Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 143694 dokumen yang sesuai dengan query
cover
Clarissa Nethania
"Tingkat mortalitas merupakan komponen penting dalam analisis kesehatan masyarakat yang diperlukan oleh banyak institusi seperti pemerintah, organisasi kesehatan, hingga perusahaan asuransi. Akan tetapi, data tingkat mortalitas merupakan data yang terus berubah seiring berjalannya waktu sehingga dibutuhkan peramalan tingkat mortalitas. Untuk melakukan peramalan tingkat mortalitas, diperlukan kesesuaian dari berbagai metode dan model untuk dapat memaksimalkan tingkat akurasi dari nilai hasil ramalan. Untuk mencapai hal tersebut, skripsi ini melakukan simulasi peramalan dengan model Cairns-Blake-Dowd (CBD) yang diaplikasikan terhadap data Tingkat Mortalitas Indonesia untuk jenis kelamin laki-laki yang bersifat tahunan. Model CBD sendiri memiliki dua parameter yang diestimasi menggunakan metode Least Square. Lalu, dikarenakan sifat parameter yang merupakan deret waktu multivariat, akan digunakan metode peramalan berupa Vector Autoregressive Integrated Moving Average (VARIMA). Hasil ramalan tersebut kemudian disubstitusikan kembali ke dalam model CBD untuk mendapatkan nilai tingkat mortalitas pada tahun-tahun berikutnya. Dalam menentukan akurasi hasil peramalan dari metode VARIMA dan estimasi parameter dari metode Least Square tersebut, digunakan metode Mean Squared Error (MSE).

Mortality rate is a crucial component in the analysis of public health which is required by various institutions such as the government, health organizations, and insurance companies. However, mortality rate data is constantly changing over time, necessitating the forecasting of mortality rates. Therefore, to forecast mortality rates, the alignment of various methods and models is necessary to maximize the accuracy of the forecasted values. To achieve this, this thesis will conduct a forecasting simulation using the Cairns-Blake-Dowd (CBD) model applied to Indonesian Mortality Rate data for males on an annual basis. The CBD model itself has two parameters to be estimated using the Least Square method. Then, due to the nature of the parameters as a multivariate time series, the Vector Autoregressive Integrated Moving Average (VARIMA) forecasting method will be employed. The forecasted results will be substituted back into the CBD model to obtain mortality rate values for the upcoming years. In determining the accuracy of the forecasting results from VARIMA and estimation from Least Square, the Mean Squared Error (MSE) method will be utilized."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahmat Al Kafi
"Populasi di Indonesia selalu mengalami perubahan dari tahun ke tahun karena peningkatan dan penurunan tingkat mortalitas yang berkelanjutan. Teori untuk meramalkan dan menganalisis tingkat mortalitas telah menarik minat perusahaan-perusahaan asuransi jiwa. Jika informasi tentang tingkat mortalitas nasabah untuk beberapa tahun kedepan dapat diperoleh di masa sekarang, maka perencanaan keuangan dan kebijakan dalam menentukan besarnya premi yang harus dibayarkan oleh nasabah kepada perusahaan asuransi tersebut akan lebih baik dan terarah. Tesis ini mengusulkan model Cairns-Blake-Dowd (CBD) untuk meramalkan tingkat mortalitas penduduk di Indonesia berdasarkan jenis kelamin. Model CBD memuat dua parameter yang bergantung waktu. Tahap pertama adalah menggunakan metode Least Square untuk mengestimasi nilai dari parameter-parameter pada model CBD. Pada tahap kedua, nilai dari parameter-parameter yang diperoleh dari tahap pertama diproyeksikan untuk empat periode kedepan menggunakan metode Holts Linear Trend. Kemudian nilai proyeksi dari parameter-parameter yang diperoleh dari tahap kedua digunakan untuk menghitung nilai ramalan dari tingkat mortalitas untuk empat periode kedepan menggunakan model CBD. Keakuratan dari hasil simulasi numerik yang dilakukan pada tahap pertama dan kedua diverifikasi oleh Mean Absolute Error (MAE).

