Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 36815 dokumen yang sesuai dengan query
cover
Falya Aqiela Sekardina
"Seiring perkembangan teknologi, internet menjadi salah satu media pendukung pendidikan. Salah satu penerapannya adalah M-Learning yang berperan sebagai bimbingan belajar (bimbel) daring dalam bentuk aplikasi untuk siswa sekolah menengah. Saat ini, banyak bimbel daring satunya adalah Quipper yang dipilih. Berdasarkan ulasan pada Google Play, terdapat beberapa kendala seperti informasi unduhan yang tidak sesuai, aplikasi yang dirasa kurang menarik, dan flow yang membingungkan. Sejauh ini belum ada kajian ilmiah yang meneliti secara khusus kualitas perangkat lunak Quipper. Penelitian ini bertujuan menganalisis kualitas Quipper dari sisi usability menggunakan prinsip desain antarmuka dan instruksional: Nielsen’s Ten Usability Heuristics dan Chickering & Gamson’s the Seven Principles for Good Practice in Undergraduate Education. Penelitian ini menerapkan metode campuran, yaitu kuantitatif dan kualitatif. Pengumpulan data kuantitatif dilakukan dengan System Usability Scale (SUS) dan E-Learning Usability Scale (EUS). Pengumpulan data kualitatif dilakukan dengan usability testing dan wawancara. Hasil evaluasi menunjukkan Quipper mendapatkan skor SUS sebesar 72,84 dengan kategori baik dan rata-rata skor EUS sebesar 5,52 yang mengarah pada kecenderungan positif. Dalam penelitian ini diusulkan 10 rancangan desain alternatif untuk meningkatkan usability aplikasi Quipper yang dikembangkan berdasarkan prinsip desain antarmuka dan instruksional

Alongside the development of technology, the Internet has become an indispensable tool for education. M-Learning acts as an online tutoring for high school students using an application. Currently, Quipper is selected among many online tutoring. However, based on Google Play reviews, several problems were experienced by users of the application, among which are not as expected download information, unattractive interface design, and discomfort application flow. Despite this, no research specifically evaluating the quality of Quipper has been found. This paper analyses the quality of Quipper in terms of usability using interface and instructional design principle, Nielsen's Ten Usability Heuristics and Chickering & Gamson's The Seven Principles of Good Practice in Undergraduate Education. A combination of quantitative and qualitative methods are employed. Quantitative data was collected on the basis of the System Usability Scale (SUS) and the E-learning Usability Scale (EUS). Qualitative data was collected through usability testing and user interviews. Based on the results, Quipper is evaluated to have an SUS score of 72.84 (good) and an average EUS score is 5.52 that leads to positive trend. This research also presents in the total of 10 alternative design to emphasise the usability of Quipper according to the analysis of interface and instructional design principles"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Daniel Adi Nugroho
"Dalam rangka melakukan pengendalian alih fungsi lahan pertanian diperlukan kuantifikasi luas dan sebaran lahan sawah, dimana salah satu metode yang efisien dalam pemetaan lahan baku sawah di wilayah tropis adalah dengan melakukan proses klasifikasi lahan baku sawah menggunakan data multitemporal dari citra Synthetic Aperture Radar (SAR). Tujuan utama dari penelitian ini adalah untuk melakukan kajian spasiotemporal perubahan lahan sawah di Kabupaten Indramayu berdasarkan lahan baku sawah tahunan yang diperoleh dari hasil pemanfaatan algoritma Deep Learning, yaitu Long Short-Term Memory (LSTM) untuk melakukan klasifikasi biner sawah dan non-sawah pada data SAR multitemporal dari satelit Sentinel-1. Akurasi hasil dari klasifikasi LSTM dievaluasi terhadap hasil observasi lapangan tahun 2021 sebagai tolok ukurnya, dengan metode klasifikasi tersupervisi lainnya, yaitu Support Vector Machine dan Random Forest, sebagai pembanding. Model LSTM yang didapatkan dalam penelitian ini selanjutnya dipakai untuk melakukan proses klasifikasi data lahan baku sawah tahunan. Hasil penelitian menunjukkan bahwa algoritma LSTM memberikan akurasi klasifikasi tertinggi dibandingkan algoritma SVM dan RF. Kajian spasiotemporal tutupan lahan sawah pada kurun waktu tahun 2017 hingga 2021 menunjukkan bahwa terjadi fluktuasi luasan dan sebaran lahan sawah tiap tahun, dengan tingkat perubahan terbesar pada Kecamatan Tukdana dan Kecamatan Kandanghaur. Berdasarkan kajian literatur sekunder, penambahan lahan sawah yang terkonsentrasi di Kecamatan Tukdana diperkirakan merupakan akibat dari penjarahan lahan perkebunan tebu oleh warga, sedangkan pengurangan lahan sawah yang terkonsentrasi di Kecamatan Kandanghaur diperkirakan merupakan akibat banjir rob yang berkepanjangan.

