Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 43369 dokumen yang sesuai dengan query
cover
Fadli Aulawi Al Ghiffari
"Penelitian ini bertujuan untuk membangun model dependency parser untuk bahasa Jawa menggunakan pendekatan cross-lingual transfer learning. Metode transfer learning dipilih untuk mengatasi kurangnya dataset yang tersedia untuk proses training model pada bahasa Jawa yang merupakan low-resource language. Model dibangun menggunakan arsitektur encoder-decoder, tepatnya menggunakan gabungan dari self-attention encoder dan deep biaffine decoder. Terdapat tiga skenario yang diuji yaitu model tanpa transfer learning, model dengan transfer learning, dan model dengan hierarchical transfer learning. Metode transfer learning menggunakan bahasa Indonesia, bahasa Korea, bahasa Kroasia, dan bahasa Inggris sebagai source language. Sementara metode hierarchical transfer learning menggunakan bahasa Prancis, bahasa Italia, dan bahasa Inggris sebagai source language tahap satu, serta bahasa Indonesia sebagai source language tahap dua (intermediary language). Penelitian ini juga mengujikan empat word embedding yaitu fastText, BERT Jawa, RoBERTa Jawa, dan multilingual BERT. Hasilnya metode transfer learning secara efektif mampu menaikkan performa model sebesar 10%, di mana model tanpa transfer learning yang memiliki performa awal unlabeled attachment score (UAS) sebesar 75.87% dan labeled attachment score (LAS) sebesar 69.04% mampu ditingkatkan performanya hingga mencapai 85.84% pada UAS dan 79.22% pada LAS. Skenario hierarchical transfer learning mendapatkan hasil yang lebih baik daripada transfer learning biasa, namun perbedaannya tidak cukup signifikan.

This research aims to develop a Javanese dependency parser model using a cross-lingual transfer learning approach. The transfer learning method was chosen to overcome the lack of available datasets for the model training process in Javanese, a low-resource language. The model uses an encoder-decoder architecture, precisely combining a self-attention encoder and a deep biaffine decoder. Three scenarios are experimented with: a model without transfer learning, a model with transfer learning, and a model with hierarchical transfer learning. The transfer learning process uses Indonesian, Korean, Croatian, and English as source languages. In contrast, the hierarchical transfer learning process uses French, Italian, and English as the first-stage source languages and Indonesian as the second-stage source language (intermediary language). This research also experimented with four word embedding types: fastText, Javanese BERT, Javanese RoBERTa, and multilingual BERT. The results show that the transfer learning method effectively improves the model’s performance by 10%, where the model without transfer learning has an initial unlabeled attachment score (UAS) performance of 75.87% and labeled attachment score (LAS) of 69.04% can be increased to 85.84% in UAS and 79.22% in LAS. Hierarchical transfer learning has a slightly better result than standard transfer learning, but the difference is insignificant."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andhika Yusup Maulana
"

Tujuan dari penelitian ini adalah membangun dependency parser untuk Bahasa Indonesia menggunakan pendekatan cross-lingual transfer learning. Sebagai source language dipilih empat bahasa, yaitu Bahasa Perancis, Bahasa Italia, Bahasa Slovenia, dan Bahasa Inggris. Dependency parser dibangun menggunakan transformer (self-attention encoder) sebagai encoder layer dan deep biaffine decoder sebagai decoder layer. Pendekatan transfer learning dengan fine-tuning mampu meningkatkan performa model dependency parser untuk Bahasa Indonesia dengan margin yang paling tinggi yaitu 4.31% untuk UAS dan 4.46% untuk LAS dibandingkan dengan pendekatan training from scratch.


The objective of this research is to build a dependency parser for Indonesian using cross-lingual transfer learning. As the source language, chosen four languages: French, Italian, Slovenian, and English. The dependency parser is built using a transformer (self-attention encoder) as the encoder layer and a deep biaffine decoder as the decoder layer. The transfer learning approach with fine-tuning can improve the performance of the dependency parser model for Indonesian with the highest margin of 4.31% for UAS and 4.46% for LAS compared to the training from scratch approach.