The population of Indonesia always changes from year to year due to continuous increase and decrease in mortality rates. The theory of predicting and analyzing mortality rates has attracted the interest of life insurance companies. If information about the mortality rates of a customer for the next few periods can be obtained in the present, then the financial planning and policy in determining the amount of premium that must be paid by a customer to the insurance company are expected to be better and more directed. This thesis proposes the Cairns-Blake-Dowd (CBD) model to forecast the mortality rates of Indonesia population based on gender. The CBD model contains two time-dependent parameters. The first stage is to use the Least Square method to estimate these parameters. In the second stage, the parameters obtained from the first stage are projected for the next four periods using Holts Linear Trend method. Then the projection parameters obtained from the second stage are used to calculate the mortality rates for the next four periods using the CBD model. The accuracy of the numerical simulation results carried out in the first and second stages is verified by the Mean Absolute Error (MAE)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Yolanda Rahmi Safitri
"ABSTRAK

Peramalan tingkat mortalitas sangat dibutuhkan oleh perusahaan asuransi pada perencanaan kebijakan dalam penentuan premi untuk mengurangi risiko kerugian di masa mendatang. Dalam tesis ini, model Cairns-Blake-Dowd (CBD) digunakan untuk meramalkan tingkat mortalitas di Indonesia. Model CBD memuat dua parameter runtun waktu. Parameter-parameter dari model CBD diestimasi dengan menggunakan metode Least Square. Kemudian, peramalan parameter model CBD untuk beberapa periode ke depan dilakukan dengan menggunakan metode Bivariate Random Walk with Drift. Hasil dari peramalan parameter ini disubstitusi ke model CBD untuk mendapatkan tingkat mortalitas di Indonesia dalam beberapa periode ke depan. Keakuratan dari hasil estimasi dan peramalan diukur dengan menggunakan Mean Squared Error (MSE).


ABSTRACT


Forecasting mortality rates is needed by insurance companies in policy planning to determine premiums to reduce the risk of losses in the future. In this thesis, the Cairns-Blake-Dowd (CBD) model is used to forecast Indonesian mortality rates.  The CBD model contains two-time series parameters. The CBD model`s parameters are estimated by using the Least Square method. Then, parameters prediction for the next few periods used the Bivariate Random Walk with Drift method. The results of parameters prediction will be substituted to the CBD model to obtain Indonesian mortality rates for the next few periods. The accuracy of the estimation and forecasting results are measured by using Mean Squared Error (MSE).

"
2019
T53954
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Faiz Amir Aththufail
"Tingkat mortalitas merupakan salah satu indikator dalam kemajuan bidang kesehatan dan untuk membantu mengidentifikasi kelompok masyarakat yang diutamakan menerima program kesehatan serta pembangunan khusus. Tingkat mortalitas juga dapat digunakan untuk menunjukkan tingkat kesejahteraan dan kualitas hidup suatu negara. Selain itu tingkat mortalitas juga berperan dalam penetapan harga premi (pricing) dan perhitungan cadangan manfaat (valuation) untuk polis asuransi, produk anuitas, serta berperan dalam manajemen risiko aktuaria dan program pensiun. Mengingat tingkat mortalitas merupakan variabel acak yang berubah dari waktu ke waktu dan nilainya berada pada interval (0,1), maka diperlukan suatu model untuk dapat meramalkan tingkat mortalitas di masa depan. Salah satu model yang memiliki potensi untuk dapat memodelkan dan meramalkan tingkat mortalitas adalah model Beta Autoregressive Moving Average (βARMA). Model βARMA merupakan pengembangan dari regresi beta di mana error modelnya mengikuti proses Autoregressive Moving Average (ARMA). Pada penelitian ini akan dibahas mengenai implementasi model βARMA dalam memodelkan dan juga meramalkan tingkat mortalitas. Data yang digunakan adalah data tingkat mortalitas tahunan Indonesia dari tahun 1960 hingga 2020 dengan trend menurun dan data tingkat mortalitas bulanan akibat kecelakaan kerja di Rio Grande do Sul dari Januari 2000 hingga Desember 2017 yang bersifat stasioner. Model βARMA terbaik untuk kedua data dipilih berdasarkan nilai Akaike’s Information Criterion (AIC) terkecil kemudian dilakukan peramalan untuk enam periode selanjutnya. Keakuratan peramalan diukur berdasarkan Root Mean Square Error (RMSE). Pada data tingkat mortalitas tahunan Indonesia, diperoleh nilai RMSE sebesar 0.0001, sementara pada data tingkat mortalitas bulanan akibat kecelakaan kerja di Rio Grande do Sul, diperoleh nilai RMSE sebesar 0.0226.

