Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 123777 dokumen yang sesuai dengan query
cover
Afifa Hasna Maristya
"Reaksi karboksilasi fenilasetilena dengan CO₂ dilakukan dengan menggunakan katalis Ni-Ga dan Ni-Ga termodifikasi timah (Sn) yang disangga oleh karbon mesopori (MC). MC disintesis dengan metode soft template dan dianalisis dengan TGA diperoleh kestabilan termal hingga 850 °C. Katalis dikarakterisasi dengan FTIR, XRD, Raman, SEM, TEM, dan BET. Hasil XRD menunjukkan puncak pada 24,47°; 32,73°; 43,83°; 50,96°; 74,32°yang merupakan difraksi Ni₅Ga₃ dan partikel Sn(0) pada penyangga MC. Penambahan Sn diketahui tidak mengubah kestabilan katalis Ni₅Ga₃/MC yang dikonfirmasi melalui FTIR dan Raman. Hasil SEM dan TEM juga menunjukkan partikel Ni-Ga-Sn tersebar merata pada permukaan karbon mesopori. BET menunjukkan katalis termasuk dalam ukuran mesopori 2-50 nm. Uji aktivitas katalitik berdasarkan analisa HPLC menunjukkan hasil optimum diperoleh dengan menggunakan katalis Ni₅Ga₃Sn₀‚₅/MC pada suhu 50°C selama 8 jam. Sedangkan berdasarkan LC-MS, diketahui terbentuk produk asam sinamat dan asam fenil propiolat dengan yield masing-masing 2,14% dan 3,04% dengan konversi fenilasetilena mencapai 93,06%.

The carboxylation reaction of phenylacetylene with CO2 was carried out using Ni-Ga and Ni-Ga-modified tin catalysts supported by mesoporous carbon (MC). MC was synthesized using the soft template method and analyzed using TGA and obtained thermal stability up to 850 0C. To determine the modification effect of Sn addition, catalysts were synthesized with variations of Ni5Ga3/MC, Ni5Ga3Sn0.1/MC, Ni5Ga3Sn0.3/MC, Ni5Ga3Sn0.5/MC, Ni5Ga3Sn0.7/MC, Ni5Ga3Sn0.9/MC. The catalysts were characterized by FTIR, XRD, Raman, SEM, TEM, and BET. XRD results show peaks at 24.47o; 32.73 o; 43.83o; 50.96 o; and 74.32o which is the diffraction of the Ni5Ga3 phase and Sn (0) particles on the MC support. The addition of Sn metal is known not to change the stability of the Ni5Ga3/MC catalyst which was confirmed through FTIR and Raman spectra. SEM and TEM results also show that Ni-Ga-Sn particles are evenly distributed on the mesoporous carbon surface with a spherical shape. BET-SAA shows the pore diameter size of the materials Ni5Ga3/MC, Ni5Ga3Sn0.1/MC, Ni5Ga3Sn0.3/MC, Ni5Ga3Sn0.5/MC, Ni5Ga3Sn0.7/MC, Ni5Ga3Sn0.9/MC respectively, are 6.24 nm; 6.22nm; 7.22nm; 6.24 nm, 7.22 nm, and 10.46 nm which are included in the mesopore size of 2-50 nm. The catalytic activity test was carried out through the carboxylation reaction of phenylacetylene with CO2 using variations of catalyst, time and temperature. HPLC analysis showed that optimum results were obtained using the Ni5Ga3Sn0.5/MC catalyst at a temperature of 500C for 8 hours. Meanwhile, based on LC-MS, it is known that cinnamic acid and phenyl propiolic acid products were formed with yields of 2.14% and 3.04% respectively with 93.06% phenylacetylene conversion."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fauziyyah Hanifah
"Reaksi karboksilasi alkuna terminal dengan karbon dioksida (CO2) dibantu katalis dalam mempercepat reaksi untuk menghasilkan asam karboksilat. Periodic mesoporous organosilica dengan jembatan fenilena (Ph-PMO) dipilih untuk menjadi pendukung katalis karena memiliki luas permukaan yang tinggi dan diameter yang besar, sehingga mampu meningkatkan sisi aktif katalis. Sintesis Ph-PMO dilakukan menggunakan metode sol-gel dibuktikan dengan karakterisasi FTIR, XRD, TEM-EDX, BET, dan TGA. Pada analisis TEM didapatkan struktur lamellar yang menunjukkan periodisitas dari Ph-PMO dengan diameter rata-rata pori 4,9 nm. Impregnasi katalis Cu yang didukung oleh Ph-PMO dan menghasilkan Cu0 , berhasil dibuktikan melalui analisis XRD sesuai dengan JCPDS No. 04-0836. Diameter pori dengan metode BJH mengalami penurunan dari Ph-PMO menjadi Cu/PhPMO yaitu 3,8786 nm dan 3,8708 nm. Produk reaksi karboksilasi fenilasetilena dengan CO2 dengan variasi massa katalis pada kondisi optimum suhu 75oC selama 6 jam dianalisis dengan menggunakan HPLC. Hasil analisis HPLC menunjukkan kondisi optimum untuk menghasilkan asam fenilpropiolat pada massa katalis 0,2001 g dengan konsentrasi 7,3198 ppm dan asam sinamat masing-masing pada massa katalis 0,0667 g dengan konsentrasi 20,2064 ppm.

