Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 196390 dokumen yang sesuai dengan query
cover
Jonathan Marshell Kevin
"Dalam sistem industri modern, dengan majunya teknologi Internet of Things (IoT), pelaku industri dapat merekam data mesin dan sistem untuk kemudian dianalisa secara lebih komprehensif. Salah satu bentuk analisa yang dapat dilakukan adalah mendeteksi apakah ada anomali dari mesin atau sistem tsb. Aktivitas ini kemudian menjadi krusial bagi pelaku industri karena berdasarkan analisa ini, jika ditemukan anomali, maka secara dini dapat diambil tindakan yang diperlukan untuk melakukan pemeliharaan. Tetapi, sangat umum bagi pelaku industri tidak memiliki atau kekurangan data anomali, terutama pada sistem yang baru beroperasi. Dalam tesis ini, kami mengembangkan sebuah model untuk mendeteksi anomali pada data yang tidak berimbang dari sistem Secure Water Treatment (SWaT). Performa dari model ini kemudian dibandingkan dengan metode lain dari riset sebelumnya, mendemonstrasikan peningkatan dalam kapabilitas mendeteksi anomali.

In modern industrial systems, particularly with the advancement of the Internet of Things (IoT), industry players can record machine and system data for comprehensive analysis. One such analysis involves detecting anomalies in machines or systems. This activity becomes crucial because, if an anomaly is found in the data, corrective actions can be taken promptly. However, it is common for manufacturers to lack recorded anomaly datasets, especially for newly operational systems. In this paper, we develop a model to detect anomalies in an imbalanced dataset from the Secure Water Treatment (SWaT) system. The performance of the proposed model is compared with previous works, demonstrating significant improvements in anomaly detection capabilities."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rania Nur Farahiyah
"Retinopati hipertensi merupakan penyakit yang timbul pada retina akibat komplikasi dari hipertensi atau tekanan darah tinggi. Pemeriksaan gejala retinopati hipertensi penting untuk dilakukan supaya penanganan yang tepat dapat diberikan. Gejala retinopati hipertensi terdapat pada pembuluh darah di retina sehingga diagnosis dapat dilakukan melalui citra fundus retina. Penelitian ini memanfaatkan model Data-Efficient Image Transformer (DeiT) untuk mengklasifikasikan citra fundus retina menjadi dua kelas, yaitu kelas retinopati hipertensi dan kelas normal. Data yang digunakan dalam penelitian ini diperoleh dari empat database open-source, yaitu DRIVE, JSIEC, ODIR, dan STARE. Preprocessing berupa resize dan Contrast Limited Adaptive Histogram Equalization (CLAHE) diterapkan untuk menyeragamkan ukuran citra dan meningkatkan kontras citra. Generative Adversarial Network (GAN) digunakan untuk menghasilkan citra sintetis guna mengatasi masalah keterbatasan jumlah data serta meningkatkan variasi data yang dapat dipelajari oleh model DeiT. Penelitian ini menganalisis pengaruh metode GAN terhadap kinerja model DeiT dengan menggunakan metrik evaluasi accuracy, sensitivity, dan specificity. Analisis dilakukan dengan membandingkan tiga skenario: skenario A menggunakan data asli, skenario B menggunakan data hasil augmentasi GAN, dan skenario C menggunakan preprocessing CLAHE dan data hasil augmentasi GAN. Skenario A menunjukkan kinerja yang cukup baik dengan nilai rata-rata accuracy, sensitivitiy, dan specificity sebesar 94%, 97,7%, dan 84,6% untuk rasio pembagian data 70:30, serta 95,7%, 97%, dan 92,8% untuk rasio pembagian data 80:20. Skenario B mengungguli skenario sebelumnya dengan nilai rata-rata accuracy, sensitivitiy, dan specificity sebesar 96,4%, 97,2%, dan 95,7% untuk rasio pembagian data 70:30, serta 97,5%, 97,9%, dan 97,1% untuk rasio pembagian data 80:20. Pada skenario C, diperoleh nilai rata-rata accuracy, sensitivitiy, dan specificity sebesar 95,7%, 95%, dan 96,2% untuk rasio pembagian data 70:30, serta 95,5%, 94,9%, dan 96,4% untuk rasio pembagian data 80:20. Hasil penelitian menunjukkan bahwa penerapan metode GAN berhasil meningkatkan kinerja model DeiT, khususnya pada nilai specificity. Dari ketiga skenario yang diuji, skenario B yang memanfaatkan data sintetis hasil augmentasi GAN tanpa preprocessing CLAHE memberikan hasil yang paling unggul.