In order to manage the conversion of agricultural land, it is necessary to quantify the area and distribution of rice fields, where one of the efficient methods in mapping raw rice fields in the tropics is to carry out the process of classifying raw rice fields using multitemporal data from Synthetic Aperture Radar (SAR) images. The main objective of this research is to conduct a spatiotemporal study of changes in paddy fields in Indramayu Regency based on annual rice field map obtained from the use of the Deep Learning algorithm, namely Long Short-Term Memory (LSTM) to perform a binary classification of rice fields and non-rice fields on the data. Multitemporal SAR from the Sentinel-1 satellite. The accuracy of the results of the LSTM classification is evaluated against the results of field observations in 2021 as a benchmark, with other supervised classification methods, namely Support Vector Machine and Random Forest, for comparison. The LSTM model obtained in this study is then used to carry out the process of classifying the annual raw land data for rice fields. The results showed that the LSTM algorithm gave the highest classification accuracy compared to the SVM and RF algorithms. The spatiotemporal study of paddy field cover in the period 2017 to 2021 shows that there are fluctuations in the area and distribution of paddy fields every year, with the largest changes in Tukdana and Kandanghaur sub-districts. Based on a secondary literature review, the addition of rice fields concentrated in Tukdana District is estimated to be the result of looting of sugarcane plantations by residents, while the reduction of rice fields concentrated in Kandanghaur District is estimated to be the result of prolonged tidal flooding."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Denanir Fadila Nasiri
"Legal reasoning merupakan metode yang digunakan untuk menerapkan aturan atau Undang-Undang terhadap fakta yang dimiliki dengan tujuan untuk memperoleh argumentasi hukum. Salah satu metode legal reasoning adalah dengan penalaran induktif, yaitu didasarkan pada kasus-kasus terdahulu. Mahkamah Agung di Indonesia melalui situs Direktori Putusan Pengadilan, yang menyediakan dokumen hasil proses pengadilan yang saat ini menampung jumlah dokumen yang sangat besar. Kumpulan dokumen tersebut dapat dimanfaatkan untuk melakukan aktivitas legal reasoning, seperti klasifikasi jenis tindak pidana (criminal offense). Pada penelitian ini, penulis mengusulkan metode deep learning untuk mengklasifikasikan jenis tindak pidana. Hal ini dapat berguna untuk memberikan efisiensi dan referensi kepada praktisi hukum maupun memudahkan masyarakat untuk memahami dasar hukum dari suatu kasus. Secara spesifik, salah satu rancangan model yang diusulkan adalah dengan penerapan model LEAM (Label Embedding Attentive Model) dengan penambahan sejumlah keyword pada label embedding. Model ini secara konsisten memberikan performa yang baik dalam eksperimen, termasuk pada imbalanced dataset dengan perolehan f1-score 68%.