The carboxylation reaction of a terminal alkyne with carbon dioxide (CO2) assisted by a catalyst in the reaction to produce a carboxylic acid. Periodic mesoporous organosilica with phenylene bridge (Ph-PMO) was chosen to be the catalyst support because it has a high surface area and a large diameter, to increase the active site of the catalyst. Ph-PMO synthesis was carried out using the sol-gel method as evidenced by the characterization of FTIR, XRD, TEM-EDX, BET, and TGA. In TEM analysis, we found a lamellar structure that shows the periodicity of Ph-PMO with an average pore diameter of 4,9 nm. The Cu impregnation catalyst supported by Ph-PMO and producing Cu0, was successfully proven by XRD analysis according to JCPDS No. 04-0836. The pore diameter using the BJH method decreased from Ph-PMO to Cu/Ph-PMO, namely 3,8786 nm and 3,8708 nm, respectively. The product of the carboxylation reaction of phenylacetylene with CO2 with various catalysts at an optimum temperature of 75oC for 6 hours was analyzed using HPLC. The results of HPLC analysis showed the optimum conditions to produce phenylpropiolic acid at a catalyst mass of 0,2001 g with a concentration of 7,3198 ppm and cinnamic acid respectively at a catalyst mass of 0,0667 g with a concentration of 20,2064 ppm."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iqlima Amelia
"Sintesis karbon mesopori secara soft template dan hard template dari berbagai prekursor karbon; phloroglucinol, glukosa, dan hidrolisat tandan kosong kelapa sawit (TKKS) telah dilakukan. Pluronic F127 dan silica gel digunakan sebagai cetakan pada sintesis karbon mesopori soft template dan hard template, secara berturut-turut. Material karbon mesopori kemudian diimpregnasi dengan logam Ni dan direduksi menggunakan gas H2 sehingga membentuk Ni/mesoporous carbon (Ni/MC). Karakterisasi material dengan FTIR menunjukkan bahwa gugus organik pada soft templated mesoporous carbon (ST MC) menghilang setelah proses karbonisasi dan pada hard templated mesoporous carbon (HT MC) setelah proses desilikasi, mengindikasikan bahwa proses tersebut efektif dalam penghilangan template yang digunakan. Berdasarkan analisis SEM, material karbon memiliki morfologi seperti serpihan dengan tambahan sebaran butiran halus setelah impregnasi. Berdasarkan hasil analisis XRD untuk ST MC dan HT MC, terdapat difraksi khas karbon grafit pada 2θ 25⁰ dan 44⁰. Kemudian terdapat tambahan difraksi setelah impregnasi pada 2θ 45⁰ dan 52⁰ yang bersesuaian dengan Ni(0), mengindikasikan bahwa impregnasi berhasil dilakukan. Analisa luas permukaan menunjukkan bahwa material karbon memiliki luas permukaan dan distribusi pori yang bervariasi. Material selanjutnya digunakan sebagai katalis dalam reaksi karboksilasi fenilasetilena dengan karbon dioksida. Analsis HPLC menunjukkan hasil terbaik pada suhu reaksi 85⁰C dan waktu reaksi 8 jam dengan menggunakan katalis HT Ni/MC phloroglucinol dan garam MgCl2. Yield pembentukan produk asam fenil propiolat pada kondisi tersebut adalah 2,2 %.

