan dijadikan satu jenis OAR bernama paru-paru, esophagus dan spinal cord dijadikan satu OAR bernama ESP, sedangkan jantung tetap OAR tersendiri. Variasi hyperparameter adalah variasi ukuran patch, jumlah batch, dan weight class. Hasil segmentasi model-model dievaluasi dan diperbandingkan untuk mencari model terbaik dengan hyperparameter-nya yang mampu menghasilkan kualitas hasil segmentasi organ terbaik. Kemampuan network dalam proses perlatihan dan validasi dievaluasi menggunakan kurva pembelajaran. Kualitas hasil segmentasi model organ dievaluasi menggunakan boxplot distribusi populasi nilai metrik Dice Similiarity Coefficient (DSC) dan Housdorf Distance (HD) setiap slice. Peningkatan atau penurunan kinerja model akibat variasi hyperparameter dinilai menggunakan skor peningkatan metrik. Terakhir, metrik DSC dan HD95 secara 3D hasil segmentasi model terbaik dibandingkan dengan hasil segmentasi oleh interrater variability AAPM 2017 dan hasil segmentasi team virginia. Hasil kurva pembelajaran tidak mengalami underfitting menunjukkan bahwa network mampu mempelajari data perlatihan dengan baik. Overfitting terjadi pada model organ jantung dan ESP. Hasil eksperimen variasi ukuran patch menunjukkan bahwa besar ukuran patch tidak selalu linier dengan kinerja moukuran patch menunjukkan bahwa besar ukuran patch tidak selalu linier dengan kinerja model. Model ukuran patch tengah memberikan kualitas distribusi metrik dan skor paling baik dibandingkan model ukuran patch terkecil dan terbesar pada semua OAR dengan skor 11, 13, dan 13 dari 16. Hasil eksperimen variasi jumlah batch menunjukkan bahwa peningkatan jumlah batch tidak selalu berdampak positif terhadap kinerja model. Untuk model jantung ukuran patch terbesar, peningkatan batch dapat meningkatkan skor dari 2 menjadi 12. Untuk model ESP ukuran patch terbesar, peningkatan batch menurunkan skor dari 13 menjadi 2. Hasil eksperimen variasi weight class (W) menunjukkan bahwa baik model jantung maupun ESP cenderung memberikan distribusi metrik dan skor terbaik di sekitar W = [1,3.67] atau W = [1, C1 < 11]. Dibandingkan dengan interrater variability AAPM, model jantung terbaik menghasilkan nilai metrik yang comparable, yaitu untuk DSC 3D 0.932 ± 0.016 = 0.931 ± 0.015 dan untuk HD95 4.00 ± 0.25 < 6.42 ± 1.82. Sedangkan untuk model paru-paru memberikan metrik lebih baik, yaitu 0.964 ± 0.025 > 0.956 ± 0,019 dan 4,72± 0,21 < 6.71 ± 3,91. Dibandingkan dengan team virginia, model jantung terbaik berhasil memberikan nilai metrik yang lebih baik. yaitu 0.932 ± 0.016 > 0.925 ± 0.015 dan 4.00 ± 0.25 < 6.57 ± 1.50, sedangkan model ESP terbaik menghasilkan metrik yang comparable, yaitu 0.815 ± 0.049 = 0,810 ± 0,069 dan 4,68 ± 0,17 < 8,71 ± 10,59. Dari hasil-hasil ini memberikan potensi adanya perpaduan ukuran patch, jumlah batch, dan weight class tertentu yang dapat menyebabkan hasil segmentasi model ukuran patch lebih kecil dapat mengimbangi hasil segmentasi model ukuran patch lebih besar sehingga tuntutan akan perangkat dengan spesifikasi tinggi dan mahal dapat berkurang.