The mortality rate is one of the indicators of progress in the health sector and to help identify groups of people who are prioritized to receive special health and development programs. The mortality rate can also be used to indicate the level of welfare and quality of life of a country. In addition, the mortality rate also plays a role in pricing premiums and calculating the benefit reserve (valuation) for insurance policies and annuity products, as well as playing a role in actuarial risk management and pension programs. Considering that the mortality rate is a random variable that changes from time to time and the value is in the interval (0,1), a model is needed to be able to forecast the mortality rate in the future. One model that has the potential to be able to model and forecast mortality rates is the Beta Autoregressive Moving Average (βARMA) model. The βARMA model is a development of beta regression where the error model follows the Autoregressive Moving Average (ARMA) process. In this study, we will discuss the implementation of the βARMA model in modeling and forecasting mortality rates. The data used are Indonesia's annual mortality rate data from 1960 to 2020 with a decreasing trend and the monthly mortality rate data due to work accidents in Rio Grande do Sul from January 2000 to December 2017 which is stationary. The best βARMA model for both data is selected based on the smallest Akaike's Information Criterion (AIC) value then a forecast is made for the next six periods. Forecasting accuracy is measured based on Root Mean Square Error (RMSE). In Indonesia's annual mortality rate data, the RMSE value is 0.0001, while in the monthly mortality rate data due to work accidents in Rio Grande do Sul, the RMSE value is 0.0226."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fitri Yulianti
"Gas merupakan sumber energi yang sangat besar potensinya di Indonesia. Penelitian ini memodelkan tingkat produksi gas dari tiga perusahaan besar dan juga tingkat produksi Indonesia secara keseluruhan kemudian memprediksi tingkat produksi gas pada periode yang akan datang. Dalam hal ini digunakan analisis deret waktu ARIMA dan data dari periode Januari 2005 ? Desember 2011. Hasilnya model ARIMA yang sesuai untuk meramalkan tingkat produksi Total E&P Indonesia adalah ARIMA (4,2,1) dengan MAPE 4.854 %, Pertamina adalah ARIMA (2,2,2) dengan MAPE 5.864%, dan Conoco Phillips Grissik sesuai dengan ARIMA (4,2,1) dengan MAPE 6.207%. Sedangkan model ARIMA peramalan tingkat produksi gas di Indonesia adalah ARIMA (4,2,1) dengan MAPE 3.607 %.