"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Muhammad Faisal Adi Soesatyo
"Pendekatan transfer learning telah digunakan di beragam permasalahan, khususnya low-resource language untuk meningkatkan performa model di masing-masing permasalahan tersebut. Fokus pada penelitian ini ingin menyelidiki apakah pendekatan cross-lingual transfer learning mampu meningkatkan performa pada model constituency parsing bahasa Indonesia. Constituency parsing adalah proses penguraian kalimat berdasarkan konstituen penyusunnya. Terdapat dua jenis label yang disematkan pada konstituen penyusun tersebut, yakni POS tag dan syntactic tag. Parser model yang digunakan di penelitian ini berbasis encoder-decoder bernama Berkeley Neural Parser. Terdapat sebelas macam bahasa yang digunakan sebagai source language pada penelitian ini, di antaranya bahasa Inggris, Jerman, Prancis, Arab, Ibrani, Polandia, Swedia, Basque, Mandarin, Korea, dan Hungaria. Terdapat dua macam dataset bahasa Indonesia berformat Penn Treebank yang digunakan, yakni Kethu dan ICON. Penelitian ini merancang tiga jenis skenario uji coba, di antaranya learning from scratch (LS), zero-shot transfer learning (ZS), dan transfer learning dengan fine-tune (FT). Pada dataset Kethu terdapat peningkatan F1 score dari 82.75 (LS) menjadi 84.53 (FT) atau sebesar 2.15%. Sementara itu, pada dataset ICON terjadi penurunan F1 score dari 88.57 (LS) menjadi 84.93 (FT) atau sebesar 4.11%. Terdapat kesamaan hasil akhir di antara kedua dataset tersebut, di mana masing-masing dataset menyajikan bahwa bahasa dari famili Semitic memiliki skor yang lebih tinggi dari famili bahasa lainnya.

The transfer learning approach has been used in various problems, especially the low-resource languages, to improve the model performance in each of these problems. This research investigates whether the cross-lingual transfer learning approach manages to enhance the performance of the Indonesian constituency parsing model. Constituency parsing analyzes a sentence by breaking it down by its constituents. Two labels are attached to these constituents: POS tags and syntactic tags. The parser model used in this study is based on the encoder-decoder named the Berkeley Neural Parser. Eleven languages are used as the source languages in this research, including English, German, French, Arabic, Hebrew, Polish, Swedish, Basque, Chinese, Korean, and Hungarian. Two Indonesian PTB treebank datasets are used, i.e., the Kethu and the ICON. This study designed three types of experiment scenarios, including learning from scratch (LS), zero-shot transfer learning (ZS), and transfer learning with fine-tune (FT). There is an increase in the F1 score on the Kethu from 82.75 (LS) to 84.53 (FT) or 2.15%. Meanwhile, the ICON suffers a decrease in F1 score from 88.57 (LS) to 84.93 (FT) or 4.11%. There are similarities in the final results between the two datasets, where each dataset presents that the languages from the Semitic family have a higher score than the other language families."
Depok;;: Fakultas Ilmu Komputer Universitas Indonesia;;, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gabriel Enrique
"Part-of-speech tagging, adalah task di bidang Natural Language Processing di mana setiap kata di dalam suatu kalimat dikategorisasi ke dalam kategori parts-of-speech (kelas kata) yang sesuai. Pengembangan model POS tagger menggunakan pendekatan machine learning membutuhkan dataset dengan ukuran yang besar. Namun, dataset POS tagging tidak selalu tersedia dalam jumlah banyak, seperti dataset POS tagging untuk bahasa Jawa. Dengan jumlah data yang sedikit, model POS tagger yang dilatih kemungkinan tidak akan memiliki performa yang optimal. Salah satu solusinya adalah dengan menggunakan pendekatan cross-lingual transfer learning, di mana model dilatih menggunakan suatu source language pada suatu task agar dapat menyelesaikan task yang sama pada suatu target language. Penelitian ini bertujuan untuk menguji performa pre-trained language model (mBERT, XLM-RoBERTa, IndoBERT) dan melihat pengaruh cross-lingual transfer learning terhadap performa pre-trained language model untuk POS tagging bahasa Jawa. Percobaan yang dilakukan menggunakan lima source language, yaitu bahasa Indonesia, bahasa Inggris, bahasa Uighur, bahasa Latin, dan bahasa Hungaria, serta lima jenis model, yaitu fastText + LSTM, fastText + BiLSTM, mBERT, XLM-RoBERTa, dan IndoBERT; sehingga secara keseluruhan ada total 35 jenis model POS tagger. Model terbaik yang dilatih tanpa pendekatan cross-lingual transfer learning dibangun menggunakan IndoBERT, dengan akurasi sebesar 86.22%. Sedangkan, model terbaik yang dilatih menggunakan pendekatan cross-lingual transfer learning dalam bentuk dua kali fine-tuning, pertama menggunakan source language dan kedua menggunakan bahasa Jawa, sekaligus model terbaik secara keseluruhan dibangun menggunakan XLM-RoBERTa dan bahasa Indonesia sebagai source language, dengan akurasi sebesar 87.65%. Penelitian ini menunjukkan bahwa pendektan cross-lingual transfer learning dalam bentuk dua kali fine-tuning dapat meningkatkan performa model POS tagger bahasa Jawa, dengan peningkatan akurasi sebesar 0.21%–3.95%.