Synthesis of soft templated and hard templated mesoporous carbon from various carbon precursors; phloroglucinol, glucose, and empty palm oil shell hidrolisate, has been conducted successfully. Pluronic F127 and silica gel were used as template in the sythesis of soft and hard templated mesoporous carbon, respectively. The materials were then impregnated with Ni and reduced under H2 flow to form Ni/Mesoporous Carbon (Ni/MC). Characterization with FTIR shows that the organic groups in Soft Templated Mesoporous Carbon (ST MC) disappear after the carbonization process and in Hard Templated Mesoporous Carbon (HT MC) after the desilication process, indicating that the process is effective in template removal. Based on the SEM analysis, carbon materials have flakes-like morphology with the addition of fine grain spreads after impregnation. Based on the results of XRD analysis for ST MC and HT MC, there are a typical graphite carbon diffractions on 2θ of 25 and 44 ⁰. There are also additional diffraction peaks at 2θ of 45 and 52⁰ after impregnation which correspond with Ni(0), indicating that the Ni impregnation was successfully performed. The analysis of the surface area indicates that carbon materials have various surface area and pore distribution. The materials are subsequently used as a catalyst in the carboxylation reaction of phenylacetylene with carbon dioxide. HPLC analysis shows the best resultis obtained at reaction temperature of 85 ⁰ _C and time of 8 hour using MgCl2 salt and HT Ni/MC phloroglucinol catalyst. Yield of phenyl propiolic acid formation as product of carboxylation obtained on optimum condition is 2,2%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T54597
UI - Tesis Membership  Universitas Indonesia Library
cover
Putri Pertiwi
"Karbondioksida merupakan gas rumah kaca yang menjadi salah satu faktor pemanasan global dan perubahan iklim secara drastis. Namun, di samping dampak negatif emisi gas CO2 secara alami maupun melalui hasil kegiatan antropogenik, CO2 dapat dimanfaatkan sebagai sumber C1 reaksi organik, salah satunya reaksi karboksilasi. Periodic Mesoporous Organosilica (PMO) merupakan material mesopori silika yang memiliki keunggulan, di antaranya memiliki ukuran pori cukup besar yang dapat memfasilitasi transfer massa dengan baik, luas permukaan besar yang memungkinkan banyak sisi katalitik, maupun integrasi dari spesi organik dan atom logam dalam kerangka PMO. Logam nikel merupakan logam yang secara luas digunakan dalam bidang katalisis, karena logam tersebut memiliki orbital d tidak terisi penuh, sehingga dapat membentuk ikatan kovalen koordinasi dan memudahkan proses pembentukan intermediet pada permukaan katalis. Pada penelitian ini, dilakukan sintesis PMO dengan prekursor 4,4’- bis(trietoksisilil)bifenil dan dilanjutkan dengan fungsionalisasi gugus amina melalui proses nitrasi dan aminasi. Selanjutnya, dilakukan imobilisasi kompleks Ni(acac)2 pada material Bph-PMO untuk digunakan sebagai katalis pada reaksi karboksilasi fenilasetilena dengan CO2. Analisis XRD menunjukkan bahwa fungsionalisasi gugus amina pada Bph-PMO tidak merubah komponen maupun struktur periodik pada Bph-PMO, begitu pula setelah nikel diimobilisasi pada Bph- PMO yang terfungsionalisasi gugus amina. Analisis FTIR Ni/NH2-Bph-PMO menunjukkan puncak serapan pada 1605 cm-1 yang mengindikasikan pembentukan ikatan C=N dari reaksi kondensasi Schiff antara gugus amina dengan C=O pada Ni(acac)2. Material Ni/NH2-Bph-PMO memiliki ukuran partikel rata-rata 420 nm, dengan pemuatan nikel 2,8% berdasarkan analisis SEM-EDX. Analisis TEM menunjukkan keberadaan struktur mesopori pada NH2-Bph-PMO. Ukuran diameter pori dan luas permukaan BET material Ni/NH2-Bph-PMO berturut-turut sebesar 3,16578 nm dan 490,742 m2/g. Uji katalitik material Ni/NH2-Bph-PMO pada karboksilasi fenilasetilena dengan CO2 dilakukan pada tiga variasi suhu, di mana kondisi optimum diperoleh pada suhu 25 °C, dengan konsentrasi produk fenil maleat 244,5899 ppm.