Gas is an enormous sourceenergy potential in Indonesia. This study is to model gas production rate of three major companies and the production of Indonesia as a whole and then predict the gas production rate in the next period. For the purpose, the data used are from the period January 2005 - December 2011. The result is the appropriate ARIMA models to forecast the gas production rate of Total E & P Indonesia is ARIMA (4,2,1) with MAPE 4.854%, Pertamina is ARIMA (2,2,2) with MAPE 5.864%, and Conoco Phillips Grissik according to ARIMA (4,2,1) with MAPE 6.207%. While ARIMA model forecasting gas production rate in Indonesia is appropriate ARIMA (4,2,1) with MAPE 3.607%."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S45708
UI - Skripsi Open  Universitas Indonesia Library
cover
Nanda Purnomo Aji
"ABSTRAK
Harga premi asuransi jiwa di Indonesia dipengaruhi oleh tabel kematian Indonesia digunakan oleh masing-masing perusahaan asuransi, seperti tabel kematian Indonesia berdasarkan jenis kelamin. Jika informasi tahun mendatang tabel kematian Indonesia berdasarkan jenis kelamin dapat diketahui, informasi tersebut dapat bermanfaat bagi perusahaan asuransi untuk mengatur premi
strategi perhitungan sehingga lebih cocok untuk menghadapi risiko di masa depan. Makalah ini memprediksi tabel angka kematian Indonesia berdasarkan jenis kelamin selama lima periode ke depan dengan menggunakan Lee- Model Carter. Parameter model Lee-Carter diperkirakan dengan menggunakan Least Square metode dan metode Newton Raphson, sedangkan prediksi parameter yang tergantung pada waktu menggunakan metode Double Moving Average. Keakuratan hasil estimasi dan perkiraan
diukur dengan menggunakan Mean Absolute Perscentage Error (MAPE). Dari penelitian ini, Tabel kematian Indonesia berdasarkan jenis kelamin diperoleh untuk periode 2015-2020 sampai
2035-2040.

ABSTRACT
The price of life insurance premiums in Indonesia is influenced by Indonesia's death tables used by each insurance company, such as Indonesia's death tables by sex. If the next year's information on Indonesia's death table based on sex can be known, this information can be useful for insurance companies to manage premiums calculation strategies so that it is more suitable for dealing with risks in the future. This paper predicts Indonesia's mortality table by sex over the next five periods using the Lee-Carter Model. The Lee-Carter model parameters are estimated using the Least Square method and Newton Raphson method, while the parameter predictions that depend on time use the Double Moving Average method. Accuracy of estimation and estimation results measured using Mean Absolute Perscentage Error (MAPE). From this study, Indonesian death tables by sex were obtained for the period 2015-2020
2035-2040.
"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Aldi Rahmansyah Kurnia
"

Seiring dengan meningkatnya taraf hidup dan konsumsi masyarakat di Indonesia, permintaan produk Fast Moving Consumer Goods (FMCG) pun mengalami peningkatan khususnya produk FMCG pada kategori Nutrisi. Hal ini tentunya menjadi potensi keuntungan bagi perusahaan jika bisa memanfaatkan kondisi dengan baik. Untuk mengoptimalkan potensi yang ada, perusahaan perlu memastikan bahwa produknya bisa menjangkau masyarakat luas dengan tepat waktu, hal ini perlu didukung oleh rencana produksi yang baik. Hal utama yang menjadi acuan perusahaan memproduksi sebuah produk adalah peramalan permintaan di waktu yang akan datang. Peramalan akan menjadi acuan perusahaan untuk menentukan seberapa banyak produk yang harus diproduksi dalam kurun waktu tertentu. Peramalan yang baik akan membantu perusahaan untuk meningkatkan keuntungan dan meminimalisasi kerugian yang timbul akibat kesalahan dalam perhitungan produksi. Selain peramalan, perusahaan pun perlu menentukan jumlah safety stock dan reorder point untuk membantu perusahaan dalam memastikan bahwa stok yang dimiliki bisa terus memenuhi permintaan pasar.


Along with the increasing standard of living and public consumption in Indonesia, the demand for Fast Moving Consumer Goods (FMCG) products has also increased, especially for FMCG products in the Nutrition category. This is a great potential profit for the company if it can take the advantages of the conditions properly. To optimize the potential that exists, companies need to ensure that their products can reach the wider community at the right time, this needs to be supported by a good production plan. The main thing that becomes a reference for producing a product is forecasting demand in the future. Forecasting will be a reference for the company to determine how many products must be produced within a certain time. Good forecasting will help companies to increase profits and minimize losses arising from errors in production calculations. In addition to forecasting, companies also need to determine the amount of safety stock and reorder points to help companies ensure that their stock can continue to meet market demand.

