Ditemukan 21632 dokumen yang sesuai dengan query
Dwi Retnoningrum
"Melalui teknologi, kegiatan sosial yang dahulu memerlukan kontak fisik kini dapat dilakukan jarak jauh melalui media sosial. Media sosial saat ini banyak digunakan untuk menyebarkan berbagai infromasi, baik mengungkapkan opini, perasaan, ataupun pendapat. Twitter memiliki pengguna akif terbanyak di Indonesia. Twitter merupakan salah satu sarana perusahaan untuk berkomunikasi dengan pelanggan. Salah satu perusahaan yang memanfaatkan twitter untuk berkomunikasi ke nasabahnya BNI. BNI memiliki jasa dan produk yang ditawarkan salah satunya yaitu Agen46. Agen46 merupakan mitra BNI dalam menyediakan layanan perbankan kepada masyarakat dalam rangka keuangan inklusif. Selain mitra BNI dalam penyediaan berbagai macam layanan perbankan, BNI Agen46 juga merupakan partner di dalam berbagai program pemerintah, seperti penyaluran bantuan sosial maupun subsidi untuk Keluarga Penerima Manfaat. Terdapat beberapa tweet yang cenderung mengarah ke ulasan yang negative, namun saat ini belum ada analisis sentimen terkait Agen46 berdasarkan data twitter. Penelitian ini bertujuan untuk membandingkan performa metode klasifikasi yang digunakan untuk sentiment analysis serta mencari topik terkait Agen46. Metode yang digunakan yang digunakan untuk pemodelan klasifikasi yaitu SVM, Naïve Bayes, dan KNN serta metode pemodelan topik yang digunakan yaitu LDA.Hasil dari penelitian menunjukkan bahwa SVM memiliki performa terbaik dengan nilai f1-score 91.25% dan akurasi 91.28%. Sedangkan Topik yang dihasilkan yaitu 2 topik kelas Positive (agen dapat memberikan tambahan penghasilan dan agen46 menjadi agen transformasi yang lebih dekat dengan nasabah), 2 topik kelas neutral (penyaluran bansos dapat dilakukan melalui agen46 dan selain melalui kantor cabang, internet banking, sms banking, transaksi juga bisa dilakukan di agen46), dan 6 topik kelas negative (permohonan buka blokir proses lama, belum ada respon saat gagal login, kendala mesin EDC Agen46, agen tidak dapat dihubungi, dan adanya ketidaknyamanan penyaluran bpnt).
Through technology, social activities that once required physical contact can now be done remotely through social media. Social media is currently widely used to disseminate various information, whether expressing opinions, feelings, or opinions. Twitter has the most active users in Indonesia. Twitter is one of the means for companies to communicate with customers. One company that utilizes twitter to communicate to its customers is BNI. BNI has services and products to offer, one of which is Agent46. Agen46 is a BNI partner in providing banking services to the community in the context of inclusive finance. In addition to BNI's partners in providing various banking services, BNI Agen46 is also a partner in various government programs, such as the distribution of social assistance and subsidies for Beneficiary Families. There are several tweets that tend to lean towards negative reviews, but currently, there hasn't been any sentiment analysis conducted regarding Agen46 based on Twitter data. This research aims to compare the performance of classification methods used for sentiment analysis and find topics related to Agent46. The methods used for classification modeling are SVM, Naïve Bayes, and KNN and the topic modeling method used is LDA.The results of the study show that SVM has the best performance with an f1-score value of 91.25% and an accuracy of 91.28%. While the topics generated are 2 Positive class topics (agents can provide additional income and agent46 becomes a transformation agent that is closer to customers), 2 neutral class topics (social assistance distribution can be done through agent46 and in addition to branch offices, internet banking, sms banking, transactions can also be done at agent46), and 6 negative class topics (unblock request is a long process, there is no response when login fails, Agent46 EDC machine constraints, agents cannot be contacted, and there is inconvenience in bpnt distribution)"
Jakarta: Fakultas Ilmu Komputer Universitas ndonesia, 2024
TA-pdf
UI - Tugas Akhir Universitas Indonesia Library
Maranatha Florensia Wijaya
"Analisis sentimen merupakan bidang studi yang menganalisis pendapat seseorang terhadap suatu entitas untuk mencari polaritas sentimennya. Potensi manfaat yang besar didukung dengan ketersediaan data teks beropini yang melimpah di internet memicu dikembangkannya model yang mampu melakukan analisis sentimen secara otomatis dan seakurat mungkin. Dua diantaranya adalah Long Short-Term Memory (LSTM) dan Convolutional Neural Network (CNN) yang merupakan arsitektur deep learning. LSTM digunakan karena dapat menangkap aliran informasi pada kalimat, sedangkan CNN digunakan karena kemampuannya dalam mengekstrak fitur penting dari tiap penggalan kalimat atau region. Kedua model ini dapat digabungkan menjadi model gabungan LSTM-CNN yang telah terbukti mampu meningkatkan akurasi model. Penelitian ini kemudian akan mengajukan modifikasi pada model gabungan LSTM-CNN dengan mengganti LSTM menjadi Bidirectional LSTM (BiLSTM) dan CNN menjadi CNN Multi Region Size CNNMRS sehingga terbentuk tiga model modifikasi yaitu BiLSTM-CNN, LSTM-CNNMRS, dan BiLSTM-CNNMRS. Implementasi model, baik untuk model gabungan LSTM-CNN standar maupun model modifikasi, dilakukan pada data tweets berbahasa Indonesia. Hasilnya, didapatkan kesimpulan bahwa penggunaan BiLSTM untuk menggantikan LSTM pada model gabungan LSTM CNN tidak meningkatkan akurasi dari model. Hal berbeda didapatkan dari penggunaan CNNMRS untuk menggantikan CNN yang memberikan peningkatan akurasi pada model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Selvi Lesmana Putri
