Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 104954 dokumen yang sesuai dengan query
cover
Jason Wijaya
"Dalam upaya untuk mengendalikan besarnya kerugian, memodelkan severitas klaim merupakan salah satu cara yang sering dilakukan oleh perusahaan asuransi. Terdapat beberapa cara untuk memodelkan severitas klaim, salah satunya dengan generalized linear model. Akan tetapi fakta sederhana bahwa setiap pemegang polis itu tidak sama sering diabaikan karena hasil yang diperoleh hanya disajikan untuk “rata-rata” pemegang polis. Potensi variabilitas ini yang tercermin pada data asuransi dapat diidentifikasi dengan mengelompokkan pemegang polis ke dalam kelompok yang berbeda. Sehingga dari perilaku yang berbeda pada masing-masing kelompok memungkinkan perusahaan asuransi mengembangkan strategi untuk mengendalikan besarnya kerugian. Pada praktiknya, model yang sering digunakan untuk pengelompokan adalah model finite mixture, dengan setiap kelompok dimodelkan dengan fungsi kepadatan probabilitasnya (pdf) sendiri. Salah satu keluarga model finite mixture yang fleksibel untuk vektor acak yang terdiri dari variabel respon dan satu set kovariat yang disesuaikan dengan distribusi bersamanya adalah cluster-weighted model (CWM). CWM merupakan kombinasi linear antara distribusi marjinal kovariat dan distribusi bersyarat dari respons yang diberikan kovariat. Distribusi bersyarat pada CWM diasumsikan milik keluarga eksponensial dan kovariatnya diperbolehkan tipe campuran yaitu diskrit dan kontinu (diasumsikan gaussian). Selanjutnya, model dicocokkan ke dalam data (fitting the model) menggunakan Maximum likelihood estimation (MLE) untuk menaksir parameter model dengan algoritma ekspektasi-maksimalisasi (EM). Pemilihan model terbaik dievaluasi dari skor akaike information criterion (AIC) dan bayesian information criterion (BIC). Permasalahan penentuan jumlah cluster diselesaikan secara bersamaan dengan memilih model terbaik. Pada akhirnya, CWM dapat digunakan untuk meningkatkan pemahaman tentang perilaku pemegang polis dan karakteristik risikonya yang dihasilkan di setiap cluster. Penerapan metode ini diilustrasikan pada data asuransi mobil di Prancis.

In an effort to control the amount of loss, modeling the severity of claims is one way that is often done by insurance companies. There are several ways to model claim severity, one of which is a generalized linear model. However, the simple fact that every policyholder is not the same is often overlooked because the results obtained are only presented for the "average" policyholder. This potential for variability reflected in insurance data can be identified by classifying policyholders into different groups. So that the different behavior of each group allows insurance companies to develop strategies to control the amount of losses. In practice, the model often used for grouping is the finite mixture model, with each group being modeled with its own probability density function (pdf). One of the flexible finite mixture model families for random vectors consisting of a response variable and a set of covariates adjusted for their common distribution is the cluster-weighted model (CWM). CWM is a linear combination between the marginal distribution of the covariates and the conditional distribution of the responses given by the covariates. The conditional distribution on CWM is assumed to belong to the exponential family and the covariates are allowed mixed types, namely discrete and continuous (assumed to be gaussian). Next, the model is fitted to the data (fitting the model) using Maximum likelihood estimation (MLE) to estimate the model parameters with the expectation-maximization (EM) algorithm. Selection of the best model was evaluated from the Akaike information criterion (AIC) and Bayesian information criterion (BIC) scores. The problem of determining the number of clusters is solved simultaneously by selecting the best model. In the end, CWM can be used to increase understanding of policyholder behavior and the resulting risk characteristics in each cluster. The application of this method is illustrated in data on auto insurance in France."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gina Nuryani Putri
"Analisis regresi digunakan untuk mengetahui hubungan antara satu variabel respon dan satu atau lebih variabel penjelas. Ketika variabel respon berupa data count yaitu data yang berupa bilangan bulat non-negatif, analisis regresi yang sering digunakan adalah analisis regresi Poisson. Pada regresi Poisson terdapat asumsi kesamaan nilai mean dengan nilai variansinya. Dalam data count sering didapati kondisi dimana nilai variansi lebih besar dari nilai meannya atau disebut overdispersi. Pada data yang overdispersi, regresi Poisson kurang tepat jika digunakan karena nilai standard error dari taksiran parameter yang dihasilkan akanunderestimate sehingga beresiko memberikan kesimpulan yang tidak tepat. Model regresi Poisson-Inverse Gaussian dapat digunakan pada data count yang overdispersi dan memiliki tail panjang. Penaksiran parameter model regresi Poisson-Inverse Gaussian menggunakan metode maksimum likelihood dan solusi dari fungsi log -likelihood-nya menggunakan pendekatan numerik yaitu Newton-Raphson. Uji kesesuaian model yang digunakan mencakup statistik pseudo R-Squared, uji rasio likelihood, dan Uji Wald.

