Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 74834 dokumen yang sesuai dengan query
cover
Murie Dwiyaniti
"Pemanasan global dari berbagai sektor kehidupan, terutama sektor energi, berdampak signifikan terhadap emisi gas rumah kaca sehingga diperlukan energi bersih yang bersumber dari energi baru terbarukan (EBT). Meskipun Indonesia telah mendorong penggunaan EBT, namun kendala pengembangan dan sifat intermittent sumber EBT memerlukan piranti penyimpanan energi yang berbiaya tinggi. Kapasitor Lithium Ion (KLI), piranti penyimpan energi jenis baru yang merupakan gabungan baterai lithium ion pada anoda dan superkapasitor pada katoda, menawarkan solusi kerapatan energi yang besar dan daya yang tinggi. Namun performansi KLI sangat dipengaruhi oleh material katoda yang berbahan karbon aktif. Karbon aktif umumnya terbuat dari graphene yang mahal, proses pembuatannya kompleks dan berbahaya bagi kesehatan. Sehingga perlu dicarikan alternatif bahan pembuat karbon aktif yang murah dan ramah lingkungan. Salah satu opsinya adalah limbah biomasa ampas tebu yang sangat berlimpah di Indonesia. Ampas tebu memiliki kandungan karbon dan lignoselulosa yang tinggi sehingga dapat dijadikan material karbon aktif berkualitas. Dalam penelitian ini, peneliti mensintesis ampas tebu menjadi karbon aktif menggunakan metode pirolisis sederhana dengan tabung reaktor kedap udara dan cara kering, di mana aktivator kimia dicampur langsung ke dalam karbon tanpa larutan, sehingga lebih efisien dari segi waktu dan biaya. Selanjutnya, karbon aktif ampas tebu digunakan sebagai material katoda pada KLI dan disusun bersama dengan LTO sebagai anoda dalam bentuk koin sel CR2032. Namun hasil pengujian elektrokimia KLI berbahan karbon ampas tebu menunjukkan kerapatan daya dan konduktivitas yang rendah. Untuk mengatasi hal tersebut, ditambahkanlah oksida logam berupa MnO2 yang memiliki kapasitansi tinggi, murah dan ramah lingkungan. Hasil penelitian menunjukkan bahwa karbon aktif berbahan ampas tebu dapat dijadikan material katoda pada KLI. Luas permukaan spesifik tertinggi adalah 1906 m2/g, spesifik kapasitansi 61 F/g, kerapatan energi 122 Wh/kg, kerapatan daya 1800 W/kg, konduktivitas 2,15 µS/cm, dan kapasitas 33 mAh/g dengan retensi 84% dalam 100 siklus. Penambahan MnO2 pada karbon aktif menunjukkan peningkatan performansi elektrokimia KLI yaitu spesifik kapasitansi 101 F/g, kerapatan energi 452 Wh/kg, kerapatan daya 2700 W/kg, konduktivitas 9,17 µS/cm, dan kapasitas 55 mAh/g dengan retensi 93% dalam 100 siklus. Kesimpulan penelitan ini, ampas tebu berpotensi menjadi karbon aktif yang digunakan sebagai material katoda pada KLI. Penambahan MnO2 pada karbon aktif ampas tebu menunjukkan kinerja KLI yang lebih baik sebagai piranti penyimpan energi yang ramah lingkungan.

Global warming from various life sectors, especially the energy sector, significantly impacts greenhouse gas emissions, necessitating clean energy sourced from renewable sources (RE). Despite Indonesia's promotion of RE, the unstable nature of these sources requires high-cost energy storage devices (batteries). Lithium-ion capacitors (LICs), a new battery combining lithium-ion batteries on the anode and supercapacitors on the cathode, offer a solution. However, LIC performance is highly reliant on cathode materials made of activated carbon. Activated carbon, typically made from expensive and hazardous graphene, has a complex production process. Bagasse is proposed as an eco-friendly and cost-effective alternative with a simpler production process. Its advantage lies in its high carbon content and lignocellulosic nature, ideal for activated carbon material. The synthesis method involves bagasse pyrolysis in a gas-tight tube furnace without gas and KOH activation via dry mixing, making it more time and cost-efficient. Bagasse-derived activated carbon is then used as the cathode material in LIC, combined with LTO as the anode in CR2032 coin cells. Characterization tests of the bagasse-derived carbon material in LIC revealed low power density and conductivity. To address this, manganese dioxide (MnO2), known for its high capacitance and eco-friendliness, was added. Research findings indicate that bagasse-derived activated carbon can be used as the cathode material in LIC. The highest specific surface area is 1906 m2/g, specific capacitance of 61 F/g, energy density of 122 Wh/kg, a power density of 1800 W/kg, conductivity of 2.15 µS/cm, and a capacity of 33 mAh/g with an 84% retention over 100 cycles. The addition of MnO2 showed improved electrochemical performance in LIC with a specific capacitance of 101 F/g, energy density of 452 Wh/kg, power density of 2700 W/kg, conductivity of 9.17 µS/cm, and a capacity of 55 mAh/g with a 93% retention over 100 cycles. This research concludes that sugarcane bagasse has the potential to become activated carbon used as the cathode material in LICs. Adding MnO2 to the activated carbon from sugarcane bagasse demonstrates the better performance of LICs as environmentally friendly energy storage devices"
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Asih Kurniasari
"Pesatnya transformasi sektor energi ramah lingkungan membuat fungsi dari sistem penyimpan energi menjadi krusial. Kapasitor lithium-ion (KLI) merupakan sistem penyimpan energi yang melengkapi kekurangan densitas daya pada baterai lithium-ion (BLI) dan densitas energi pada superkapasitor. Karakteristik luas spesifik permukaan (specific surface area, SSA) dan porositas serta properti fisik lain pada karbon aktif sebagai material katoda menentukan kapasitas muatan yang tersimpan pada KLI.