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Karyoko
"Runtun waktu adalah salah satu data yang paling umum dan banyak dijumpai di kehidupan sehari-hari. Runtun waktu dianalisis dengan dua tujuan utama, yaitu untuk memodelkan mekanisme stokastik dari runtun waktu tersebut dan untuk melakukan peramalan. Untuk keperluan dua tujuan tersebut, banyak model runtun waktu yang telah dikembangkan, salah satunya adalah model autoregressive moving average (ARMA). Model ARMA adalah model runtun waktu univariat yang cukup populer dan umum digunakan saat ini. Seiring berjalannya waktu, mulai dikembangkan model runtun waktu multivariat, yang dapat memodelkan runtun waktu dengan dua atau lebih variabel. Meng- gunakan model runtun waktu multivariat untuk memodelkan dua atau lebih variabel tentu lebih efektif dibandingkan memodelkannya satu per satu menggunakan model univariat. Selain itu, model runtun waktu multivariat juga dapat menjelaskan hubungan dinamis antarvariabel yang saling terkait. Dalam skripsi ini, akan dijelaskan versi multivariat dari model ARMA, yaitu model vector autoregressive moving average (VARMA), mulai dari karakteristiknya, spesifikasi model, penaksiran parameter, hingga melakukan pera- malan. Penaksiran parameter akan dilakukan dengan menggunakan metode conditional maximum likelihood. Model VARMA ini kemudian akan digunakan untuk melakukan peramalan dua variabel yang cukup berpengaruh dalam ekonomi makro, yaitu data harian indeks harga saham gabungan (IHSG) dan kurs mata uang rupiah terhadap dolar Amerika Serikat. Data tersebut juga akan dimodelkan menggunakan model ARMA(p,q) dan VAR(p). Model yang digunakan adalah model ARIMA(0,1,0) untuk data IHSG, model ARIMA(0,1,2) untuk data kurs rupiah, model VARI(3,1) dan model VARIMA(1,1,1). Menggunakan indikator mean absolute percentage error (MAPE), didapatkan hasil bahwa model VARI(3,1) memberikan hasil peramalan yang paling akurat.

Time series is one of the most common data and is often found in everyday life. The purpose of time series analysis is generally twofold: to understand or model the stochastic mechanism that gives rise to an observed series and to predict or forecast the future values of a series based on the history of that series and, possibly, other related series or factors. For the purposes of these two objectives, many time series models have been developed, the most popular one is autoregressive moving average (ARMA) model. The ARMA model is a univariate time series model that is quite popular and commonly used today. Over time, multivariate time series models have been developed, which can model time series with two or more variables. Using a multivariate time series model to model two or more variables is certainly more effective than modeling them one by one using a univariate model. In addition, the multivariate time series model can also explain the dynamic relationship between interrelated variables. In this undergraduate thesis, we will explain the multivariate version of the ARMA model, the vector autoregressive moving average (VARMA) model, starting from its characteristics, model specifications, param- eter estimation, to forecasting. Parameter estimation will be done using the conditional maximum likelihood method. Then, this VARMA model will be used to forecast two maroeconomics indicators: daily data of Indonesia Composite Index and the USD-IDR exchange rate. The data will also be modeled using the ARMA(p,q) and VAR(p) models. In chapter 4, the models used are ARIMA(0,1,0) model for Indonesia Composite Index data, ARIMA(0,1,2) model for USD-IDR exchange rate data, VARI(3,1) model and VARIMA(1,1,1) model. Using the mean absolute percentage error (MAPE) indicator, the results show that VARI(3,1) model provides the most accurate forecasting results."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yosef Benyamin
"Peramalan merupakan salah satu hal yang dibutuhkan untuk mencapai tingkat manajemen rantai pasok yang baik. Peramalan dapat mencegah kelebihan pembelian dan juga menjaga ketersediaan barang dengan baik. Peramalan dapat menjadi salah satu metode untuk melakukan menjaga ketersediaan obat di rumah sakit. Obat sendiri merupakan salah satu barang yang sensitif dan reaktif, hal ini menyebabkan obat harus memiliki penyimpanan khusus dan tidak bisa disimpan dalam waktu lama. Dilain pihak, pada industri rumah sakit, ketersediaan obat harus selalu ada. Hal tersebut membuat rumah sakit harus memiliki peramalan obat yang akurat untuk menjaga ketersediaan obat dan mengurangi kelebihan pembelian dan penyimpanan obat dalam waktu lama. Penelitian kali ini akan membandingkan metode tiga metode peramalan, yaitu single exponential smoothing, autoregressive integrated moving average (ARIMA), dan artificial neural network (ANN). Penelitian ini bertujuan untuk melihat dan menganalisa metode peramalan yang paling baik dari ketiga metode yang ada. Penelitian kali ini akan mengambil data penjualan sebanyak 62 periode dari 3 jenis obat dengan kategori obat fast-moving, yaitu Rhinofed, Simvastatin, dan Betahistin. Berdasarkan hasil penelitian, peramalan dengan metode artificial neural network (ANN) memiliki nilai error yang kecil, sehingga nilai ketepatannya cukup besar. Jika dibandingkan dengan kedua metode lainnya peramalan dengan menggunakan metode artificial neural network masih memiliki nilai error yang paling kecil sehingga nilai ketepatan peramalannya yang paling besar. Hal tersebut menyimpulkan bahwa peramalan dengan metode artificial neural network (ANN) merupakan metode peramalan paling baik dari ketiga metode peramalan yang ada dan baik diimplementasikan di rumah sakit.