Hypertensive retinopathy is a disease that occurs in the retina due to complications from hypertension or high blood pressure. Examination of hypertensive retinopathy symptoms is important to ensure appropriate treatment can be performed. The symptoms of hypertensive retinopathy are found in the blood vessels of the retina, allowing diagnosis to be performed through retinal fundus images. This study uses the Data-Efficient Image Transformer (DeiT) model to classify retinal fundus images into two classes: hypertensive retinopathy and normal. The data used in this study were obtained from four different open-source databases: DRIVE, JSIEC, ODIR, and STARE. Preprocessing in the form of resizing and Contrast Limited Adaptive Histogram Equalization (CLAHE) was applied to standardize the image size and enhance the image contrast. Generative Adversarial Network (GAN) was used to generate synthetic images to address the problem of limited data availability and increase the variety of data that can be learned by the DeiT model. This study analyzes the impact of the GAN method on the performance of the DeiT model using evaluation metrics of accuracy, sensitivity, and specificity. The analysis was conducted by comparing three scenarios: scenario A using the original data, scenario B using GAN-augmented data, and scenario C using CLAHE preprocessing and GAN-augmented data. Scenario A showed fairly good performance with average accuracy, sensitivity, and specificity values of 94%, 97.7%, and 84.6% for a 70:30 data split ratio, and 95.7%, 97%, and 92.8% for an 80:20 data split ratio. Scenario B outperformed the previous scenario with average accuracy, sensitivity, and specificity values of 96.4%, 97.2%, and 95.7% for a 70:30 data split ratio, and 97.5%, 97.9%, and 97.1% for an 80:20 data split ratio. In scenario C, the average accuracy, sensitivity, and specificity values were 95.7%, 95%, and 96.2% for a 70:30 data split ratio, and 95.5%, 94.9%, and 96.4% for an 80:20 data split ratio. The results of the study indicate that the application of the GAN method successfully improved the performance of the DeiT model, particularly in terms of specificity. Out of the three scenarios tested, scenario B, which utilized GAN-augmented synthetic data without CLAHE preprocessing, yielded the best results."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rusnanda Farhan
"Penilaian citra embrio manusia memiliki peran yang penting dalam proses Fertilisasi In Vitro (FIV) atau yang dikenal juga sebagai proses bayi tabung. Penilaian citra embrio ini dilakukan secara manual oleh ahli embriologi. Hal ini tentunya membutuhkan waktu yang lama dan konsentrasi yang tinggi dari ahli embriologi sehingga perlu ada sistem yang dapat membantu ahli embriologi dalam melakukan penilaian dengan lebih efisien. Salah satu waktu penilaian embrio yang paling penting yaitu ketika embrio berusia lima hari, dimana ini merupakan tahap penilaian akhir sebelum proses implantasi ke rahim. Penilaian embrio pada hari kelima didasarkan pada tiga aspek yaitu derajat ekspansi, Inner Cell Mass, dan Trophoectoderm, yang menjadi tantangan tersendiri dalam penelitian di bidang ini. Permasalahan lain yang muncul yaitu ketersediaan data yang terbatas dan ketidakseimbangan proporsi kelas atau target pada dataset. Penelitian ini mengusulkan penggunaan augmentasi data berbasis Generative Adversarial Network seperti VanillaGAN, InfoGAN, DCGAN, dan Adversarial Autoencoder sehagai solusi permasalahan ketidakseimbangan data. Penelitian ini juga mengembangkan model klasifikasi berbasis Convolutional Neural Network sebagai klasifikator untuk menilai citra embrio. Penelititan ini menggunakan 10-fold cross validation untuk mengukur kinerja model. Untuk kategori derajat ekspansi, penelitian ini memperoleh hasil terbaik dengan model Convolutional Neural Network yang dikombinasikan dengan Adversarial Autoencoder sebagai augmentasi data dengan nilai f1-score sebesar 0.92. Untuk kategori Inner Cell Mass, penelitian ini memperoleh hasil terbaik dengan model Convolutional Neural Network yang dikombinasikan dengan VanillaGAN sebagai augmentasi data dengan nilai f1-score sebesar 0.92. Serta untuk kategori Trophoectoderm, model Convolutional Neural Network yang dikombinasikan dengan Adversarial Autoencoder memperoleh hasil terbaik dengan nilai f1-score sebesar 0.89.