ABSTRACT
Carbon dioxide is a greenhouse gas that affecting global warming and produces climate change. However, aside from the negative effects of natural CO2 gas emissions and through anthropogenic activities, CO2 has been used as a source of C1 organic reactions, for example, carboxylation reaction. Periodic Mesoporous Organosilica (PMO) is a superior silica mesoporous material, which has a large pore to facilitate mass transfer, a large area that allows many catalytic sides, which also associated with organic species and metal atoms in PMO. This property supports PMO to be applied as a metal catalyst support. Nickel metal is a metal that is widely used in the catalysis field, because this metal has d orbitals and is not fully filled, so it can form covalent bonds and fasilitate process of making intermediates on the surface of the catalyst. In this study, PMO was synthesized with 4,4'-bis (triethoxysilyl) biphenyl precursor and continued with the functionalization of amine groups through nitration and amination process. Furthermore, immobilization of Ni(acac)2 complex was carried out on the Bph-PMO material to be used as a catalyst in the carboxylation reaction of phenylacetylene with CO2. Analysis of XRD shows that the functionalization of amine groups on Bph-PMO does not change the periodic structure of Bph-PMO, as well as after nickel immobilized on aminated Bph-PMO. Absorption peak at 1605 cm-1 of Ni/NH2- Bph-PMO revealed from FTIR analysis, indicating new C=N bond from Schiff condensation between amine group and C=O from Ni(acac)2. Ni/NH2-Bph-PMO material has an average particle size of 420 nm, with 2,8% nickel loading based on SEM-EDX analysis. Mesoporous structure of NH2-Bph-PMO has been proved by TEM analysis. The pore diameter size and BET surface area of Ni/NH2-Bph-PMO are 3,16578 nm and 490,742 m2/g, respectively. The catalytic test of Ni/NH2-Bph- PMO on phenylacetylene carboxylation with CO2 was carried out at three temperature variations, which shows that optimum condition was obtained at 25 °C, with a concentration of phenyl maleic product of 244,5899 ppm.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rita Susanty
"Reaksi oksidasi parsial metana mulai diminati sejak 1990-an, karena reaksinya yang bersifat eksotermik dan juga rasio H2/CO yang dihasilkan adalah 2 yang cocok untuk reaksi Fischer Tropsch dan praduksi metanol. Proses ini menguntungkan dibandingkan dengan proses pembentukan sintesis gas dengan metode konvensional (reformasi kukus) yang sangat endotermik dan rasio H2/CO≥3 yang tidak sesuai untuk proses Fischer Tropsch. Katalis Ni/A1203 telah banyak digunakan untuk reaksi oksidasi parsial metana. Namur terjadinya deposit karbon dan deaktivasi katalis menjadi kendala utama pada proses ini.
Katalis serbuk Ni/ γ -A1203 dipreparasi dengan metode sol gel menggunakan aluminium isopropoksida sebagai prekursor untuk mendapatkan penyangga dengan luas permukaan tinggi dan lebih berpori, metode impregnasi dengan Ni(NO3)3.6H2O sebagai prekursor untuk mendapatkan inti aktif nikel dengan variasi penambahan promotor CeO2, La2O3, dan MgO alau kombinasinya. Perlakuan ultrasonik diberikan pada saat proses impregnasi dengan frekuensi 18 - 22 kHz selama 60 menit.
Katalis Nily-A1203 dengan variasi promotor CeO2 dari MgO (SG 5NCT--CeMg) dengan loading Ni 5% berat memiliki aktivitas katalitik yang tinggi dan stabil dalam waktu reaksi hingga 48 jam. Konversi metana rata-rata sebesar 97,06 % dan selektivitas produk H2 dan CO berturut-turut sebesar 83.38% dan 73,14% dengan rasio produk H2/CO adalah 2,28. Penambahan promotor CeO2 meningkatkan chemisorption H2 sedangkan promotor penambahan MgO meningkatkan jumlah inti aktif nikel dengan mencegah terbentuknya spinel NiA12O4 yang merupakan fasa tidak aktif dengan terbentuknya spinel MgAl2O4 sehingga kombinasi keduanya dapat meningkatkan kinerja katalis. Reaksi tersebut dilakukan pada kondisi tekanan atmosferik, pada temperatur 800°C, rasio reaktan CH4 : O2 = 2 : 1,2 dan WIF = 0,2 g.detiklml. Perlakuan ultrasonik yang diberikan dapat menaikkan selektivitas produk H2 dan CO hingga 9% dan 12% berturut-turut, karena memiliki diameter partikel yang lebih kecil dan komposisi yang lebih seragam dibandingkan dengan katalis tanpa perlakuan ultrasonik.

Partial oxidation of methane has been an interested process since 1990s, because of the reaction is mildly exothermic and also the syngas obtained a suitable H2/CO ratio of 2 for Fischer Tropsch process and production of methanol. This process is more valuable than the process of syngas production through conventional method (Steam Reforming) which is a highly endothermic reaction and the H2/CO≥3ratio of 3 is not suitable for Fischer Tropsch process. Ni/Al2O3 catalyst has been widely used for partial oxidation of methane reaction. Nevertheless the carbon deposit and catalyst deactivation has become the main obstacle in this process.
The powder of Nily-Al2O3 catalyst was prepared by sol gel method using aluminum isopropoxide as a precursor to get a support with high surface area and more porous, impregnation method with Ni(N03)3.6H2O as precursor to get the active site of nickel with addition of various promoters CeO2, La2O3, and MgO or the combination of them. Ultrasonic treatment when impregnation process has been done with 18 - 22 kHz frequency for 60 minutes.
Nily-Al2O3 catalyst with promoters CeO2 and MgO (SG 5NU-CeMg) with 5 wt. % loading of Ni has high catalytic activity and stable for 48 hours time reaction. The mean methane convert-ion is 97,06 % and the product selectivity of H2 and CO is 83.38% and 73,14% respectively, with product H2/CO ratio of 2,28. The addition of CeO2 promoter increase the H2 chemisorptions while the addition of MgO promoter increase the active site of nickel with decreasing the formation inactive NiAl2O4 spine' by forming a stable MgAI2O4 spinel, therefore the combination of these two kind promoters increase the performance of the catalyst. These reaction was studied at atmospheric pressure, with temperature 800°C, CH4:O2 ratio is 211,2 and WIF ratio is 0,2 g.second/ml. Ultrasonic treatment increase the product selectivity of Hz and CO up to 9% and 12% respectively, because of has a smaller particle diameter and more homogeneous composition than the catalyst without ultrasonic treatment.