A forecast is one of the important aspects of a company to achieve a good supply chain management system. The forecast could help a company to avoid overstock conditions and ensure the availability of the product. Based on that concept, forecasts could also be used to ensuring the availability of medicine stock in hospitals. The medicine itself is one of the sensitive and reactive materials that make medicines need a very intense inventory condition and couldn't keep in a long period of time. On the other hand, hospitals need to ensure the availability of each medicine. Based on that condition, it is undoubtedly true that the forecast is needed in the hospital supply chain to ensure medicine availability and avoid overstocking. This research will compare three different methods of forecasting, that is single exponential smoothing (SES), autoregressive integrated moving average (ARIMA), and artificial neural network (ANN). The goal of this research is to find and analyze the best forecasting method suitable for the hospital supply chain. Three medicines that will be analyzed in this research are Rhinofed, Simvastatin, and Betahistin based on their title as fast-moving drugs using 62 periods of historical sales. As a result, the artificial neural network method has the smallest error and creates a better accuracy compared to another two methods. Even if every single method has its own strengths and weaknesses, the artificial neural network is the best method among the three methods that been proposed and could be implemented in the hospital supply chain."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurulita
"Peramalan merupakan bagian dari pengelolaan permintaan sebagai fungsi dalam perencanaan produksi sehingga dapat berguna dalam memberikan gambaran kegiatan produksi yang akan dilaksanakan. Tujuan dari penelitian ini adalah untuk memperoleh model peramalan yang akurat guna memproyeksikan permintaan produk sebagai fungsi dari perencanaan produksi. Oleh karena peramalan tidak mutlak benar dan akurat, pendekatan kesalahan peramalan merupakan kunci utama untuk menetapkan penentuan tingkat persediaan minimum (safety stock). Sehingga peramalan permintaan dapat diprediksi dan jumlah persediaan dapat ditentukan guna mengantisipasi jumlah permintaan yang variatif dan fluktuatif. Menggunakan analisis runtun waktu dengan metode ARIMA, didapatkanlah model peramalan permintaan dimana kesalahan peramalan turun hingga 19%.

Forecasting is part of demand management as production planning functions that could be useful in giving the description of production activities to be carried out. The purpose of this research is to obtain an accurate forecasting model to project the demand for the product as a function of production planning. Because forecasting is not absolutely true and accurate, the forecast error approach is a key to determine the set minimum inventory levels (safety stock). Thus the forecast demand can be predicted and the amount of inventory can be determined to anticipate the number of variety and fluctuative demand. Using time series analysis with ARIMA method, it is concluded that the demand forecasting model in which the forecast error falls to 19%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S52076
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>