Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 39198 dokumen yang sesuai dengan query
cover
Rayhan Fadilla
"Premi murni merupakan salah satu elemen penting untuk perusahaan asuransi. Penetapan premi murni yang sesuai dengan risiko kerugian dari calon pemegang polis menjadi salah satu faktor utama agar perusahaan tetap berjalan dan mampu berkompetisi dalam industri. Premi murni dapat ditentukan dengan menghitung ekspetasi dari besar klaim agregat yang dibagi dengan durasi kontrak asuransi. Namun, perlu diketahui bahwa premi murni juga dapat dipengaruhi oleh berbagai faktor risiko seperti umur, jenis kelamin, dan jenis pekerjaan dari nasabah. Salah satu metode untuk mengatasi masalah ini yaitu dengan membuat model regresi menggunakan generalized linear model Distribusi yang cocok untuk memodelkan premi murni adalah distribusi Compound Poisson-Gamma yang merupakan bagian dari distribusi Tweedie. Distribusi Tweedie merupakan distribusi yang mengeneralisasi distribusi lain yang termasuk ke dalam exponential dispersion family. Tujuan dari penelitian ini adalah untuk memodelkan premi murni menggunakan generalized linear model dengan asumsi respons berdistribusi Tweedie atau disebut regresi Tweedie. Dengan mengaplikasikan model ini pada data asuransi kecelakaan kendaraan didapat bahwa regresi Tweedie mampu menjelaskan premi murni dengan baik.

Pure premium is one of the essential elements for insurance companies. Calculate the appropriate pure premium based on the potential policyholder's risk of loss is crucial to ensure the company's operations and competitiveness in the industry. Pure premiums can be determined by calculating the expectations of large aggregate claims divided by the duration of the insurance contract. However, it should be noted that pure premiums can also be influenced by various risk factors such as age, gender, and the type of employment of the client. One method to address this issue is by creating a regression model using a generalized linear model. The suitable distribution to model of pure premium is the Compound Poisson-Gamma distribution, which is a part of the Tweedie distribution. Tweedie distribution generalizes other distributions that fall under the exponential dispersion models. The objective of this research is to model pure premium using a generalized linear model with assumption that the response follows a Tweedie distribution, known as Tweedie regression. The application of Tweedie regression model to automobile accident insurance data yielded promising results in explaining the pure premium."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
A Life Alva Permana
"Salah satu hal penting dalam bisnis asuransi adalah bagaimana perusahaan asuransi dapat menetapkan premi yang sesuai dengan ekspektasi kerugian dari pelanggan dan dapat bersaing di pasar. Untuk menetapkan premi tersebut, salah satu hal penting untuk dilakukan adalah memperkirakan besar klaim agregat. Masalah perkiraan besarnya klaim agregat merupakan masalah regresi. Salah satu metode yang sudah cukup berkembang untuk permasalahan regresi adalah Gradient Tree Boosting. Salah satu kekurangan dari metode Gradient Tree Boosting adalah metode ini tidak mengimplementasikan asumsi bahwa data memiliki distribusi. Sementara untuk data klaim agregat, dapat digunakan asumsi bahwa frekuensi klaim berdistribusi Poisson, severitas klaim berdistribusi Gamma, dan keduanya saling independen sehingga klaim agregat diasumsikan berdistribusi Tweedie. Gradient Tree Boosted Tweedie Model merupakan salah satu metode untuk menyelesaikan masalah regresi untuk klaim dengan asumsi-asumsi tersebut. Metode ini menggunakan algoritma Gradient Tree Boosting dengan menjadikan negatif fungsi log-likelihood dari distribusi Tweedie sebagai fungsi loss-nya. Didapatkan hasil bahwa asumsi klaim agregat berdistribusi Tweedie meningkatkan akurasi dari metode Gradient Tree Boosting.