Legal reasoning is a sequence of activities to identify law rules and obtain legal arguments. One of the method in legal reasoning is by using inductive reasoning, which analyzes previous decided cases. Indonesia’s Supreme Court stores the court decision documents online in a large sum. These collections can be utilized to perform legal reasoning, where in this research we focus on the classification of criminal offense. We performed pre-processing tasks including conversion of document to text and cleaning text. We then compared deep learning models, such as LSTM, BiLSTM, CNN+LSTM, and LEAM (Label Embedding Attentive Model). Instead of using only the label name in LEAM, we also carried out experiments by adding related keywords for each label. The LEAM model with additional keywords obtained the best result in an imbalanced dataset with 68% macro average f1-score."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Adawiyah Ulfa
"Pengembangan inhibitor Dipeptidyl Peptidae-4 (DPP-4) sangat diperlukan dalam pengobatan Diabetes Mellitus tipe 2 dengan efek samping yang rendah. Pemodelan hubungan kuantitatif struktur aktivitas (QSAR) merupakan pendekatan analisis hubungan struktur kimia dengan aktivitasnya yang banyak digunakan dalam desain obat penyakit Diabetes. Pada tesis ini, model QSAR klasifikasi dibangun untuk memprediksi struktur aktivitas senyawa pada inhibitor DPP-4 yang dapat memblokir kerja enzim DPP-4. Dalam representasi molekul digunakan circular fingerprint ECFP dan FCFP yang menyajikan notasi SMILES dalam format vektor biner. Fingerprint ECFP dan FCFP yang berdiameter 4 dan 6 sebagai input data dalam membangun model QSAR klasifikasi. Pada QSAR klasifikasi dengan pendekatan deep learning memberikan waktu yang cepat dalam proses virtual screening senyawa aktif atau tidak aktif dalam inhibitor DPP-4. Penelitian ini menggunakan model Hybrid Deep Learning 1D CNN-LSTM untuk memprediksi aktivitas senyawa inhibitor dalam kelas aktif atau tidak aktif berdasarkan nilai aktivitas biologis dengan proporsi data latih dan data uji yang berbeda. Dalam arsitektur 1D CNN-LSTM terdiri dari model 1D CNN sebagai tahap ektraksi fitur dan output dari lapisan konvolusi 1D CNN digunakan dalam lapisan LSTM. Selain itu, pemilihan fitur dengan metode Random Forest-Recursive Feature Elimination (RF-RFE) digunakan untuk memperoleh fitur yang optimal dari dataset ECFP dan FCFP. Selanjutnya, penelitian ini membandingkan performa model dengan menerapkan pemilihan fitur RF-RFE dan tanpa pemilihan fitur RF-RFE. Hasil penelitian ini menunjukkan bahwa model QSAR klasifikasi menggunakan Hybrid Deep Learning yaitu 1D CNN-LSTM dengan pemilihan fitur RF-RFE memperoleh performa model yang lebih baik dibandingkan model tanpa pemilihan fitur optimal. Performa model 1D CNN-LSTM dengan pemilihan fitur RF-RFE menggunakan data ECFP_4 dengan proporsi data latih 80% memiliki akurasi sebesar 0.9075, sensitivitas 0.9008, spesifisitas 0.9142, dan nilai MCC 0.8151.

The development of Dipeptidyl Peptidase-4 (DPP-4) inhibitors is urgently needed in the treatment of Type 2 Diabetes Mellitus with low side effects. Activity structure quantitative relationship modeling (QSAR) is an analytical approach to the relationship between chemical structure and activity which is widely used in diabetes drug design. In this thesis, a classification QSAR model was built to predict the structure of the activity of the DPP-4 inhibitor compound that can block the action of the DPP-4 enzyme. In molecular representation, ECFP and FCFP circular fingerprints are used which present SMILES notation in binary vector format. ECFP and FCFP fingerprints with diameters of 4 and 6 as input data in building a classification QSAR model. The QSAR classification with a deep learning approach provides fast time in the virtual screening process for active or inactive compounds in DPP-4 inhibitors. This study uses the Hybrid Deep Learning 1D CNN-LSTM model to predict the activity of inhibitor compounds inactive or inactive classes based on the value of biological activity with different proportions of training data and test data. The 1D CNN-LSTM architecture consists of a 1D CNN model as the feature extraction stage and output of 1D CNN convolution layer is used in the LSTM layer. In addition, feature selection using the Random Forest-Recursive Feature Elimination (RF-RFE) method was used to obtain optimal features from the ECFP and FCFP datasets. Furthermore, this study compares the performance of the model by applying the RF-RFE feature selection and without the RF-RFE feature selection. The results of this study indicate that the classification QSAR model using Hybrid Deep Learning, namely 1D CNN-LSTM with RF-RFE feature selection, obtains better model performance than the model without optimal feature selection. The performance of the CNN-LSTM 1D model with RF-RFE feature selection using ECFP_4 data with a proportion of 80% training data has an accuracy of 0.9075, sensitivity of 0.9008, specificity of 0.9142, and an MCC value of 0.8151.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Andrew Theodore Tjondrowidjojo