Regression analysis is used to investigate the relationship between one response variable and one or more regressor variables. If the response variable is count data, that has non negative integer value, the regression analysis that usually used is Poisson Regression. Poisson regression has an assumption that mean of response variable equal to its variance. On count data frequently found that the variance is greater than mean, or called overdispersion. On overdispersion case, poisson regression is inconvenient to used because it may underestimate the standard error of regression parameters and consequently it risk to give misleading inference. Poisson Inverse Gaussian regression model can be used on overdispersion and long tail count data. Parameter estimation of Poisson Inverse Gaussian Regression Model can be obtained through the maximum likelihood method and the solution of log likelihood function may be solved by using numerical method called Newton Raphson. Goodness of fit testing of this model includes pseudo R Squared, rasio likelihood test, and Wald test."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68659
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jessie Mirra
"Seringkali analisis statistik beranggapan suatu data hanya berasal dari satu populasi saja. Padahal pada kenyataannya terdapat kondisi dimana suatu data bisa dibagi menjadi beberapa sub-populasi. Gaussian Finite Mixture Model adalah salah satu metode untuk memodelkan data heterogen yang memungkinkan berasal dari sub-populasi yang berbeda. Model ini berbentuk superposisi dari beberapa distribusi Gaussian. Jumlah distribusi akan ditentukan dengan menggunakan Akaikes Information Criterion dan model diagnostik. Estimasi parameter pada model ini menggunakan metode Bayesian, yaitu dengan menentukan distribusi prior untuk parameter model, digabungkan dengan likelihood yang akan menghasilkan distribusi posterior. Kemudian, Markov chain Monte Carlo-Gibbs Sampler digunakan untuk menarik sampel pada parameter dari distribusi poteriornya masing-masing.

Commonly statistical analysis assume data comes from one population. But there are conditions where data might be generated from several sub-populations. Gaussian Finite Mixture Model (GFMM) is one of the methods to model heterogeneous data that might come from different sub-populations. This model was formed as a superposition of several Gaussian distribution, with different location parameter. Number of distributions will be determined using Akaike`s Information Criterion and model diagnostic. Parameter estimation is conducted using Bayesian method, that is by specifying the prior distribution for the models parameters, combined with the likelihood to produce the posterior distribution. Finnally, Markov chain Monte Carlo-Gibbs Sampler is implemented to withdraw sampel of parameters from the corresponding posterior distributions."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hamdi Ranuharja
"Pemodelan jumlah klaim mengklaim salah satu topik paspor adalah praktik lapangan. masalah ini sering ditemukan dalam model ingthataatais persebaran. Poisson dributiontion yang digunakan dalam pemodelan sumber klaim tidak dapat digunakan sebagai fakta overproperti penyebaran.Oleh karena itu, distribusi yang distandarisasi di luar negeri dapat dimanfaatkan
jumlah klaim yang mengklaim pengungkapan properti yang dibutuhkan. Dalam tulisan ini, analternatif menerima distribusi yang dihasilkan, yaitu Distribusi Umum Biomial Negatif-Negatif Distribusi adalah distribusi distribusi negatif negatif dan distribusi Membalik Gaussie dan distribusi metameterisasi pada parameter negatif Distribusi binomial yaitu p = exp (), di mana nilai variabel acak acak yang didistribusikan Inverse Gaussian. Distribusi eksternal ini adalah unimodal, hasa tebal thailand hasa positif menghasilkan kewajiban koefisien. Dalam tesis tingkat bawah, kemungkinan serangan dan komitmen faktorial dari distribusi NB-IG yang didistribusikan. Berarti, varians, skewness danurturtasthasic properties ofNB-IG distribusi disajikan dan parameter pengujian diperlakukan melalui survival maksimum maksimum metode estimasi. Kepenuhan distribusi NB-IG diilustrasikan oleh data nyata set.