One of the important things in insurance business is how will insurance company set a premium that could correspond insured’s expected loss while also being competitive in market. To set a proper premium for insurance customer, one of the important tasks is to estimate total loss or aggregate claim of the insured. Estimating the aggregate claim is a regression problem. One of many methods for regression problem is Gradient Tree Boosting. One of the weaknesses of Gradient Tree Boosting is, this method does not implement the assumption that the data might be distributed. While for aggregate claim, one can assume that the claim frequency is Poisson distributed, claim severity is Gamma distributed, and both are independent so that the aggregate claim could be assumed to be Tweedie distributed. Gradient Tree Boosted Tweedie Model is one of many methods for solving a regression problem for a claim with the assumption mentioned. This method uses Gradient Tree Boosting algorithm with the log-likelihood function of Tweedie distribution as it’s loss function. It was found that the assumption that the aggregate claim is Tweedie distributed improves the accuracy of Gradient Tree Boosting method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Al Rizza Usfatul Kholifah
"Penentuan premi bersih untuk asuransi non-jiwa dapat dilakukan dengan memperkirakan kerugian agregat dari suatu kelompok polis. Kerugian agregat dihitung berdasarkan frekuensi dan klaim tingkat keparahan rata-rata yang biasanya dianggap independen. Namun, dalam beberapa kasus, ada ketergantungan antara frekuensi dan klaim tingkat keparahan rata-rata. Untuk mengatasi masalah ketergantungan, tesis ini menggunakan model regresi berbasis copula untuk membangun distribusi kerugian agregat. Hal ini dilakukan dengan menggabungkan model linear umum marginal dari frekuensi dan klaim tingkat keparahan rata-rata menggunakan kopula. Selanjutnya, parameter distribusi kerugian agregat diperkirakan menggunakan metode kemungkinan maksimum. Tes Vuong digunakan untuk memilih kopula terbaik yang akan digunakan dalam membangun distribusi kehilangan agregat. Akhirnya, premi bersih dari suatu kelompok kebijakan diperoleh berdasarkan estimasi nilai rata-rata dari distribusi kerugian agregat. Simulasi numerik dilakukan dengan menggunakan langkah-langkah ketergantungan tertentu dalam menerapkan model regresi berbasis kopula untuk menentukan premi bersih dari suatu kelompok kebijakan. Berdasarkan simulasi numerik, dapat disimpulkan bahwa jika klaim frekuensi dan keparahan rata-rata memiliki ukuran ketergantungan negatif, maka estimasi rata-rata kerugian agregat dengan asumsi bahwa klaim frekuensi dan keparahan rata-rata adalah independen akan melebih-lebihkan. Sebaliknya, untuk ukuran ketergantungan yang positif, estimasi rata-rata kerugian agregat dengan asumsi bahwa frekuensi dan klaim tingkat keparahan rata-rata independen akan meremehkan.

Determination of net premiums for non-life insurance can be done by estimating aggregate losses from a group of policies. Aggregate losses are calculated based on frequency and claim average severity which is usually considered independent. However, in some cases, there is a dependency between frequency and claims of average severity. To overcome the problem of dependency, this thesis uses a copula-based regression model to build an aggregate loss distribution. This is done by combining the general marginal linear model of frequency and claiming the average severity using copula. Next, the aggregate loss distribution parameters are estimated using the maximum likelihood method. The Vuong test is used to select the best copula to be used in building the aggregate loss distribution. Finally, the net premium of a policy group is obtained based on the estimated average value of the aggregate loss distribution. Numerical simulations are performed using certain dependency steps in applying a copula-based regression model to determine the net premium of a policy group. Based on numerical simulations, it can be concluded that if the average frequency and severity claims have negative dependency measures, the estimated average aggregate losses assuming that the average frequency and severity claims are independent will be exaggerating. Conversely, for a positive measure of dependency, the estimated average aggregate loss assuming that the frequency and claim severity of the independent average would be underestimated."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dini Rahayu
"Masalah yang sering terjadi dalam penelitian adalah adanya missing value padahal data yang lengkap diperlukan untuk mendapatkan hasil analisis yang menggambarkan populasi. Dalam pengolahan data, missing value sering terjadi pada analisis regresi. Analisis regresi merupakan suatu model prediksi dengan melihat hubungan antara variabel respon dan variabel prediktor. Missing value dalam analisis regresi dapat ditemukan baik pada variabel respon maupun variabel prediktor. Penelitian ini membahas imputasi missing value yang terjadi pada kedua variabel tesebut dengan menggunakan imputasi regresi. Algoritma Expectation Maximization (EM) merupakan metode penaksiran parameter regresi dengan menggunakan metode Maximum Likelihood Estimaton (MLE) pada data yang memiliki missing value. Untuk menyeimbangkan hasil taksiran parameter model regresi untuk setiap variabel, dilakukan proses penyeimbangan (balance process) untuk mendapatkan hasil taksiran parameter yang konvergen. Simulasi taksiran nilai variabel respon dan prediktor yang hilang dilakukan pada berbagai variasi persentase missingness. Metode penaksiran parameter regresi dengan menggunakan algoritma EM, dapat menghasilkan model yang menjelaskan data sebesar 87% hingga terjadi missing sebanyak 60%.