Part-of-speech tagging is a task in the Natural Language Processing field where each word in a sentence is categorized into its respective parts-of-speech categories. The development of POS tagger models using machine learning approaches requires a large dataset. However, POS tagging datasets are not always available in large quantities, such as the POS tagging dataset for Javanese. With a low amount of data, the trained POS tagger model may not have optimal performance. One of the solution to this problem is using the cross-lingual transfer learning approach, where a model is trained using a source language for a task so that it can complete the same task on a target language. This research aims to test the performance of pre-trained language models (mBERT, XLM-RoBERTa, IndoBERT) and to see the effects of cross-lingual transfer learning on the performance of pre-trained language models for Javanese POS tagging. The experiment uses five source languages, which are Indonesian, English, Uyghur, Latin, and Hungarian, as well as five models, which are fastText + LSTM, fastText + BiLSTM, mBERT, XLM-RoBERTa, and IndoBERT; hence there are 35 POS tagger models in total. The best model that was trained without cross-lingual transfer learning approach uses IndoBERT, with an accuracy of 86.22%. While the best model that was trained using a cross-lingual transfer learning approach, implemented using a two fine-tuning process, first using the source language and second using Javanese, as well as the best model overall uses XLM-RoBERTa and Indonesian as the source language, with an accuracy of 87.65%. This research shows that the cross-lingual transfer learning approach, implemented using the two fine-tuning process, can increase the performance of Javanese POS tagger models, with a 0.21%–3.95% increase in accuracy.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ika Alfina
"Pada penelitian ini, kami ingin mengatasi masalah langkanya dataset untuk peneli- tian di bidang syntactic parsing untuk Bahasa Indonesia, terutama kurang tersedi- anya dependency treebank berbahasa Indonesia dalam kualitas yang baik. Adapun tujuan dari penelitian ada tiga: 1) mengusulkan petunjuk cara menganotasi depen- dency trebank untuk Bahasa Indonesia yang mengacu kepada aturan anotasi UD v2, 2) membangun dependency treebank yang dianotasi secara manual agar bisa berperan sebagai gold standard, 3) membangun sebuah dependency treebank de- ngan mengkonversi secara otomatis sebuah constituency treebank menjadi sebuah dependency treebank.
Kami sudah membuat panduan anotasi untuk membangun dependency treebank untuk Bahasa Indonesia yang mengacu kepada aturan UD v2. Pedoman tersebut mencakup aturan tokenisasi/segmentasi kata, pelabelan kelas kata (POS tagging), analisis fitur morfologi, dan anotasi hubungan dependency antar kata. Kami men- gusulkan bagaimana memproses klitika, kata ulang, dan singkatan pada tahap to- kenisasi/segmentasi kata. Pada tahapan penentuan kelas kata, kami mengusulkan pemetaan dari daftar kata dalam Bahasa Indonesia ke 17 kelas kata yang didefin- isikan oleh UD v2. Untuk anotasi fitur morfologi, kami telah memilih 14 dari 24 fitur morfologi UD v2 yang dinilai sesuai dengan aturan Bahasa Indonesia, berikut dengan 27 buah label feature-value yang bersesuaian dengan fitur morfologi terkait. Untuk anotasi hubungan dependency antarkata, kami mengusulkan penggunakan 14 buah label yang bersifat language-specific untuk menganotasi struktur sintaks yang khusus terdapat pada Bahasa Indonesia.