"
Depok: Fakultas Teknik Universitas Indonesia, 2003
T14718
UI - Tesis Membership  Universitas Indonesia Library
cover
Parinduri, Wilda Yuni
"Nanokarbon adalah material karbon yang diproduksi dengan struktur dan ukuran nanometer yang dapat digunakan untuk membuat nanomaterial bagi peranti mikroelektronik, produk makanan, obat-obatan dan berbagai bidang lainnya. Dekomposisi katalitik metana merupakan salah satu sintesis nanokarbon dengan metode CVD (Chemical Vapour Deposition) yang cukup ekonomis untuk menghasilkan nanokarbon. Optimasi proses diperlukan untuk menghasilkan nanokarbon yang komersil dan berkualitas baik.
Penelitian ini dilakukan menggunakan katalis Ni-Cu-Al pada komposisi 2:1:1 yang dipreparasi dengan metode kopresipitasi menggunakan presipitan larutan sodium karbonat. Katalis direaksikan dengan metana pada kondisi operasi yang divariasikan yaitu suhu reaksi berada pada rentang 500°C-750°C, waktu reaksi pada rentang 1-60 menit, dan laju alir metana pada 40 mL/mnt - 120 mL/mnt. Produk dikarakterisasi dengan SEM, TEM dan BET.
Berdasarkan hasil penelitian, diperoleh kondisi optimum untuk memperoleh nanokarbon dengan morfologi yang baik berada pada waktu reaksi 20 menit dengan laju alir 120 mL/mnt dan suhu reaksi 7000C pada tekanan atmosferik. Bentuk nano karbon yang terbentuk adalah MWNT berdiameter 54-59 nm. Setelah direaksikan selama 10 jam, ternyata katalis masih terlihat stabil. Aktivitas katalis meningkat 5 menit pertama kemudian menurun secara drastis hingga aktivitas relatif stabil pada rentang 1-10 jam.

Nanocarbon is a carbon material produced by the nanometer structure and size that can be used to make nanomaterials for microelectronics devices, food products, medicines etc. Catalytic decomposition of methane is one of the economic methods for synthesis nanocarbon by CVD (Chemical Vapour Deposition) to produce nanocarbon. Optimization of the process required to produce a commercial nanocarbon and good quality.
The research was conducted using the catalyst Ni-Cu-Al in composition 2:1:1 prepared by coprecipitation method using a solution of sodium carbonate as presipitan. The catalyst is reacted with methane which the operating conditions of the reaction temperature was varied in the range of 500°C-750°C, reaction time on the range of 1-60 minutes, and the methane flow rate at 40 mL / min - 120 mL / min. Products were characterized by SEM, TEM and BET.
Based on results of this research, optimum conditions to obtain nanocarbon with good morphology is at the 20 minutes reaction times with a flow rate of 120 mL / min and the reaction temperature 7000C at atmospheric pressure. Nanocarbon formed is MWNT with diameter 54-59 nm. After treated for 10 hours, catalyst still looks stable. Catalytic activity increases for 5 minutes and then decreased drastically until the activity is relatively stable in the range of 1-10 hours.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1604
UI - Skripsi Open  Universitas Indonesia Library
cover
Ahmad Hanif Kustadi
"Three silica supported cobalt-base catalysts were prepared by wet impregnation method, the differences are changing the cobalt loading (1.65 wt.%, 4.78 wt.%, and 7.56 wt.% Co). Co/SiO2 catalysts were made from solution Co(NO3)2.6H2O, NH4OH, and SiO2 Degussa (200 m2.gr.-1) as support.
Magnetic measurement, transmission electronic microscopy (TEM), and chemisorptions method have been used to characterize the reduction and catalytic behavior of a series Co1SiO2 catalysts. Magnetic measurements were performed by Weiss extraction method, these give information both on the degree of reduction and on the metal size when the system is super paramagnetic. TEM would be determined average size and size distribution of particles. Structure sensitivity of organometalic surface of CO adsorption was observed with infra-red spectroscope (IR). H2 adsorption ability of catalysts and prediction of diameter size of cobalt could be calculated with volumetric adsorption method. The test catalytic hydrogenation CO reaction was proceeded under 200°C, 220°C, and 240°C, and the exit gas was analyzed on heated line by gas chromatography (FM and TCD) for measurement products conversion and selectivity.