The process of manual organ segmentation is time consuming and the results are subjective in term of definition of contour boundaries. The utilization of Machine Learning (ML) technology using 3D convolutional neural network (3D CNN) to segment organs automatically can speed up the procces as well as standardizing the results of organ segmentation. This study implements a VoxResNet-based ML network and utilizes 60 thoracic CT scan datasets obtained from Grand Callenge AAPM 2017 to train, validate, and test ML models with various hyperparameter variations. The effects of hyperparameter variations on the segmentation results of models are also studied. The dataset is divided into 3 parts, namely 36 for training, 12 for validation, and 12 for testing. In this study the left lung and right lung were combined into one type of OAR called the lung, the esophagus and spinal cord were combined into one OAR called ESP, while the heart remained a separate OAR. Hyperparameter variations are variations in patch size, number of batches, and weight loss. The segmentation results of the models are evaluated and compared each other to find the best model and it’s hyperparameters which is able to produce the best segmentation’s quality. The ability of the network in training and validation procceses is evaluated using learning curve. The quality of the organ model’s segmentation results is evaluated using boxplot of population’s distribution of the Dice Similiarity Coefficient (DSC) and Housdorf Distance (HD) metrics for each slice. The increases or decreases in model performance due to variations in hyperparameters are assessed using the metric improvement score. Finally, the 3D DSC and HD95 metrics of the best model’s segmentation results are compared to the results of segmentation by the AAPM 2017’s interrater variability and to the segmentation results by team virginia. There is no underfitting of learning curve indicates that the network is able to learn the training data. Overfitting occurs in the heart and ESP models. The experimental results from patch size variations show that the size of the patch is not always linear with the performance of the model. The middle patch sized models give the best metric distribution’s quality as well as scores compared to the smallest and largest patch sized models for all OARs with scores of 11, 13, and 13 out of 16. The experimental results from batch number variations show that an increase in batch does not always have a positive impact on model performance. For the largest patch sized heart’s model, the increase increases the score from 2 to 12. For the largest patch sized ESP's model, the increase reduces the score from 13 to 2. The results from variations in weight loss (W) experiment show that both heart’s and ESP's models tend to provide the best distributions in term of metrics and scores around W = [1, 3.67] or W = [1, C1 < 11]. By comparing with AAPM's interrater’s variability, the best heart model produces comparable metric's result, that is 0.932 ± 0.016 = 0.931 ± 0.015 for DSC 3D and 4.00 ± 0.25 < 6.42 ± 1.82 for HD95. The best lungs model produces better metrics, that is 0.964 ± 0.025 > 0.956 ± 0,019 and 4,72 ± 0,21 < 6.71 ± 3,91. By comparing with team virginia's results, the best heart model produces better results that is 0.932 ± 0.016 > 0.925 ± 0.015 and 4.00 ± 0.25 < 6.57 ± 1.50. Meanwhile the best ESP model produces comparable results that is 0.815 ± 0.049 = 0,810 ± 0,069 and 4,68 ± 0,17 < 8,71 ± 10,59. The results of this study suggests that there is a certain combination of patch size, batch, and weight class by which enables smaller patch sized model to produce comparable metric's result produced by larger patch sized model thus decreasing the need to use higher specificationed and expensive computer."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anggoro Gagah Nugroho
"Plat nomor merupakan suatu jenis identifikasi kendaraan bermotor. Setiap kendaraan bermotor yang beroperasi dijalanan diwajibkan untuk melengkapi kendaraannya dengan plat nomor atau Tanda Nomor Kendaraan Bermotor (TNKB) yang sesuai dengan kode wilayah, nomor registrasi dan masa berlaku. Plat nomor di Indonesia terdapat 3 warna yang dipakai yaitu hitam, merah dan kuning dengan masing masing warna untuk fungsi yang berbeda. Dengan jumlah kendaraan di Indonesia, sistem pengenalan plat nomor dibuat secara otomatis bisa di implementasikan untuk memudahkan berbagai hal dalam pendataan plat nomor diantaranya pengecekan plat nomor ketika di area parkir, menemukan kendaraan yang dicuri ataupun mobil yang melanggar lampu merah. Pada penelitian ini terdapat 2 metode yang sering digunakan untuk pengenalan plat nomor otomatis yaitu KNN (K-Nearest Neighbour) dan NN (Neural Network). Setelah dilakukan pengujian menggunakan 3 analisis uji yang sudah dilakukan oleh penulis, akurasi metode neural network berhasil mencapai 88,8% sedangkan pada K-Nearest Neighbor akurasinya mencapai 72,2%. Metode NN lebih baik daripada KNN pada pengujian kali ini disebabkan adanya modifikasi pada variable yang dapat membuat akurasi NN lebih baik daripada KNN. Sedangkan pada metode KNN tidak dapat merubah akurasi yang telah didapatkan.