Sebuah dependency treebank berbahasa Indonesia yang bisa digunakan sebagai gold standard sudah berhasil dibangun. Treebank ini dibuat dengan merevisi se- cara manual sebuah dependency treebank yang sudah ada. Revisi dilakukan dalam dua fase. Pada fase pertama dilakukan koreksi terhadap tokenisasi/segmentasi kata, pelabelan kelas kata, dan anotasi terhadap hubungan dependency antarkata. Pada fase kedua, selain dilakukan sedikit koreksi untuk perbaikan pada tahap satu, di- tambahkan juga informasi kata dasar (lemma) dan fitur morfologi. Evaluasi ter- hadap kualitas treebank yang baru dilakukan dengan membangun model depen- dency parser menggunakan UDPipe. Hasil pengujian menunjukkan bahwa kami berhasil meningkatkan kualitas treebank, yang ditunjukkan dengan naiknya UAS sebanyak 9% dan LAS sebanyak 14%.
Terkait tujuan penelitian ketiga, kami juga sudah membangun sebuah treebank baru dengan mengkonversi secara otomatis sebuah constituency treebank ke dependency treebank. Pada proyek ini, kami mengusulkan sebuah metode rotasi tree yang bertu- juan mengubah dependency tree awal yang dihasilkan oleh alat NLP untuk Ba- hasa Inggris bernama Stanford UD converter sedemikan agar head-directionality dari frase kata benda yang dihasilkan sesuai dengan aturan Bahasa Indonesia yang umumnya bersifat head-initial. Kami menamakan algoritma yang dihasilkan seba- gai algoritma headSwap dan algoritma compound. Hasil percobaan menunjukkan bahwa metode rotasi tree yang diusulkan berhasil meningkatkan performa UAS se- banyak 32.5%.

In this dissertation, we address the lack of resources for Indonesian syntactic parsing research, especially the need for better quality Indonesian dependency treebanks. This work has three objectives: 1) to propose annotation guidelines for Indonesian dependency treebank that conform to UD v2 annotation guidelines, 2) to build a gold standard dependency treebank, 3) to build a silver standard dependency tree- bank by converting an existing Indonesian constituency treebank automatically to a dependency treebank.
We have proposed a set of annotation guidelines for Indonesian dependency tree- bank that conform to UD v2. The guidelines cover tokenization/word segmenta- tion, POS tagging, morphological features analysis, and dependency annotation. We proposed how to handle Indonesian clitics/multiword tokens, reduplication, and abbreviation for word segmentation. For POS tagging, we presented the mapping from UD v2 guidelines to the Indonesian lexicon. For morphological features, we proposed the use of 14 of 24 UD v2 morphological features along with 27 UD v2 feature-value tags for Indonesian grammar. Finally, we proposed using 14 language- specific relations to annotate the particular structures in Indonesian grammar for dependency annotation.
A gold standard Indonesian dependency treebank also has been built based on our proposed annotation guidelines. The gold standard was constructed by manually revised an existing Indonesian dependency treebank. The revision project consists of two phases. Major revision on word segmentation, POS tagging, and dependency relation annotation was conducted in the first phase. In the second phase, we added the lemma information and morphological features. Finally, we evaluated the qual- ity of the revised treebank by building a dependency parser using UDPipe. The experiment results show that we successfully improved the quality of the original treebank with a margin of 9% for UAS and 14% for LAS.
Finally, we built a silver standard treebank by automatically converting an Indone- sian constituency treebank to a dependency treebank. In this work, we proposed a method to improve the output of an English NLP tool named Stanford UD con- verter. We transformed the output so that it conforms to the head-directionality rule for noun phrases in Indonesian. We called the proposed tree rotation algorithm the headSwap method and the rule for noun phrases as the compound rule. The evaluation shows that our proposed method improved the UAS with a margin of 32.5%.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Boston: Kluwer Academic, 1991
006.3 GEN
Buku Teks SO  Universitas Indonesia Library
cover
Rocky Arkan Adnan Ahmad