One topic of passports is field practice. this problem is often found in modeling the data distribution. tion used in modeling claims sources cannot be used as a fact of overproperty distribution. Therefore, standardized distributions abroad can be used the number of claims claimed In this paper, accept the resulting distribution, namely General Negative-Negative Biomial Distribution, Distribution is negative negative distribution and Gaussie Reverse distribution and metameterization distribution on negative parameters, binomial distribution ie p = exp (), where the variable value Varies Published InverseGaussian. This external distribution is immunodal, Thailand has a positive potential to produce the coefficient obligation. In the lower-level thesis, attacks and factorial commitments from the distributed NB-IG distribution are published. Means, variants, skewness and strictness of the properties of NB-IG distribution are presented and test parameters are approved through maximum maximum survival estimation method. The fullness of the NB-IG distribution is illustrated by real data sets."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Olivia Iolana
"Analisis data lifetime sangat penting dalam berbagai bidang ilmu pengetahuan seperti biomedis, teknik, dan ilmu kemasyarakatan. Pemodelan data tersebut dilakukan dengan menggunakan fungsi hazard dari distribusi lifetime seperti distribusi eksponensial, Weibull, lognormal, dan juga gamma. Namun, keempat distribusi tersebut tidak dapat memodelkan fungsi hazard berbentuk bathtub. Padahal, fungsi hazard berbentuk bathtub adalah yang paling sering ditemukan dalam kehidupan nyata. Oleh karena itu, akan dibentuk distribusi generalized Lindley yang lebih fleksibel dalam memodelkan fungsi hazard. Distribusi tersebut merupakan perumuman dari distribusi Lindley dengan menggunakan transformasi exponentiation. Kemudian, karakteristik-karakteristik dari distribusi generalized Lindley juga akan ditelusuri. Selanjutnya, analisis bentuk dari fungsi hazard akan menunjukkan bahwa distribusi generalized Lindley dapat memodelkan data dengan fungsi hazard yang berbentuk monoton naik, monoton turun, dan juga bathtub. Setelah itu, penaksiran parameter distribusi generalized Lindley akan dilakukan dengan metode yang paling umum digunakan yaitu metode maximum likelihood. Simulasi dengan membangkitkan data menggunakan software juga akan dilakukan dengan bantuan metode Newton-Raphson untuk melihat penaksiran parameter dari distribusi generalized Lindley.

Analysis of lifetime data is very important in various fields such as biomedical science, engineering, and social science. The modelling of lifetime data is done by using hazard function of lifetime distributions such as exponential, Weibull, lognormal, and gamma distribution. However, these four distributions cannot model data with bathtub-shaped hazard function even though it is the one mostly found in real life situation. Therefore, more flexible distribution called generalized Lindley distribution is introduced to model hazard function. The distribution is created by using transformation called exponentiation to generalize the Lindley distribution. Afterwards, some characteristics of generalized Lindley distribution will be discussed. Analysis of the hazard function will show that generalized Lindley distribution can models data with increasing, decreasing, and bathtub-shaped hazard function. In addition, parameter estimation of the distribution will be done by the usual method which is maximum likelihood estimation. Lastly, simulation using software-generated data will be displayed with help from Newton-Raphson numerical method to see the parameter estimation of generalized Lindley distribution."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syafira Chika Widiyanti
"Distribusi merupakan pendorong utama profitabilitas keseluruhan sebuah perusahaan. Tingginya biaya distribusi produk di UMKM makanan disebabkan karena tidak adanya perhitungan biaya untuk mendapatkan keputusan distribusi yang optimal. Tujuan dari penelitian ini adalah untuk menghasilkan model distribusi produk di UMKM makanan dengan biaya terendah dan waktu tercepat. Untuk menyelesaikan permasalahan distribusi produk makanan di 5 UMKM makanan, dimodelkan masalah Heterogenous Fleet Vehicle Routing Problem with Time Window (HVRPTW) dalam bentuk Mixed Integer Linear Programming dan diselesaikan menggunakan algoritma branch-and-bound pada perangkat lunak Lingo. Hasil dari penelitian ini adalah optimasi biaya distribusi produk untuk 5 UMKM makanan yang menghasilkan keputusan distribusi dengan biaya terendah dan waktu tercepat. Telah dikembangkan alat untuk perhitungan biaya distribusi yang dapat digunakan oleh UMKM makanan untuk pendukung keputusan distribusi produk harian