Number plate is a type of motor vehicle identification. Every motorized vehicle operating on the road is required to complete the vehicle with a license plate or Motor Vehicle Number (TNKB) that matches the area code, registration number and validity period. Number plates in Indonesia there are 3 colors used, namely black, red and yellow with each color for different functions. With the number of vehicles in Indonesia, the number plate recognition system is made automatically can be implemented to facilitate various things in number plate registration including checking license plates when in the parking area, finding stolen vehicles or cars that violate red lights. In this study there are 2 methods that are often used for automatic number plate recognition, namely K-Nearest Neighbor and NN (Neural Network). After testing using 3 test analyzes carried out by the author, the accuracy of the neural network method reached 88.8% while the K-Nearest Neighbor accuracy was 72.2%. The NN method is better than KNN in this test due to a modification in the variable that can make the accuracy of NN better than KNN. While the KNN method cannot change the accuracy that has been obtained."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siauw, Luke
"Perkembangan bare dalam neural network telah memberikan keuntungan-keuntungan dalam aplikasi sistem kontrol. Berdasarkan teori stale space dan pendekatan neural network, dikembangkan suatu algoritma yang disebut Stochastic Neural Direct Adaptive Control (SNDAC) untuk mengendalikan plant yang diketahui sebagian matriks sistemnya, yaitu matdks masukan B(.) dan matriks keluaran C(.). Pengendali neural network menggunakan algoritma SNDAC untuk mengubah bobot-bobotnya sehingga dihasilkan sinyal kendali yang mengoptimalkan quadratic performance index. Parameter yang berpengaruh pada pengendalian adalah banyaknya neuron pada lapisan tersembunyi dan besarnya koefisien belajar. Pemilihan banyaknya neuron pada lapisan tersembunyi dan besarnya koefisien belajar tidak dapat dilakukan secara eksak, tetapi dengan trial and error. Dengan pemilihan yang tepat dihasilkan pengendalian yang stabil dengan toleransi kesalahan yang kecil, seperti terlihat pada hasiI simulasi."
Depok: Universitas Indonesia, 1997
S38826
UI - Skripsi Membership  Universitas Indonesia Library
cover
Salihun Z.
"Jaringan syaraf tiruan (Arrgficial Neural Nerwork) merupakan salah satu bagian dari kecerdasan buatan (Artificial Intelligence) yang mengambil prinsip kerja jaringan syaraf manusia. Perhitungan propagasi balik (Back Propagartion) adalah algoritma belajar yang populer, yang merupakan generalisasi kaidah least square untuk jaringan syaraf berlapis jamak (Mulfflayer Neural Network).
Proses aromatisasi heptana menjadi toluena, dengan nama hydroforming, telah dikembangkan ketika Perang Dunia II (World War II) dengan tujuan untuk mendapatkan bahan baku peledak. Kondisi operasi diatas sangatlah riskan dan penuh resiko.
Pendeteksian yang akurat dan dini diperlukan guna mencegah kesalahan yang timbul, yang dapat mengakibatkan kerugian baik material maupun immaterial. Diagnosa kesalahan proses pada aromatisasi heptana dapat dilakukan dengan metode Jaringan Syaraf Tiruan Propagasi Balik (ANN/JNA BP) ini. Berdasarkan data lapangan (kondisi masukan dan kondisi keluaran), jaringan syaraf akan melakukan pembelajaran (learning) secara simultan dan kontinyu, yang pada akhirnya akan terbentuk sebuah pengetahuan. BP inilah metode ajar yang paling sederhana dan cocok sekali untuk diterapkan, karena sanggup mengenali pola (pattern recognition).
Sebagai studi kasus, proses aromatisasi heptana, penerapan ANN/JNA BP yang diteliti oleh Watanabe dan Himmelblau dapat dibuktikan dengan baik pada skripsi ini. Model ANN/JNA BP dapat melakukan pengenalan pola dengan balk dimana toleransi error lebih kecil dari 0.001, dengan jumlah iterasi pelatihan lebih dari 5000 iterasi, dan waktu pelathan lebih dari 40 menit."
Depok: Fakultas Teknik Universitas Indonesia, 1999
S49207
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>