"Makalah ini bertujuan untuk menyelidiki korelasi antara Twitter dan kinerja pasar saham dengan melihat perspektif tingkat industri untuk perusahaan tertentu yang tergabung dalam IDX30. Indeks saham ini adalah sub-kategori likuiditas dari Headline Index yang terdiri dari perusahaan-perusahaan yang digunakan sebagai referensi untuk menggambarkan situasi pasar saham yang memenuhi kriteria utama memiliki tingkat likuiditas yang tinggi. Untuk mendukung penelitian ini, kami mengumpulkan beberapa pendapat yang diperoleh dari Twitter sebagai sumber data streaming menggunakan pemrograman Python, dan Thomson Reuters untuk mendapatkan informasi harga saham, volume, dan kapitalisasi pasar masing-masing perusahaan. Model penelitian dibangun berdasarkan metode Amihud Illiquidity dan perhitungan volatilitas untuk mengukur korelasi antara analisis sentimen dan kinerja saham. Penelitian ini menunjukkan bahwa analisis sentimen terhadap pernyataan yang diunggah di Twitter memiliki korelasi yang tidak signifikan terhadap likuiditas dan volatilitas saham IDX30 di Indonesia. Namun demikian, penelitian ini belum dapat memisahkan antara tweet yang dihasilkan berdasarkan pendapat pengguna dan tweet yang dibuat berdasarkan permintaan dari pelaku pasar tertentu untuk mempengaruhi nilai saham dengan menyebarkan informasi yang bias untuk memancing reaksi publik.
This paper is aimed at investigating the correlation between Twitter and stock market performance by looking at industry-level perspective to specific companies incorporated in the IDX30. This stock index is the sub-category liquidity of the Headline Index which consists of companies that are used as a reference to describe the stock market situation that meet the main criteria of having a high level of liquidity. To support this research, we collected some opinions obtained from Twitter as a source of streaming data using Python programming, and Thomson Reuters to obtain information of stock prices, volumes, and market capitalization of each company. Research models are built based on Amihud Illiquidity method and volatility calculation to measure the correlation between sentiment analysis and stock performance. This research shows that sentiment analysis of statements uploaded on Twitter has insignificant correlation to the liquidity and volatility of IDX30 stock in Indonesia. Nevertheless, this research has not been able to separate between tweets which are generated based on user opinion and tweets which are made based on requests from certain market participants to influence the value of shares by spreading biased information to provoke a public reaction."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership Universitas Indonesia Library
Agresti, Alan
New York : John Wiley & Sons, 1984
519.535 AGR a
Buku Teks SO Universitas Indonesia Library
Caseware Idea, Inc.,
1010000074
Multimedia Universitas Indonesia Library
Cooley, William W.
New York: John Wiley & Sons, 1971
519.535 COO m
Buku Teks SO Universitas Indonesia Library
Hildebrand, David K., 1940-
"Analysis data"
Beverly Hills: Sage, 1977
001.422 5 HIL a
Buku Teks SO Universitas Indonesia Library
Cooley, William W.
Malabar, Florida: Robert E. Krieger, 1986
519.535 COO m
Buku Teks SO Universitas Indonesia Library
Indah Fitriana Walidah
"Besarnya ambiguitas dan kemungkinan dalam pemetaan bawah permukaan merupakan alasan utama dalam pengaplikasian berbagai macam teknik-teknik pemetaan untuk mendapatkan kemungkinan model bawah permukaan terbaik yang paling logis dan bisa digunakan untuk mendekati kondisi yang sebenarnya. Teknik analisa dan Pemodelan data gayaberat pada penelitian ini diaplikasikan untuk memastikan keberadaan struktur terumbu karbonat dari Formasi Kujung yang diidentifikasi sebagai struktur sembulan pada penampang seismik, dan pada penampang MT merupakan high resistivity zone.
Berdasarkan kondisi geologi dan karakteristiknya, struktur karbonat ini diasumsikan akan mempunyai kontras densitas yang sangat baik dengan litologi batuan disekitarnya sehingga hasil pemodelan data gayaberat yang dikorelasikan dengan data-data geofisika lainnya ini, dapat dengan baik untuk digunakan dalam mendekati kondisi bawah permukaan area FW1807 dan dapat mengkonfirmasi keberadaan Kujung carbonates reservoir dalam bentuk terumbu karbonat yang berada pada kedalaman sekitar 2000-3000 m. tepat diatas basement.
The high ambiguity and the probability in subsurface mapping are the main reason for the application of many mapping techniques in order to get the best logical subsurface probability and also to approach the geological condition. Gravity analysis technique and modeling in this study are applied to ensure the presence of carbonate reef from Kujung Formation which is identified as an anticline at seismic section and from MT section as a high resistivity zone. Based on geological condition and geological characterization, the carbonate structure is assumed will have a good density contrast compare with the surrounding lithology. The quality of gravity modeling which is correlate with others geophysical data, can well approach the subsurface condition of "FW1807" and can confirm the presence of Kujung carbonat reservoir in the form of carbonate reef at depth between 2000-3000 m. just above the basement."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S42925
UI - Skripsi Open Universitas Indonesia Library
Lichten, William.
Upper Saddle River: Prentice-Hall, 1999
519LICD001
Multimedia Universitas Indonesia Library