Distribution is the main driver of the overall profitability of a company. The high cost of product distribution in food SMEs is caused by the absence of distribution cost calculation for SMEs to make optimal distribution decisions. The purpose of this research is to provide SMEs with a product distribution model with the lowest cost and fastest time. A Heterogenous Fleet Vehicle Routing Problem (HVRP) for the food distribution problem in 5 food SMEs is modeled in the form of Mixed Integer Linear Programming and solved using branch-and-bound algorithm in Lingo software. The result of this study is the optimization of the distribution cost for 5 food SMEs distribution decisions. A tool for the calcuation of distribution cost is developed for food SMEs to support daily product distribution decisions."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Anggraeni
Depok: Universitas Indonesia, 2010
S27834
UI - Skripsi Open  Universitas Indonesia Library
cover
Aurellia Surya
"Model kredibilitas mengestimasi frekuensi klaim tahun berikutnya dengan menggunakan data klaim masa lalu. Model kredibilitas Buhlmann dapat dinyatakan sebagai kasus khusus dari Linear Mixed Models (LMM) dengan asumsi banyak klaim dan random effect berdistribusi normal. Namun, banyak klaim lebih tepat dimodelkan dengan distribusi diskrit sehingga LMM perlu diperluas ke Generalized Linear Mixed Models (GLMM) yang dapat mencakup variabel respons mengikuti keluarga eksponensial. Pada tugas akhir ini, dikonstruksi model kredibilitas Buhlmann untuk frekuensi klaim yang diperluas berdasarkan kerangka GLMM dengan variabel respon berdistribusi Poisson dan binomial negatif. Parameter dari model kredibilitas Buhlmann yang diperluas berdasarkan kerangka GLMM diestimasi menggunakan metode numerik adaptive Gaussian quadrature. Data yang digunakan untuk penerapan model adalah data frekuensi klaim yang dibangkitkan dengan menggunakan software R. Pada akhir tulisan, performa model kredibilitas Buhlmann yang diperluas berdasarkan kerangka GLMM dibandingkan terhadap model kredibilitas Buhlmann menggunakan nilai Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) serta Mean Squared Prediction Error (MSPE). Berdasarkan kriteria model terbaik serta nilai MSPE, model kredibilitas Buhlmann yang diperluas berdasarkan kerangka GLMM memiliki performa yang lebih baik dibanding model kredibilitas Buhlmann dalam memprediksi frekuensi klaim.

The credibility model estimates claim frequency in the following year by using past claims data. Buhlmann credibility model can be expressed as a special case of Linear Mixed Model (LMM) assuming claim frequency and random effects are normally distributed. However, claim frequency is more precisely modelled with discrete distributions so that LMM needs to be extended to Generalized Linear Mixed Model (GLMM) which can include response variables following an exponential family. In this final project, extended Buhlmann credibility model is constructed for predicting claim frequency based on the Generalized Linear Mixed Model (GLMM) framework with response variables following Poisson distribution and negative binomial distribution. The parameters of the extended Buhlmann credibility model based on the GLMM framework were estimated using the adaptive Gaussian quadrature numerical method. The data used for application of the model is claim frequency data generated using R software. At the end of this paper, the performance of extended Buhlmann credibility model based on the GLMM framework is compared to Buhlmann credibility model using AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), and MSPE (Mean Squared Prediction Error) values. Based on the criteria of the best model and the MSPE value, the extended Buhlmann credibility model based on the GLMM framework has better performance than Buhlmann credibility model in predicting claim frequency.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gross, Alan J.