All catalysts were reduced fully at 650°C, at that condition metal dispersion as active site on surface increases with decreasing cobalt loading, and the highest metal dispersion found 30 %.
The particle size of fully reduced cobalt metal is subject to rise with the increasing of metal loading, that is range of 3.9 nm to 8.7 nm and homogeneities distribution range of 8.7 % to 32 %. The smallest metal particle size is found about 3.9 nm and the highest H2 adsorption ability is 23,6 ml. gr.-1 for 1.65 wt.% Co1SiO2 catalyst.
The result of catalytic test at 220°C / 2 MPa / GHSV 2000 h-i was demonstrated that product selectivity for high hydrocarbon (greater than C5) has tendency to rise up to 29.9 %

Telah dilakukan penelitian pembuatan katalis logam cobalt dengan penyangga SiO2 Degussa untuk proses sintesis Fischer-Tropsch dengan metode impregnasi basah. Konsentrasi cobalt yang dibuat divariasikan sebesar 1,65 %, 4,78 %, dan 7,56 % berat. Preparasi dilakukan dengan mereaksikan larutan Co(NO3)z. 6H2O dengan NH4OH, dan SiO2 Degussa sebagai penyangga.
Karakterisasi katalis dilakukan dengan menentukan sifat kemagnetan dengan metode ekstraksi Weiss, data ini digunakan untuk mengukur sifat paramagnetik setelah dereduksi dan mengukur besarnya distribusi butiran. Untuk mengetahui bentuk, ukuran, dan hubungan antar butir partikel dilihat juga dengan metoda mikroskop transmisi elektronik (TEM). Pengamatan sensitivitas struktur permukaan organometalik dari gas CO dengan spektroskop infra-merah (FR). Pengukuran kemampuan katalis mengadsorpsi gas hidrogen pada katalis dan prediksi besar butir partikel logam dilakukan dengan adsoprsi volumetrik gas hidrogen. Uji katalis cobalt pada reaksi sintesis Fischer-Tropsch dilaksanakan di dalam reaktor unggun tetap dengan suhu 200°C sampai 240°C, pengukuran produk hasil proses dianalisis dengan kromatograft gas (GC-FM dan GC-TCD) untuk mengetahui konversi dan selektivitas produk.
Hasil penelitian menunjukkan bahwa ketiga katalis tersebut dapat tereduksi sempurna dengan gas hidrogen pada temperatur 650°C. Pada kondisi tersebut, persen dispersi logam sebagai inti aktif di permukaan katalis semakin besar dengan berkurangnya konsentrasi cobalt, persen dispersi tertinggi diperoleh sebesar 30 %.
Ukuran butiran partikel logam cobalt yang tereduksi sempurna semakin besar dengan bertambahnya konsentrasi cobalt yaitu antara 3,9 nm sampai 8,7 nm dan homogenitas distribusi bervariasi antara 8,7 % sampai 32 %. Ukuran katalis terkecil terukur sebesar 3,9 nm dan daya adsorpsi hidrogen tertinggi diperoleh sebesar 23,6 ml/gram cobalt pada katalis 1,65 % Co1SiO2 .
Hasil uji katalis pada temperatur 240°C / 2 MPa 1 GHSV 2000 h-1 menunjukkan bahwa selektivitas produk berupa hidrokarbon rantai panjang (> C5) cenderung meningkat sampai 29,9 %.
"
Depok: Fakultas Teknik Universitas Indonesia, 1994
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fiko Satiawan
"Parameter dari kualitas pembakaran pada motor pembakaran dalam dapat dilihat dari perfomanya dan emisi gas buang yang dihasilkan. Salah satu faktornya adalah kualitas bahan bakar yang digunakan. Metode untuk meningkatkan kualitas bahan bakar adalah dengan memberi katalis pada bahan bakar. Hal ini bertujuan untuk meningkatkan kemampuan bahan bakar mengikat oksigen, sehingga dapat meberikan efek pembakaran yang lebih baik. Tujuan lainnya adalah penggunaan katalis diharapkan dapat menghemat konsumsi bahan bakar dan menghasilkan emisi gas buang yang lebih baik. Pengujian ini menggunakan bahan bakar dasar pertamax plus. Katalis yang digunakan antara lain type a (sebut tablet), yaitu katalis dimasukan kedalam tangki bahan bakar. Sedangkan katalis yang kedua type b, katalis yang dipasang pada saluran bahan bakar yang terletak diantara pompa bahan bakar dan karburator. Pegujian juga dilakukan dengan melakukan perpaduan antara kedua katalis. Hasil pengujian menunjukan bahwa penggunaan perpaduan kedua katalis tidak menghaslkan performance yang baik jika dipadukan dengan bahan bakar pertamax plus. Dari hasil yang ada, penggunaan pertamax plus lebih baik daripada menggunakan katalis ini.