"Model natural language processing (NLP) ditantang tidak hanya memiliki kemampuan “mengingat” secara statistik, tapi juga dapat melakukan semantic reasoning mendekati kemampuan manusia dalam memahami bahasa. Tugas ini disebut juga sebagai tugas yang menguji penalaran (commonsense reasoning) untuk suatu model. Tugas commonsense reasoning pada bahasa Indonesia sudah ada, tetapi performa mesin pada tugas tersebut masih terbilang rendah. Penelitian ini mencoba meningkatkan performa mesin dalam tugas commonsense reasoning bahasa Indonesia. Digunakan tiga buah metode, yaitu intermediate-task transfer learning, cross-lingual transfer learning, dan task recasting. Ditemukan kalau intermediate-task transfer learning efektif dilakukan untuk data commonsense reasoning bahasa Indonesia, dengan peningkatan performa di berbagai tugas. Metode cross-lingual transfer learning juga ditemukan sangat efektif dilakukan. Didapatkan performa yang melebihi baseline pada tugas IndoGrad hanya dengan melatih model dalam data bahasa Inggris dan melakukan klasifikasi secara zero-shot pada data bahasa Indonesia. Lalu didapatkan juga performa state-of-the-art (SOTA) baru dalam IndoGrad yaitu 0.803, naik 0.116 dari performa tertinggi penelitian sebelumnya. Performa tersebut dicapai menggunakan model yang dilakukan fine-tuning pada data bahasa Indonesia setelah dilatih dengan data bahasa Inggris. Pada metode task recasting, performa model masih rendah dan didapatkan performa chance pada data uji. Dilakukan juga penjelasan terhadap model dalam menjawab tugas commonsense reasoning bahasa Indonesia. Penjelasan dilakukan dengan visualisasi attention dan probing task. Ditemukan model mendapatkan kenaikan performa dalam probing task ketika performa pada tugas commonsense reasoning juga naik. Ditemukan juga model dapat menjawab dengan benar dengan memberikan attention yang lebih besar ke pada jawaban yang benar dan mengurangi attention pada jawaban yang salah.

A natural language processing (NLP) model is challenged to not only ’remember’ statistically, but can also perform semantic reasoning close to human ability on language understanding. This task is also known as a commonsense reasoning task. Commonsense reasoning tasks in Indonesian already exist, but the machine performance is still relatively low. This research aims to improve the machine performance on commonsense reasoning tasks in Indonesian. Three methods are used: intermediate-task transfer learning, cross-lingual transfer learning, and task recasting. It was found that intermediate-task transfer learning was effective for commonsense reasoning tasks in Indonesian, with improved performance on various tasks. Cross-lingual transfer learning was also found to be very effective. A model that only trained on English data and performs zero-shot classification was found to have performance that exceeds baseline on the IndoGrad task. A new state-of-the-art (SOTA) performance was also achieved on the IndoGrad task, which is 0.803, up 0.116 from the highest performance in the previous study. This result is achieved using a model that was fine-tuned on Indonesian data after being trained on English data. On the task recasting method, the model performance is still low and chance performance is achieved on the test set. Model explanation on answering a commonsense reasoning task in Indonesian is also conducted. Probing task and attention visualization are used for model explanation. It was found that the model that got increased performance on probing task also got increased performance on commonsense reasoning task. It was also found that the model can answer correctly by giving more attention to the correct answer and reducing attention to the incorrect answer."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Heninggar Septiantri
"Ambiguitas adalah masalah yang seringkali ditemui dalam pemrosesan bahasa alami oleh komputer. Word Sense Disambiguation (WSD) adalah upaya untuk menentukan makna yang tepat dari sebuah kata yang ambigu. Berbagai penelitian tentang WSD telah banyak dikerjakan, namun penelitian WSD untuk bahasa Indonesia belum banyak dilakukan. Ketersediaan korpus paralel berbahasa Inggris-Indonesia dan sumber pengetahuan bahasa berupa WordNet bahasa Inggris dan bahasa Indonesia dapat dimanfaatkan untuk menyediakan data pelatihan untuk WSD dengan metode Cross-Lingual WSD (CLWSD). Data pelatihan ini kemudian dijadikan input untuk klasifikasi dengan algoritma Naive Bayes, sehingga model klasifikasinya dapat digunakan untuk melakukan monolingual WSD untuk bahasa Indonesia.
Evaluasi klasifikasi menunjukkan rata-rata akurasi hasil klasifikasi lebih tinggi dari baseline. Penelitian ini juga menggunakan stemming dan stopwords removal untuk mengetahui bagaimana efeknya terhadap klasifikasi. Penggunaan stemming menaikkan rata-rata akurasi, sedangkan penerapan stopwords removal menurunkan rata-rata akurasi. Namun pada kata yang memiliki dua makna dalam konteks yang cukup jelas berbeda, stemming dan stopwords removal dapat menaikkan rata-rata akurasi.