New York: John Wiley & Sons, 1975
519.24 GRO s (1)
Buku Teks  Universitas Indonesia Library
cover
Ratna Zafira Hafidzah
"Kecelakaan adalah salah satu risiko yang dapat berakibat fatal pada kendaraan bermotor. Berdasarkan data Kementerian Perhubungan, di Indonesia telah terjadi 103.645 kasus kecelakaan kendaraan bermotor pada 2021. Tingkat kecelakaan kendaraan bermotor berpotensi meningkat setiap tahunnya seiring kenaikan signifikan dari pemilik kendaraan. Selain kecelakaan, ancaman risiko lain, seperti kehilangan, pencurian, dan kebakaran/ledakan mendorong masyarakat membeli asuransi kendaraan bermotor. Asosiasi Asuransi Umum Indonesia (AAUI) menyampaikan kenaikan 345% pembelian asuransi kendaraan bermotor di Indonesia pada tahun 2022. Tren ini menstimulasi penetapan tarif premi asuransi kendaraan bermotor yang kompetitif antar perusahaan asuransi. Perhitungan tarif premi didasarkan atas data historis frekuensi klaim dan severitas klaim. Kedua komponen tersebut bergantung pada faktor-faktor risiko nasabah. Frekuensi klaim dan severitas klaim dimodelkan sebagai variabel respons dalam pemodelan Generalized Linear Model (GLM), dimana faktor-faktor risiko nasabah menjadi variabel prediktor model. Pemodelan frekuensi klaim dan severitas klaim lazim dilakukan secara independen, tetapi tidak jarang ditemukan ketergantungan antar keduanya. Data historis frekuensi klaim dan severitas klaim dalam penelitian ini menunjukkan nilai ketergantungan yang rendah, tetapi signifikan. Oleh karena itu, penelitian ini menganalisis performa dua model GLM dalam perhitungan data frekuensi klaim dan severitas klaim tersebut, yaitu GLM Tweedie dan GLM copula. GLM Tweedie digunakan untuk memodelkan frekuensi klaim dan severitas klaim secara independen, sedangkan GLM copula digunakan untuk memodelkan frekuensi klaim dan severitas klaim secara dependen. Pada pemodelan GLM Tweedie, distribusi frekuensi klaim dan severitas klaim yang digunakan adalah distribusi Tweedie untuk keduanya, sedangkan pada pemodelan GLM copula, distribusi frekuensi klaim yang digunakan adalah distribusi Zero-Truncated Poisson (ZTP) dan distribusi severitas klaim yang digunakan adalah distribusi Gamma. Root Mean Square Error (RMSE) digunakan dalam menganalisis performa model. Semakin kecil nilai RMSE, semakin baik performa model tersebut. Hasil pemodelan data menunjukkan nilai RMSE yang lebih kecil pada model GLM Tweedie untuk frekuensi klaim dan severitas klaim.

Traffic accident is one of the risks that can be fatal to automobile vehicles. Based on data from the Ministry of Transportation, there have been 103,645 cases of automobile vehicle accidents in Indonesia in 2021. The rate of motor vehicle accidents has the potential to increase every year in line with the significant increase in automobile vehicle owners. Apart from traffic accidents, other risk threats, such as loss, theft, and fire/explosion encourage people to buy automobile vehicle insurance. In 2022, Asosiasi Asuransi Umum Indonesia (AAUI) reported a 345% increase in purchases of automobile vehicle insurance in Indonesia. This trend stimulates the setting of competitive automobile vehicle insurance premium rates among insurance companies. Premium rate calculation is based on historical data on claim frequency and claim severity. Both components depend on the customer's risk factors. Claim frequency and claim severity are modeled as response variables in the Generalized Linear Model (GLM) modeling, while customer risk factors are the predictor variables of the model. Modeling of claim frequency and claim severity is usually done independently, but it is not uncommon to find dependencies between both. Historical claim frequency and claim severity data in this study shows a low but significant dependency value. Therefore, this study analyzes the performance of two GLM models in calculating claim frequency and claim severity data, namely GLM Tweedie and GLM copula. The GLM Tweedie is used to model the claim frequency and the claim severity independently, while the GLM copula is used to model the claim frequency and the claim severity dependently. In the GLM Tweedie modeling, the claim frequency and the claim severity is considered Tweedie distributed for both, whereas in the GLM copula modeling, the claim frequency distribution is the Zero-Truncated Poisson (ZTP) distribution and the claim severity distribution is the Gamma distribution. Root Mean Square Error (RMSE) is used in analyzing model performance. A smaller RMSE value indicates better model performance. The results of data modeling show a smaller RMSE value in the GLM Tweedie model for claim frequency and claim severity."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>