The parameters of the combustion quality of the internal combustion engine can be seen from perfomanya and exhaust emissions produced. One factor is the quality of fuel used. Methods to improve the quality of the fuel is to provide a catalyst to fuel. it aims to improve fuel bind oxygen, so it can not give a better burning effect. Other goal is the use of catalysts is expected to save fuel consumption and exhaust emissions better. This test uses the base fuel plus pertamax. Catalysts used include type A (called tablet), the catalyst is inserted into the fuel tank. While the second catalyst type b, a catalyst installed in the fuel line located between the fuel pump and carburetor. Test of also be done through a combination of the two catalysts. Test results show that use of a blend of the two catalysts not menghaslkan good performance when combined with fuel pertamax plus. Of the existing results, use pertamax plus better than using this catalyst.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S58399
UI - Skripsi Membership  Universitas Indonesia Library
cover
Slamet
"ABSTRAK
Salah satu aplikasi yang cukup potensial dari fenomena fotokatalisis adalah untuk mengkonversi karbon pada senyawa anorganik seperti CO2 menjadi senyawa-senyawa organik yang lebih berguna. Disamping diperolehnya produk senyawa organik yang dapat digunakan untuk keperluan tertentu, transformasi CO2 tersebut dalam kurun waktu tertentu dapat mengurangi laju emisi CO2 di atmosfer, yang akhir-akhir ini menjadi issu lingkungan global karena dipercaya dapat memberikan kontribusi yang signifikan terhadap timbulnya efek rumah kaca (greenhouse effect). Efisiensi reduksi CO2 sangat tergantung pada fotokatalis yang digunakan. Beberapa peneliti telah membuktikan bahwa CO2 dapat direduksi secara fotokatalitik dalam uap air atau Iarutan dengan TiO2, akan tetapi efisiensinya masih sangat rendah. Studi ini difokuskan pada pengembangan fotokatalis yang efektif untuk proses reduksi CO2 menjadi metanol.
Fotokatalis TiO2 serbuk dengan berbagai komposisi kristal anatase dan rutile dibuat dengan cara menghidrolisis TiCk yang dilanjutkan dengan kalsinasi pada berbagai temperatur. Modifikasi katalis TiO2 film dilakukan dengan menambahkan polyethilene glycol atau silika, menggunakan metode sol-gel dan dip-coating. Fotokatalis tembaga-titania dibuat dengan metode impregnasi-termodifikasi menggunakan TiO2 Degussa P25 clan larutan tembaga nitrat, serta metode pencampuran fisik menggunakan serbuk TiO2 Degussa P25. CuO, Cu2O, dan Cu. Katalis-katalis yang telah dibuat kemudian dikarakterisasi dengan XRD, DRS, SEM/EDX/Mapping, AAS, dan BET. Uji kinerja katalis yang dilakukan meliputi uji aktivitas fasa cair dan gas, uji kinetika, dan uji mekanisme reaksi dengan metode in-situ FTIR.
Hasil penelitian membuktikan bahwa dengan bantuan fotokatalis titania dan tembaga-titania. karbon dioksida dapat direduksi oleh air baik dalam sistem cair-padat rnaupun gas-padat, menghasilkan produk utama metanol. Metana, etanol, propanol, dan aseton adalah senyawa-senyawa lain yang juga terbentuk, meskipun dalam jumlah yang relatif lebih sedikit. Aktivitas reduksi fotokatalisis CO2 pada larutan 1 M KHCO3 paling optimal diamati te1jadi ketika keasaman larutan diatur pada pH 4. Katalis TiO2 serbuk dengan komposisi kristal anatase yg tinggi, ukuran kristal kecil, dan luas permukaan besar, rnempunyai efisiensi fotoreduksi CO2 yang tinggi. Penambahan dopan PEG atau SiO2 sampai pada tingkat loading tertentu dapat meningkatkan porositas fotokatalis TiO2 film, sehingga kine1:janya menjadi Iebih baik.
Katalis tembaga/Ti02 dcngan loading tertcntu menunjukkan kinerja fotokatalisis yang sangat efisien untuk reduksi CO2, baik pada sislem cair-padat maupun gas-padat. Hasil inYestigasi menunj ukkan bahwa Cu11O adalah spcsi do pan yang paling signi fikan dalan1 1neningkatkan kine1ja TiO2 pada reduksi CO2 menjadi metanol. loading optimal yang diperoleh pada katalis CuO/TiO2 hasil impregnasi adalah 3% berat Cu, sedangkan pada katalis yang dibuat dengan pencan1puran fisik adalah 5% berat untuk dopan Cu2O dan l % berat untuk dopan CuO.