Assessment of human embryo images has an important role in the process of In Vitro Fertilization (IVF). Evaluation of this embryo image is done manually by the embryologist. This requires a long time and high concentration of embryologists, so it is necessary to create a system that can assist embryologists in making assessments more efficiently. One of the most important parts of human embryo assessment is the embryo on the fifth day after fertilization. Evaluation of embryos on the fifth day is based on three aspects, namely the degree of expansion, Inner Cell Mass, and Trophoectoderm, which is a particular challenge in research in this field. Another problem for this case is the limited availability of data and an imbalanced dataset. This study proposes the use of Generative Adversarial Network-based for data augmentation such as VanillaGAN, InfoGAN, DCGAN, and Adversarial Autoencoder as a solution to imbalanced data problems. This study also developed a classification model based on the Convolutional Neural Network as a classifier for assessing embryo images. This research uses 10-fold cross validation to measure model performance. This study obtained the best results for the degree of expansion category with the Convolutional Neural Network model combined with the Adversarial Autoencoder as a data augmentation with an f1-score of 0.92. This study obtained the best results for the Inner Cell Mass category with the Convolutional Neural Network model combined with VanillaGAN as a data augmentation with an f1-score of 0.92. The best result for Trophoectoderm category is Convolutional Neural Network model combined with the Adversarial Autoencoder as a data augmentation with an f1-score of 0.89."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Herardita Cahyaning Wulan
"Age-related macular degeneration (AMD) adalah penyakit degeneratif pada makula yang menyebabkan gangguan penglihatan sentral pada orang lanjut usia. Secara global, orang yang didiagnosis mengalami AMD mencapai 170 juta orang. Pada 2018, AMD menjadi penyebab kebutaan terbesar ketiga di Indonesia, setelah katarak dan gangguan refraksi. Salah satu pendekatan teknologi dalam bidang kedokteran adalah menggunakan sains data dan deep learning untuk mendeteksi dan mendiagnosis penyakit mata. Salah satu metode deep learning yang paling efektif untuk memahami data berbasis citra adalah Convolutionl Neural Network (CNN). Di antara arsitektur CNN yang dikembangkan, arsitektur EfficientNet merupakan salah satu yang paling efektif untuk mencapai akurasi terbaik pada tugas klasifikasi gambar serta efisien secara komputasional. Data yang digunakan dalam penelitian ini adalah data citra fundus retina yang bersumber dari empat open source database. Terdapat dua kelas yang akan diklasifikasi yaitu Normal dan AMD. Dengan penggabungan beberapa dataset muncul beberapa masalah yaitu terdapat perbedaan dimensi dan kontras pada citra. Sebelum dataset digunakan untuk melatih model, dilakukan preprocessing dengan centered crop, resize, dan Contrast Limited Adaptive Histogram Equalization (CLAHE). Masalah lain yang muncul adalah ukuran dataset yang kecil karena sulitnya mendapatkan data medis pasien. Salah satu metode yang dapat menjadi solusi adalah Generative Adversarial Network (GAN) yang digunakan untuk menghasilkan data citra sintetis. Penelitian ini diajukan untuk menerapkan metode GAN guna meningkatkan kinerja model EfficientNet dalam mendeteksi AMD. Untuk melakukan hal tersebut dibuat tiga skenario untuk membandingkan kinerja EfficientNet. Skenario A yaitu melakukan klasifikasi dengan dataset asli, tanpa preprocessing CLAHE dan tanpa augmentasi GAN. Skenario B melakukan klasifikasi dengan dataset yang sudah diaugmentasi dengan GAN. Sedangkan, skenario C melakukan klasifikasi dengan dataset yang diaugmentasi dengan GAN dan melalui