"Kabut merupakan fenomena atmosfer di mana asap, debu dan partikel kering lainnya berada di atmosfer. Kabut ini tentunya dapat memunculkan efek blur dan buram pada citra sehingga dapat mengurangi informasi yang terkandung di dalamnya. Hal ini dapat menyebabkan penurunan performa dari permasalahan pembelajaran mesin, seperti identifikasi dan klasifikasi. Image dehazing merupakan suatu proses yang bertujuan untuk memulihkan gambar yang jelas dari gambar yang rusak oleh kabut atau asap. Terdapat berbagai metode image dehazing yang telah dikembangkan, baik yang berbasiskan pixel intensity dan deep learning. Salah satu metode deep learning yang telah dikembangkan sebelumnya untuk image dehazing adalah Mod PDR-Net. Pada penelitian ini, penulis mengajukan suatu deep network untuk image dehazing baru dengan menggunakan Mod PDR-Net di dalam suatu Conditional Generative Adversarial Network. Data yang digunakan dalam penelitian ini adalah dataset standar citra berkabut luar ruangan. Untuk mengetahui kualitas dari hasil image dehazing yang didapat, penulis membandingkan hasil metode usulan dengan Mod PDR-Net original dan didapatkan bahwa metode usulan memiliki hasil yang lebih baik dibandingkan dengan Mod PDR-Net berdasarkan metrik yang digunakan, yaitu SSIM, RMSE, Delta E, dan BRISQUE dengan nilai berturut-turut sebesar 0.785, 0.109, 9.750. dan 28.375.

Haze is an atmospheric phenomenon where smoke, dust, and other dry particles are present in the atmosphere. Haze can create blurring effects in captured images, resulting in reduced information contained in the image. This can lead to performance degradation from machine learning problems, such as identification and classification. Image dehazing is a process that aims to recover a clear image from a hazy image. Various image dehazing methods have been developed, both based on the pixel intensity and deep learning. One of the deep learning methods that has been previously developed for image dehazing is Mod PDR-Net. In this study, the author proposes a deep network for image dehazing by using Mod PDR-Net in a Conditional Generative Adversarial Network. The data used in this study consists of a standard dataset of outdoor hazy images. In order to determine the quality of the obtained image dehazing results, the author compared the result of the proposed method with the original Mod PDR-Net and found that the proposed method has better results than the Mod PDR-Net based on the metric used, namely SSIM, RMSE, !E, and BRISQUE with values respectively 0.785, 0.109, 9.750. and 28.375."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Josh Frederich
"Diagnosis otomatis kanker kulit dari lesi kulit dengan menggunakan gambar dermoskopi masih merupakan tugas yang menantang bagi kecerdasan buatan khususnya pada Artificial Neural Network dengan menggunakan deep learning. Penggunaan arsitektur yang tepat pada klasifikasi merupakan faktor penting dalam membuat diagnosis otomatis yang akurat. Meski demikian, model-model klasifikasi yang sudah terbuat tersebut masih belum dapat sempurna melakukan kategorisasi pada penyakit lesi kulit. Pada riset ini dilakukan penggantian arsitektur model klasifikasi yang digunakan dengan menggunakan arsitektur terbaru seperti EfficientNet B0 dan B1. Model EfficientNet B0 terbaik dengan menggunakan augmentasi saja memiliki akurasi, presisi, recall, dan f1-score sebesar 91%, 76%, 68%, dan 71% sedangkan EfficientNet B1 terbaik dengan menggunakan augmentasi dan class weight memiliki akurasi, presisi, recall, dan f1-score sebesar masing-masing 89%, 78%, 73%, dan 73%. Model EfficientNet B1 terbaik tersebut dapat mengungguli model state of the art yang ada dengan kenaikan recall dan f1-score sebesar 2% dan 12% dari model semi-supervised. Model juga dapat diimplementasikan dengan graphical user interface sehingga dapat digunakan oleh dokter spesialis kulit dalam pemeriksaan dermoskopi.