Peningkatan efisiensi reduksi CO2 1nenjadi metanol yang signifikan oleh dopan ten1baga (terutan1a dalam bentuk metal oksida) pada fotokatalis TiO2 diduga karena adanya peran ganda yang sinergis dari dopan tembaga tersebut, yaitu sebagai electron trapper pada proses fotokatalisis dan sebagai inti aktif pada proses katalisis. Sebagai electron trapper~ dopan tembaga secara efektif dapat n1enghambat laju rekombinasi pasangan elektron-hole sehingga secara signifikan dapat meningkatkan efisiensi reduksi CO2. Sebagai inti aktif pada proses katalisis, dopan tembaga diperkirakan dapat meningkatkan selektivitas produk metanol, dengan 1nekanisme melalui pen1bentukan intermediate forn1at dan metoksida.
Uji kinetika yang dilakukan pada rentang te1nperatur 43 -l 00 °C menunjukkan bahwa dopan CuO dapat n1eningkatkan laju reaksi, sehingga secara signifikan dapat meningkatkan photoefficiency dari katalis TiO2. Nilai energi aktivasi teramti (Ea) yang diperoleh untuk katalis 3% CuO/TiO2 adalah sebesar + 12 kJ/mol, yang mengindikasikan bahwa desorpsi produk adalah merupakan tahap penentu laju reaksi pada pembentukan metanol dari CO2 dan H20 dengan katalis 3%CuO/TiO2. "
Universitas Indonesia Fakultas Teknik , 2004
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Yandy
"Biosolar merupakan salah satu bahan bakar diesel yang paling banyak dimanfaatkan di Indonesia. Biosolar memiliki kandungan senyawa sulfur yang sangat tinggi. Senyawa sulfur dalam Biosolar dapat menyebabkan dampak negatif bagi mesin, lingkungan, dan kesehatan manusia sehingga perlu diturunkan untuk memenuhi standar internasional maupun untuk efisiensi penggunaan mesin diesel. Salah satu metode untuk menurunkan kadar sulfur adalah desulfurisasi oksidatif katalitik (Cat-ODS) yang memiliki keunggulan dapat dilakukan pada suhu dan tekanan rendah dan tidak membutuhkan biaya yang besar. Pada penelitian ini, proses Cat-ODS terhadap senyawa sulfur di dalam Biosolar menggunakan oksidator hidrogen peroksida dan katalis Co-Fe/γ-Al2O3. Proses Cat-ODS dilakukan pada wadah berpengaduk menggunakan Biosolar 25 mL, katalis dengan loading inti aktif 24,63%, promotor 0 sampai 6,64%, dan penyangga katalis 72,05% serta rasio molar oksidator dengan sulfur (O/S) 120:1. Kondisi operasi Cat-ODS dilakukan pada waktu oksidasi 30 menit dan dioksidasi pada suhu 40 sampai 70°C. Setelah proses oksidasi, senyawa sulfur dalam Biosolar berubah menjadi senyawa sulfone yang dipisahkan menggunakan metode sentrifugasi. Kandungan senyawa sulfur pada Biosolar setelah Cat-ODS dianalisis menggunakan spektroskopi FTIR. Persen desulfurisasi terbaik pada penelitian ini didapat pada suhu 50°C, katalis Co-Fe/γ-Al2O3 5 gram, waktu reaksi oksidasi selama 30 menit, dan rasio O/S 120:1 dengan nilai sebesar 9,787%.
.....Biodiesel is one of the most widely used diesel fuels in Indonesia. Biodiesel contains very high sulfur compounds. Sulfur compounds in biodiesel can cause negative impacts on engines, the environment, and human health, so they need to be reduced to meet international standards and for the efficiency of using diesel engines. One method to reduce sulfur content is catalytic oxidative desulfurization (Cat-ODS) which has the advantage that it can be carried out at low temperatures and pressures and does not require large costs. In this study, the Cat-ODS process for sulfur compounds in biodiesel used hydrogen peroxide as an oxidant and a Co-Fe/γ-Al2O3 catalyst. The Cat-ODS process was carried out in a stirred container using 25 mL biodiesel, a catalyst with an active core loading of 24.63%, a promoter of 0 to 6.64%, and a catalyst support of 72.05% and a molar ratio of oxidizing agent to sulfur (O/S) 120:1. Cat-ODS operating conditions were carried out at an oxidation time of 30 minutes and oxidized at a temperature of 40 to 70°C. After the oxidation process, the sulfur compounds in biodiesel turn into sulfone compounds which are separated using the centrifugation method. The content of sulfur compounds in biodiesel after Cat-ODS was analyzed using FTIR spectroscopy. The best desulfurization percentage in this study was obtained at a temperature of 50°C, 5 grams of Co-Fe/γ-Al2O3 catalyst, an oxidation reaction time of 30 minutes, and an O/S ratio of 120:1 with a value of 9.787%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>