preprocessing CLAHE. Metrik evaluasi yang digunakan untuk mengukukur kinerja adalah akurasi, sensitivity, dan specifity. Pada skenario A dengan rasio splitting data 70:15:15 dan 80:10:10 didapat rata-rata akurasi sebesar 89,01% dan 88,52%. Sedangkan, pada skenario B dengan rasio 70:15:15 dan 80:10:10 didapat rata-rata akurasi sebesar 87,10% dan 89,86%. Pada Skenario C dengan rasio 70:15:15 dan 80:10:10 didapat rata-rata akurasi sebesar 88,97% dan 91,27%. Skenario terbaik adalah skenario C dengan rasio 80:10:10 dengan nilai akurasi tertinggi 92,96%, sensitivity tertinggi mencapai 93,55%, dan specifity tertinggi mencapai 95,00%.

Age-related macular degeneration (AMD) is a degenerative disease of the macula that causes central vision impairment in the elderly. Globally, the number of people diagnosed with AMD reaches 170 million. In 2018, AMD became the third leading cause of blindness in Indonesia, following cataracts and refractive errors. One technological approach in the field of medicine is utilizing data science and deep learning to detect and diagnose eye diseases. One of the most effective deep learning methods for understanding image-based data is the Convolutional Neural Network (CNN). Among the developed CNN architectures, EfficientNet is one of the most effective in achieving the best accuracy in image classification tasks while being computationally efficient. The data used in this research consists of fundus retinal images sourced from four open source databases. There are two classes: Normal and AMD. Combining multiple datasets presents several issues, such as differences in image dimensions and contrast. Before the dataset is used to train the model, preprocessing is conducted using centered crop, resize, and Contrast Limited Adaptive Histogram Equalization (CLAHE). Another emerging issue is the small dataset size due to the difficulty of obtaining patient medical data. One method that can provide a solution is the Generative Adversarial Network (GAN), which is used to generate synthetic image data. This study proposes to implement GAN to enhance the performance of the EfficientNet model in detecting AMD. To achieve this, three scenarios were created to compare the performance of EfficientNet. Scenario A involves classification with the original dataset, without CLAHE preprocessing and without GAN augmentation. Scenario B involves classification with the dataset augmented by GAN. Scenario C involves classification with the dataset augmented by GAN and processed through CLAHE preprocessing. The evaluation metrics used to measure performance are accuracy, sensitivity, and specificity. In Scenario A, with data splitting ratios of 70:15:15 and 80:10:10, the average accuracy obtained was 89.01% and 88.52%, respectively. In Scenario B, with the same data splitting ratios, the average accuracy obtained was 87.10% and 89.86%, respectively. In Scenario C, with data splitting ratios of 70:15:15 and 80:10:10, the average accuracy obtained was 88.97% and 91.27%, respectively. The best scenario is Scenario C with a ratio of 80:10:10, achieving the highest accuracy of 92.96%, the highest sensitivity of 93.55%, and the highest specificity of 95.00%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hada Melino Muhammad