The problem that often occurs in research is the existence of missing values even though complete data is needed to obtain the results of analysis that describe the population. In processing data, missing values often occur in regression analysis. Regression analysis is a prediction model by looking at the relationship between response variables and predictor variables. Missing values in regression analysis can be found in both the response variable and predictor variable. This study discusses the imputation of missing values that occur in both variables using regression imputation. The Expectation Maximization (EM) algorithm is a method of estimating regression parameters using the Maximum Likelihood Estimaton (MLE) method on data that has missing value. To balance the estimated parameters of the regression model for each variable, a balance process is performed to obtain the results of the convergent parameter estimates. The estimated simulation of the value of the response variable and missing predictor was carried out in various variations in the percentage of missingness. The method of estimating regression parameters using the EM algorithm, can produce a model that explains the data by 87% until there is missing as much as 60%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohammad Farhan Qudratullah
Yogyakarta: Andi, 2013
519.536 MOH a (1)
Buku Teks  Universitas Indonesia Library
cover
Anastia Dewi L.
"Model regresi logistik dua level merupakan analisis multilevel yang digunakan untuk menganalisis data yang mempunyai struktur hirarki dua level dengan data respon biner (bernilai 0 atau 1). Yang dimaksud dengan data hirarki adalah data dengan unit-unit observasi yang bersarang pada unit yang lebih tinggi. Dalam skripsi ini, bentuk model regresi logistik dua level difokuskan pada model regresi logistik dua level dengan random intercept. Metode penaksiran parameter yang adalah metode Penalized Quasi Likelihood order pertama (PQL-1). Prinsip umum dari metode ini adalah melinierkan bagian yang non-linier dari model regresi logistik dua level dengan perluasan deret Taylor order pertama sehingga didapat model linier 2-level untuk kemudian dilakukan pengestimasian parameter menggunakan Iterative Generalized Least Square (IGLS). Prosedur tersebut dilakukan secara iteratif sampai konvergen. Metode ini diaplikasikan pada data survey di Eropa mengenai faktor-faktor yang mempengaruhi seseorang dalam penggunaan hak pilihnya dalam pemilu. Data terdiri dari 3300 individu yang diambil secara acak dari 20 negara di Eropa."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Olive, David J
"This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response transformations for multiple linear regression or experimental design models."
Switzerland: Springer International Publishing, 2017
e20528414
eBooks  Universitas Indonesia Library
cover
Bogor: Departemen Pertanian dan IPB, 1985
519.536 IND a
Buku Teks  Universitas Indonesia Library
cover
Montgomery, Douglas C.
New Jersey: John Wiley & Sons, 2012
519.5 MON i
Buku Teks  Universitas Indonesia Library
cover
Edwards, Allen L.
New York : W.H. Freeman, 1984
519.536 EDW i
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>