Automatic diagnosis of skin cancer from skin lesions using dermoscopy images is still a challenging task for artificial intelligence, especially in Artificial Neural Networks using deep learning. The use of the correct architecture in the classification is an important factor in making an accurate automatic diagnosis. However, the classification models that have been made are still not able to perfectly categorize skin lesions. In this research, a replacement of the classification model architecture used by using the latest architectures such as the EfficientNet B0 and B1 was conducted. The best EfficientNet B0 model that only used augmentation has the accuracy, precision, recall, and f1-scores of 91%, 76%, 68%, and 71% while the best EfficientNet B1 that used augmentation and class weights has the accuracy, precision, recall, and f1-score of 89%, 78%, 73%, and 73%, respectively. The best EfficientNet B1 model can outperform the existing state of the art model with an increase in recall and f1-score by 2% and 12% from the semi-supervised model, respectively. The model can also be implemented with a graphical user interface so that dermatologist can use it in dermoscopy examinations."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raihan Kenji Rizqillah
"Fatik menjadi salah satu indikator utama yang menjadi perhatian pada penggunaan paduan alumunium sebagai aplikasi struktural pesawat terbang, dimana sebanyak lebih dari 50% kecelakaan dirgantara disebabkan oleh kegagalan fatik material. Metode eksperimental trial and error untuk mendesain material memerlukan waktu panjang, biaya tinggi, serta efisiensi penelitian yang dipengaruhi oleh intuisi dan keberuntungan dari peneliti menimbulkan urgensi pendekatan lain dalam penelitian mekanika material. Penelitian mekanika material berbasis Pembelajaran Mesin (PM) dapat memanfaatkan data-data eksperimen dan penelitian terdahulu, sehingga dapat memangkas biaya dan waktu penelitian. Pada penelitian ini telah berhasil dikembangkan dua model deep learning yang mampu memetakan dengan baik hubungan antara data paduan alumunium dengan sifat fatik yang dihasilkan. Model dibuat dengan arsitektur Deep Neural Network menggunakan TensorFlow. Model S2P (Structure to Performance) dapat memprediksi performa fatik suatu paduan alumunium dari data komposisi, perlakuan panas, sifat mekanis, dan pembebanan fatik yang diterima. Model P2S (Performance to Structure) dapat memprediksi komposisi paduan alumunium yang dapat memenuhi performa fatik yang diharapkan. Kedua model menghasilkan performa baik berdasarkan pada metrik penilaian R2, yaitu senilai 0,92 untuk model S2P dan 0,96 untuk model P2S. Formula matematika sifat mekanis dan sifat fatik paduan alumunium dibuat sebagai fungsi dari variabel unsur paduan dan perlakuan panas. Pengembangan model deep learning prediksi sifat paduan alumunium berbasis fitur atomik menunjukkan bahwa total elektronegatifitas berpengaruh besar terhadap sifat mekanis dan sifat fatik.