"Anomaly-Based Network Intrusion Detection System (ANIDS) memegang peranan yang sangat penting dengan berkembangnya teknologi internet. ANIDS digunakan untuk mendeteksi trafik jaringan yang membahayakan pengguna internet. Metode tradisional yang digunakan untuk membuat ANIDS masih sulit untuk mengekstrak fitur dari trafik yang banyak dan berdimensi tinggi. Selain itu, jumlah sampel yang sedikit pada beberapa jenis trafik menyebabkan ketidakseimbangan dataset dan mempengaruhi performa deteksi ANIDS. Ketidakseimbangan dataset dapat diatasi dengan oversampling dan atau undersampling. Penulis mengusulkan metode oversampling menggunakan modifikasi dari Deep Convolutional Generative Adversarial Network (DCGAN) yang dapat mengekstrak fitur trafik data secara langsung dan menghasilkan sampel baru untuk menyeimbangkan dataset. Modifikasi DCGAN bertujuan untuk menghindari adanya pemetaan data tabular menjadi data gambar sebelum masuk ke DCGAN. Selain itu, modifikasi DCGAN bertujuan untuk menstabilkan pelatihan model untuk data tabular sehingga data yang dihasilkan lebih berkualitas. Pengujian efek modifikasi DCGAN dilakukan dengan melatih model ANIDS yang terdiri dari model Deep Neural Network (DNN) dan Convolutional Neural Network (CNN). Evaluasi performa deteksi dilakukan dengan confusion matrix serta metrik accuracy, precision, recall, dan F1-Score. Hasil yang didapatkan adalah oversampling menggunakan modifikasi DCGAN meningkatkan validation accuracy dari 75.77% menjadi 81.41% pada model DNN dan 73.94% menjadi 80.76% pada model CNN. Peningkatan metrik lain juga terjadi akibat dari peningkatan validation accuracy.

Anomaly-Based Network Intrusion Detection System (ANIDS) plays a very important role with the development of internet technology. ANIDS is used for detecting network traffic that endangers internet users. The traditional methods used to create ANIDS are still difficult to extract features from high-dimensional traffic. In addition, the small number of samples in some types of traffic causes imbalanced dataset and affects ANIDS detection performance. Imbalanced dataset can be overcome by oversampling and or undersampling. The author proposes an oversampling method using a modification of the Deep Convolutional Generative Adversarial Network (DCGAN) which can extract data traffic features directly and generate new samples to balance the dataset. DCGAN modification aims to avoid mapping tabular data into image data before entering DCGAN. In addition, the DCGAN modification aims to stabilize the training model for tabular data so that the resulting data is of higher quality. Testing the effects of the DCGAN modification was carried out by training the ANIDS model consisting of the Deep Neural Network (DNN) and Convolutional Neural Network (CNN) models. Evaluation of detection performance is carried out using a confusion matrix and the metrics of accuracy, precision, recall, and F1-Score. The results obtained are oversampling using the DCGAN modification increases the validation accuracy from 75.77% to 81.41% in the DNN model and 73.94% to 80.76% in the CNN model. Improvements in other metrics also occurred as a result of the increase in validation accuracy."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Zaini
"ABSTRAK
Dalam kurun waktu lebih dari dua dekade terakhir, deteksi anomali menjadi salah satu topik yang menarik bagi para peneliti untuk dikembangkan. Collaborative-Representation-Based Detector (CRD) merupakan salah satu metodologi deteksi anomali yang berhasil dikembangkan. CRD melakukan aproksimasi masing-masing piksel pada background yang direpresentasikan oleh piksel-piksel tetangga, sementara itu piksel anomali tidak bisa direpresentasikan sama seperti piksel yang lainnya. Citra yang dihasilkan dari metodologi ini tergolong baik, karena mampu mendeteksi piksel anomali dengan cukup akurat. Kelemahannya adalah, citra hasil deteksi yang dihasilkan cenderung memperlihatkan banyak piksel yang sebenarnya bukan anomali walaupun dengan nilai intesitas yang sangat kecil. Penerapan threshold penyesuaian Root-Mean pada penelitian ini akan melakukan filter terhadap piksel-piksel pengganggu yang tidak diinginkan pada citra hasil proses CRD tersebut sehingga memberikan hasil yang lebih memuaskan. Dari sembilan data yang digunakan pada penelitian ini, hampir semua data menunjukan perbaikkannya setelah dilakukan filter dengan threshold RM.