Ambiguity is a problem we frequently face in natural languange processing. Word Sense Disambiguation (WSD) is an attempt to decide the correct sense of an ambiguous word. Various research in WSD have been conducted, but research in WSD for Indonesian Language is still rare to find. The availability of parallel corpora in English and Indonesian language and WordNet for both language can be used to provide training data for WSD with Cross-Lingual WSD (CLWSD) method. This training data can be used as input to the classification process using Naive Bayes classifier.
The model resulted by the classification process is then used to do monolingual WSD for Indonesian language. The whole process in this research results in higher accuracy compared to baseline. This research also includes the use of stemming and stopwords removal. The effect of stemming is increasing the average accuracy, whereas stopwords removal is decreasing average accuracy. Nevertheless, for ambiguous words that have distinct context of usage, the use of stemming and stopwords removal can increase average accuracy."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Viena Ulya
"Tulisan ini membahas pemakna jujur dalam korpus bahasa Jawa berdasarkan penggunaannya dalam korpus
bahasa Jawa. Data yang digunakan adalah kata jujur dalam web korpus www.korpus.ui.ac.id. Sumber data
korpus tersebut dikumpulkan dari beberapa karya tulis, sastra, majalah, maupun buku ajar sekolah yang terbit
mulai tahun 1950 sampai 2016. Selanjutnya data dikelompokkan berdasarkan kata di sebelah kanan yaitu mulai
dari R3 sampai R1 dan kata di sebelah kiri yaitu mulai L1 sampai L3 berdasarkan frekuensi MI Score.
Pengelompokkan tersebut berdasarkan pada UCREL Semantic Analysis System (USAS) untuk mengetahui
kategori tiap-tiap kata yang berkolokasi dengan kata jujur. Metode yang digunakan dalam penulisan ini adalah
metode gabungan, yaitu menggabungkan antara metode kuantitatif dan kualitatif. Teori yang digunakan dalam
penulisan ini adalah teori semantic preference, yaitu merupakan item leksikal yang sering muncul bersamaan
dengan kata inti dan membangun suatu makna tertentu. Hasil penelitian ini menunjukkan bahwa kata jujur
berkolokasi dengan kata-kata yang cukup banyak dan tidak hanya terdapat dalam kategori tindakan, tetapi juga
menunjukan penggunaan kata jujur dalam beberapa bidang seperti pekerjaan dan pendidikan serta muncul
kategori waktu yang menunjukkan bahwa keadaan atau kondisi tertentu dapat mempengaruhi seseorang dalam
berlaku jujur.


This paper discusses meanings of honesty in the Javanese language based on their use in the corpus of the
Javanese language. The data used is an jujur honest word in the corpus web www.korpus.ui.ac.id. The source
of the corpus data was collected from several papers, literature, magazines, and school textbooks that were
published from 1950 to 2016. Furthermore, the data are grouped according to the words on the right side,
starting from R3 to R1 and the words on the left side, from L1 to L3 based on the frequency of MI Score. The
grouping is based on the UCREL Semantic Analysis System (USAS) to find out the categories of each word that
is confused with jujur words. The method used in this writing is a combined method of quantitative and
qualitative methods. The theory used in this paper is the semantic preference theory, which is a lexical item that
often appears together with the core words and constructs a certain meaning. The results of this study show that
jujur words collocate with quite a lot of words and not only in the category of action, but also to show the use of
the word jujur in several fields such as work and education and the time category shows that certain conditions
can affect someone in being honest.
"
Depok: Fakultas Ilmu Pengetahuan Budaya Universitas Indonesia, 2019
MK-pdf
UI - Makalah dan Kertas Kerja  Universitas Indonesia Library
cover
Lini B. Somadikarta
"Skripsi ini mengenai bidang linguistik bahasa Jawa yang ada, belum ada yang membahas akhiran ( -i ) secara khusus. Oleh karena itu akan dicoba untuk ditulis, dalam bentuk skripsi ini, tentang akhiran (-i ) yang banyak dipakai dalam kata-kata bahasa Jawa. Bahasa Jawa yng dipakai sebagai obyek analisa ialah bahasa Jawa ( ngoko ) standar, yaitu bahasa yang biasa dipakai di Solo atau Yogyakarta. Data yang dipakai sebagai obyek analisa diperoleh dari novel Anteping Tekad karya Ag.Suharti, Kembang Kantil karya Senggono, dan Kumpule Balung Pisah karya A Saerozi A.M."
Depok: Fakultas Ilmu Pengetahuan Budaya Universitas Indonesia, 1981
S11357
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>