Fatigue is one of the main concern of the utilization of aluminum alloys as aircraft structural applications, since more than 50% of aerospace accidents are caused by material fatigue failure. The experimental trial and error method for designing materials requires long time and high costs. Research efficiency is also influenced by intuition and luck of the researcher. These condition raises the urgency of other approaches in material mechanics research. Machine Learning (ML) based material mechanics research can take advantage of experimental data and previous research, which ables reduce research costs and time. In this research, two deep learning models have been successfully developed. The models are able to map the relationship between aluminum alloy data and the resulting fatigue properties. The model is built on a fully connected Deep Neural Network architecture using TensorFlow. The S2P (Structure to Performance) model can predict the fatigue performance of an aluminum alloy from the data of composition, heat treatment, mechanical properties, and fatigue loading condition. The P2S (Performance to Structure) model can predict the composition of aluminum alloys that can meet the expected fatigue performance. Both models produce good performance based on the R2 scoring metric, which is 0.92 for the S2P model and 0.96 for the P2S model. Mathematical formulas for mechanical properties and fatigue properties of alloys are made as a function of alloying and heat treatment variables. The development of atomic feature based deep learning model shows that the total electronegativity has a large impact on the mechanical properties and fatigue properties."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Adi Yudho Wijayanto
"Tujuan utama penggunaan peralatan Pressure Relief Device (PRD) adalah untuk memastikan keamanan bejana tekan dalam sistem bertekanan. Seiring berjalannya waktu, peralatan PRD dapat mengalami penurunan kualitas dan gagal menjalankan fungsi yang diharapkan, sehingga harus diidentifikasi sebagai mode kegagalan. Untuk memitigasi potensi risiko yang terkait dengan hal ini, direkomendasikan agar pendekatan seperti inspeksi berbasis risiko (RBI) diterapkan. Meskipun RBI telah diadopsi secara luas, metode ini bergantung pada teknik kualitatif, sehingga menyebabkan variasi yang signifikan dalam penilaian risiko peralatan. Studi ini mengusulkan metode analisis risiko baru yang menggunakan pembelajaran mesin berbasis pembelajaran mendalam untuk mengembangkan model penilaian risiko untuk peralatan PRD terkait dengan mode kegagalan failure on leakage. Pendekatan inovatif ini akan mengurangi waktu penilaian, meningkatkan akurasi, dan menurunkan biaya pemrosesan dengan memberikan hasil penghitungan yang tepat. Penelitian ini mengembangkan program prediksi risiko yang menggunakan pembelajaran mesin berbasis deep learning yang dirancang secara eksplisit untuk mode kegagalan failure on leakage pada peralatan pelepas tekanan. Dataset yang digunakan dalam proses pengembangan model mengikuti standar API 581 dan berisi 168 dataset. Berbagai parameter model digunakan, antara lain test size 20%, nilai random state 0, 150 epoch, learning rate 0,001, dan 3 layers dengan nilai dense 128, 64, dan 32. Performa model dievaluasi menggunakan validation confusion matrix, yang menunjukkan akurasi 94%.

The primary objective of deploying Pressure Relief Device (PRD) equipment is to ensure the safety of pressure vessels within a pressurized system. Over time, PRD equipment may degrade and fail to perform its intended function, which must be identified as a failure mode. To mitigate potential risks associated with this, it is recommended that an approach such as risk-based inspection (RBI) be implemented. Despite the widespread adoption of RBI, the method relies on qualitative techniques, leading to significant variations in equipment risk assessments. This study proposes a novel risk analysis method that uses deep learning-based machine learning to develop a risk assessment model for PRD equipment related to the fail-on-leakage failure mode. This innovative approach will reduce assessment times, improve accuracy, and lower processing costs by providing precise calculation results. The research develops a risk prediction program that uses deep learning-based machine learning designed explicitly for failure-on-leakage failure mode in pressure relief equipment. The dataset used in the model development process adheres to API 581 standards and comprises 168 data points. Various model parameters are employed, including a test size of 20%, a random state value of 0, 150 epochs, a learning rate of 0.001, and 3 layers with dense values of 128, 64, and 32. The model's performance is evaluated using a validation confusion matrix, which indicates an accuracy of 94%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Mahdi Ramadhan
"Penggunaan kecerdasan buatan berbasis Deep Learning untuk mendukung prediksi dan pengambilan keputusan sangat populer di banyak bidang. Salah satu bidang tersebut adalah di sektor kesehatan, terutama dalam pengobatan kanker. Banyak ahli onkologi radiasi dan fisikawan medis sedang melakukan penelitian yang menjanjikan dalam histologi dan stadium kanker, prediksi hasil, segmentasi otomatis, perencanaan perawatan, dan jaminan kualitas. Penelitian ini merupakan studi pendahuluan pengembangan dan perbandingan model deep learning yang berfungsi sebagai alat konversi dari nilai piksel citra Electronic Portal Imaging Device (EPID) ke dosis. Data diambil dari dua bidang radioterapi dengan teknik yang berbeda, yang pertama dosimetri transit pada Varian Unique 6MV foton dan dosimetri non-transit pada Varian Halcyon. Selanjutnya karena data yang tersedia hanya sedikit, data tersebut direproduksi dengan teknik augmentasi sehingga data tersebut cukup untuk menjadi data latih pada berbagai model deep learning, hasilnya divalidasi menggunakan indeks gamma 3%/3mm terhadap citra dosis hasil perencanaan dari TPS. Beberapa model deep learning telah berhasil dibuat yang dapat mengubah nilai piksel EPID menjadi distribusi dosis. Pada dosimetri transit telah berhasil dibuat model Convolutional Neural Network (CNN) dengan 6 layer dengan hasil validasi terbaik mencapai 92,40% ± 28,14%. sedangkan pada dosimetri non-transit, model terbaik mencapai tingkat kelulusan gamma indeks rata-rata 90,07 ± 4,96%. Validasi lebih lanjut dalam banyak kasus dan perbaikan perlu dilakukan untuk meningkatkan akurasi kemiripan dengan citra acuan dengan mempertimbangkan karakteristik yang terkandung dalam gambar EPID dan jumlah dataset.