ABSTRACT
Over the last two decades, anomaly detection is one of most interesting topics to develop for researchs. Collaborative-Representation-Based Detector (CRD) becomes one of the methodologies that was successfully developed. In CRD, each pixel in background can be approximately represented by its spatial neighborgoods, while anomalies cannot. The output image of this methodology can be categorized as good enough because it can detect the anomalies pixel accurately. However, the output image tend to show us there are many normal pixels around the anomaly pixel, although in very low intensity. Implementation of Root-Mean Adjustment threshold in this research will filter that unexpected pixel to obtain the statisfactory results. To compare performences of Root-Mean Adjustment threshold. Most of the nine Data show us that its unexpected can be filtered and show the better results.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sherly
"Dengan berkembangnya teknologi menyebabkan banyaknya kerentanan yang dapat terjadi pada jaringan wireless yang sering kali dimanfaatkan oleh berbagai pihak contohnya serangan DoS. Oleh karena itu sangat dibutuhkan sistem yang user friendly untuk memudahkan user dalam mendeteksi dan mencegah serangan tersebut sebelum attacker membahayakan jaringan. System tersebut dinamakan Intrusion Detection System (IDS). Pada pengujian ini menggunakan sistem operasi windows 10 dengan beberapa tools yaitu Snort sebagai IDS software, BASE sebagai report modul, Kiwi Syslog untuk menampilkan alert, dan hub sebagai network device. Ada beberapa jenis serangan yang dilakukan yaitu IP Scan dan Port Scan digunakan untuk mencari IP dan Port yang terbuka agar dapat diserang, dan Flooding sebagai penyerangnya. Dalam pengujian ini, terdapat beberapa skenario yang dilakukan yaitu pengujian Functionality Test pada client 1 – 3 untuk membandingkan nilai serangan, dan juga untuk mengetahui response time dari serangan yang dilakukan tersebut. Pada skenario pertama, dilakukan flooding pada 1 client (komputer target) dengan IP address 192.168.0.8 selama 60 menit lalu mendapatkan hasil 307.758 alert dan response time selama 0.000105741 s. Pada skenario kedua, dilakukan flooding terhadap 2 client sekaligus dengan IP address 192.168.0.1 dan 192.168.0.5 lalu hasil yang didapatkan sebanyak 378.920 alert dan response time selama 0.000127213 s. Dan pada skenario ketiga, dilakukan flooding terhadap 3 client sekaligus dengan IP address 192.168.0.8, 192.168.0.9, dan 192.168.0.4 lalu mendapatkan hasil sebanyak 430.212 alert dan response time selama 0.000142852 s. Pada setiap skenario dilakukan pengujian sebanyak 10 kali untuk melihat hasil yang didapatkan. Hasil yang didapat setelah melakukan pengujian tersebut ternyata mengalami kenaikan alert yang ditunjukan dengan persentase sebagai berikut yaitu dari skenario pertama ke skenario kedua sebesar 23,12%, skenario kedua ke skenario ketiga sebesar 13,53%, skenario pertama ke skenario ketiga sebesar 39,78%. Begitupula dengan response time yaitu dari skenario pertama ke skenario kedua sebesar 20,30%, skenario kedua ke skenario ketiga sebesar 12,29%, skenario pertama ke skenario ketiga sebesar 35,09%
With the development of technology, it causes many vulnerabilities that can occur in wireless networks which are often exploited by various parties, for example DoS attacks. Therefore, a user friendly system is needed to make it easier for users to detect and prevent these attacks before the attacker harms the network. The system is called the Intrusion Detection System (IDS). In this test using the Windows 10 operating system with several tools, namely Snort as IDS software, BASE as a report module, Kiwi Syslog to display alerts, and a hub as a network device. There are several types of attacks carried out, namely IP Scan and Port Scan used to find IP and open ports so that they can be attacked, and Flooding as the attacker. In this test, there are several scenarios that are carried out, namely Functionality Tests on clients 1-3 to compare the attack values, and also to determine the response time of the attacks carried out. In the first scenario, one client (target computer) was flooded with the IP address 192.168.0.8 for 60 minutes and then got 307.758 alerts and 0.000105741 s response time. In the second scenario, 2 clients are flooded at once with IP addresses 192.168.0.1 and 192.168.0.5 then the results obtained are 378,920 alerts and response time is 0.000127213 s. And in the third scenario, 3 clients are flooded at once with IP addresses 192.168.0.8, 192.168.0.9, and 192.168.0.4 and then get 430,212 alerts and a response time of 0.000142852 s. In each scenario, 10 times were tested to see the results obtained. The results obtained after carrying out the test turned out to have increased alerts as indicated by the following percentages, namely from the first scenario to the second scenario of 23.12%, the second scenario to the third scenario of 13.53%, the first scenario to the third scenario of 39.78 %. Likewise, the response time from the first scenario to the second scenario is 20.30%, the second scenario to the third scenario is 12.29%, the first scenario to the third scenario is 35.09%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Theodorus Lucas
"Penelitian ini melakukan implementasi dan perbandingan performa antara tools Suricata dan Zeek sebagai IDS yang diintegrasikan dengan SIEM dashboard menggunakan ELK stack. Tujuan dari penelitian ini ialah untuk menunjukkan implementasi dari kedua tools ini untuk mendukung kegiatan network monitoring, dan juga mengukur performa dari masing-masing tools sebagai IDS dalam menghadapi serangan siber berupa denial-of-service (DoS). Penelitian ini dilakukan di dalam sebuah jaringan internal, dengan menggunakan server Linux untuk IDS maupun ELK stack. Pengujian yang dilakukan berupa pengujian tiga buah skenario, yang masing-masing mensimulasikan jenis serangan DoS yang berbeda. Terdapat dua aspek penilaian performa, yaitu performa angka persentase deteksi dan juga angka persentase penggunaan sumber daya CPU dan memori. Hasil yang diperoleh menunjukkan bahwa sebagai IDS, Suricata lebih diunggulkan dibandingkan Zeek karena dashboard yang lebih beragam dan memiliki  fitur alerting; memiliki persentase deteksi yang lebih besar untuk dua dari tiga skenario yang diujikan, yaitu sebesar 86,14% untuk skenario 1 dan 79,41% untuk skenario 3; dan juga memiliki penggunaan sumber daya yang lebih efisien dari seluruh skenario yang diujikan, yaitu penggunaan CPU dan memori masing-masing sebesar 24,32%  dan 3,88% untuk skenario 1, 29,12% dan 4,56% untuk skenario 2, serta 16,96% dan 4,66% untuk skenario 3.

This research conducts the implementation and performance comparison between Suricata and Zeek tools as an IDS integrated with a SIEM dashboard using the ELK stack. The aim of this study is to demonstrate the implementation of both tools to support network monitoring activities and measure the performance of each tool as an IDS in facing denial-of-service (DoS) cyber attacks. The research was conducted within an internal network, utilizing Linux servers for both IDS and the ELK stack. The testing involved three scenarios, each simulating different types of DoS attacks. There are two performance evaluation aspects: detection rate (DR) performance and CPU and memory resource utilization rate. The results indicate that Suricata is favored over Zeek as an IDS due to its more enhanced dashboard and better alerting features; a better DR for two of the three scenarios tested, with DR values of 86,14% for scenario 1 and 79,41% for scenario 2; and also more efficient resource usage for all three scenarios tested, which  for CPU and memory usage respectively is 24,32% and 3,88% for scenario 1, 29,12% and 4,56% for scenario 2, and 16,96% and 4,66% for scenario 3."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pinem, Josua Geovani
"Keamanan data (data security) sudah menjadi bagian vital didalam suatu organisasi yang menggunakan konsep sistem informasi. Semakin hari ancaman-ancaman yang datang dari Internet menjadi semakin berkembang hingga dapat mengelabuhi firewall maupun perangkat antivirus. Selain itu jumlah serangan yang masuk menjadi lebih besar dan semakin sulit untuk diolah oleh firewall maupun antivirus. Untuk dapat meningkatkan keamanan dari suatu sistem biasanya dilakukan penambahan Intrusion Detection Sistem IDS , baik sistem dengan kemampuan anomaly-based maupun sistem pendeteksi dengan kemampuan signature-based. Untuk dapat mengolah serangan yang jumlahnya besar maka digunakan teknik Big Data. Penelitian yang dilakukan ini menggunakan teknik anomaly-based dengan menggunakan Learning Vector Quantization dalam pendeteksian serangan.