The use of deep learning to support prediction and decision making is very popular in many areas. Many radiations oncologist and medical physicists are conducting promising research in cancer histology and staging, outcome prediction, automated segmentation, treatment planning, and quality assurance. This research is a preliminary study of the development and comparison of deep learning model that work as a conversion tool from the pixel value of Electronic Portal Imaging Device (EPID) images to dose. Data were taken from two radiotherapy plane with different techniques, the first was transit dosimetry on the Varian Unique 6MV Photon and the second non-transit dosimetry on the Varian Halcyon. Furthermore, due to limited of data source, the data was reproduced by augmentation techniques so that the data was sufficient to become training data on various deep learning models, the results were validated using a gamma index of 3%/3mm compared to the planned dose image from TPS. Several deep learning models has been successfully created that can convert the EPID pixel value into a dose distribution. In transit dosimetry, a Convolutional Neural Network (CNN) model with 6 layers has been successfully created with the best results from the validation reaching 92.40% ± 28.14%. while in non-transit dosimetry, the best model achieves an average gamma passing rate of 90.07 ± 4.96%. Further validation in many cases and improvements need to be made to increase the accuracy of similarity by considering the characteristics contained in the EPID image and the number of datasets."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Sabila Haqqi
"Banyak sekali variabel nonlinear didalam sistem kendali untuk quadcopter sehingga cukup rumit untuk mengendalikan dinamika penerbangan dari wahana ini. Salah satu metode yang digunakan untuk membangun model dinamik quadcopter adalah Deep Learning berbasis Long Short-Term Memory. Metode pembelajaran yang umum digunakan dalam melatih model adalah offline learning, dimana pelatihan dilakukan secara akumulatif berdasarkan dataset yang telah dimiliki. Walaupun offline learning memungkinkan model belajar lebih cepat, metode ini menghasilkan model yang kurang baik untuk wahana yang membutuhkan feedback dengan kompleksitas tinggi. Untuk menangani masalah tersebut akan dikembangkan metode online learning, dimana data diperoleh secara sekuensial dan digunakan untuk memperbarui model di setiap timestep. Akan ditunjukkan bahwa metode online learning dapat memperbaiki model yang diperoleh dari metode offline learning berdasarkan Mean Square Error dari setiap jenis data quadcopter.
..... There are so many nonlinear variables in the control system for the quadcopter so it is quite complicated to control the flight dynamics of this vehicle. One of the methods used to build a dynamic quadcopter model is Deep Learning based on Long Short-Term Memory. The learning method commonly used in training the model is offline learning, where training is carried out accumulatively based on the existing dataset. Although offline learning allows for faster learning models, this method results in poor models for vehicles that require high complexity feedback. To deal with this problem, an online learning method will be developed, where data is obtained sequentially and used to update the model at each time step. It will be shown that the online learning method can improve the model obtained from the offline learning method based on the Mean Square Error of each quadcopter data type."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>