Learning Vector Quantization adalah salah satu jenis neural network yang bisa mempelajari sendiri masukan yang masuk kemudian memberi keluaran sesuai dengan masukan tersebut. Beberapa modifikasi dilakukan untuk meningkatkan akurasi pengujian, antara lain dengan melakukan variasi parameter-parameter uji yang ada pada LVQ. Dengan melakukan variasi pada parameter uji learning rate, epoch dan k-fold cross validation dihasilkan keluaran dengan hasil yang lebih efisien.
Keluaran diperoleh dengan menghitung nilai information retrieval dari tabel confusion matrix tiap- tiap kelas serangan. Untuk meningkatkan kinerja sistem maka digunakan teknik Principal Component Analysis untuk mereduksi ukuran data. Dengan menggunakan 18-Principal Component data berhasil direduksi sebesar 47.3 dengan nilai Recognition Rate terbaik sebesar 96.52 dan efesiensi waktu lebih besar 43.16 daripada tanpa menggunakan PCA.

Data security has become a very serious part of any organizational information system. More and more threats across the Internet has evolved and capable to deceive firewall as well as antivirus software. In addition, the number of attacks become larger and become more dificult to be processed by the firewall or antivirus software. To improve the security of the system is usually done by adding Intrusion Detection System IDS , which divided into anomaly based detection and signature based detection. In this research to process a huge amount of data, Big Data technique is used. Anomaly based detection is proposed using Learning Vector Quantization Algorithm to detect the attacks.
Learning Vector Quantization is a neural network technique that learn the input itself and then give the appropriate output according to the input. Modifications were made to improve test accuracy by varying the test parameters that present in LVQ. Varying the learning rate, epoch and k fold cross validation resulted in a more efficient output.
The output is obtained by calculating the value of information retrieval from the confusion matrix table from each attack classes. Principal Component Analysis technique is used along with Learning Vector Quantization to improve system performance by reducing the data dimensionality. By using 18 Principal Component, dataset successfully reduced by 47.3 , with the best Recognition Rate of 96.52 and time efficiency improvement up to 43.16.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67412
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yulian Benedichtus
"Skripsi ini membahas tentang analisis lalu lintas serangan pada Intrusion Detection System (Snort) dan Honeynet. Pembahasan mencakup analisis lalu lintas serangan berdasarkan tingkat berbahaya suatu serangan, analisis port yang menjadi target serangan, analisis metoda serangan, analisis sepuluh malware terbanyak yang terdeteksi oleh Honeynet, analisis sepuluh port terbanyak yang menjadi target serangan, analisis relasi antara malware dan port yang menjadi target serangan. Penentuan analisis ini berdasarkan diambil pada bulan desember 2015.
Dari analisis tersebut, diperoleh bahwa kategori severity terbanyak pada serangan berdasarkan severity, port yang menjadi target serangan terbanyak, metoda serangan terbanyak, malware yang paling banyak terdeteksi dan relasi antara malware dan port. Semua hasil ini memiliki penyebabnya masing-masing.

The focus of study is about attacks traffic analysis of intrusion detection system (Snort) and Honeynet. The discussion include attack traffic analysis based severity, port analysis which became target of the attack, attack method analysis, analyzes ten malware most detected by honeynet, analyzes ten port which became target of the attack, the analysis of relation between malware and port. The determination of this analysis is took in December 2015.
The result of this analysis is the most severity category based severity attack, the port which became target of the attack, the most attack method, malware most detected and relation between malware and port. All of this result have cause each.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63638
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>