Pada penelitian ini, karbon aktif berbahan biomassa tongkol jagung dengan variasi laju alir gas nitrogen (N2) dibuat dan dianalisis untuk mendapatkan karakteristik optimal dan pengaruhnya terhadap performa elektrokimia sel KLI. Proses karbonisasi tongkol jagung (corncob) dilakukan dalam aliran gas Argon (Ar). Aktivasi nitrgoen corncocb activated carbon (NCAC) menggunakan KOH sebagai agen kimia dan pirolisis di suhu 700°C dalam N2 dengan laju alir sebesar 200, 300, dan 400 standard centimeter cubic per minute (sccm). Karakterisasi morfologi melalui scanning electron microscopy (SEM) dan energy dispersive x-ray (EDX) memperlihatkan bahwa ketiga NCAC memiliki sebaran pori berukuran mikro yang merata serta komposisi karbon C di atas 90%.
Pengujian Brunauer-Emmett-Teller (BET) menunjukkan sampel aktivasi kering memiliki luas SSA lebih besar daripada aktivasi basah, dimana SSA terbesar terdapat pada NCAC300 (1936 m2/g). Karakterisasi kristalinasi dan vibrasional dengan x-ray diffraction (XRD) dan Raman spectra memperlihatkan struktur ketiga NCAC berupa karbon amorf yang solid, dan NCAC300 memiliki properti fisik kristalit yang paling optimal. Ketiga sampel NCAC dijadikan material aktif katoda dan LTO sebagai material aktif anoda KLI. Analisis properti elektrokimia sel telah dilakukan melalui uji cyclic-voltammetry (CV) dan charge-discharge (CD).
Pengujain CV pada scan rate 5, 10, 15, 25, dan 50 mVs-1 menunjukan ketiga sel memiliki kurva quasi-rectangular dengan kapasitansi spesifik terbesar dimiliki oleh KLI-200 pada 5mV/s sebesar 24.22 Fg-1 dan rating terbaik pada scan rate tertinggi dimiliki oleh KLI-400 sebesar 8.27 Fg-1. Kestabilan coulomb dan energi spesifik tertinggi tercapai pada KLI-300 dengan densitas energi 10.791 Wh/kg pada densitas daya 526.39 W/kg. Dari hasil ini, laju gas N2 pada 300 sccm memberikan hasil karakterisasi dan kinerja yang optimal pada karbon aktif tongkol jagung dan KLI.

The rapid transformation of the environmentally friendly energy sector makes the function of energy storage system become crucial. The lithium-ion capacitor (LIC) is energy storage system which complements the gap of lack power density in lithium-ion batteries (LIB) and energy density in super-capacitor. Specific surface area (SSA), porosity, and other physical properties of activated carbon (AC) as cathode materials determine the load capacity stored at LIC.
In this study, AC from corncob as biomass with variations flow rate of nitrogen gas (N2) was made and analyzed to obtain characteristic and their effect on the electrochemical performance of LIC. The carbonization process is carried out in the Argon gas (Ar). Activation was prepared using KOH and pyrolisis at 700°C with flow rate of N2 at 200, 300, and 400 standard centi-meter cubic per minute (sccm). Morphological characterization through scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) showed that all NCACs had evenly distributed microporous with carbon C contained in surface area above 90%.
The Brunauer-Emmet-Tller (BET) test exposed that dry activation had a greater SSA than wet activation, where the largest SSA is found in NCAC300 (1936m2/g). Characterization of crystallite and vibrational with x-ray diffraction (XRD) and Raman spectra revealed the all samples has solid amorphous carbon, and NCAC300 has the most optimal physical properties of crystallite. The three NCACs and LTO were used as cathode and anode active materials of LIC. Analysis of electrochemical properties of cells has been carried out through cyclic-voltammetry (CV) and charge-discharge test (CD).
CV testing on scan rates 5, 10, 15, 25 and 50 mVs-1 show that three cells have quasi-rectangular curves with the largest capacitance owned by LIC-200 at 5mVs-1 at 24.22 Fg-1 and the best rating is owned by LIC-400, amounting to 8.27 Fg-1. The highest coulomb stability and specific energy was reached at LIC-300 with an energy density of 10.79 Whkg-1 at power density of 526.39 Wkg-1. From this result, the N2 at 300 sccm gives the most optimal characterization and performance results on LIC with corncob activated carbon.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T53496
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhamad Naufal Rianidjar
"Pemanasan global menjadi momok yang menakutkan bagi manusia, seiring dengan meningkatnya konsumsi energi primer berbahan bakar fosil yang menimbulkan gas efek rumah kaca. Hal ini mendorong para peneliti di seluruh dunia untuk merubah kebiasaan tersebut ke energi baru terbarukan (EBT). Namun, EBT baik itu fotovoltaik (PLTS) maupun pembangkit listrik tenaga bayu (PLTB) keduanya memiliki sifat intermittent sehingga dibutuhkan alat penyimpanan energi untuk menanggulangi sifat intermittent. Salah satu alat penyimpan energi adalah Kapasitor Lithium Ion (KLI). Penyimpanan energi jenis ini mempunyai karakteristik densitas daya dan energi spesifik yang berada diantara baterai lithium ion dan kapasitor konvensional, sehingga diharapkan mampu memiliki kapasitas mendekati Baterai Lithium Ion dengan densitas daya yang dimiliki mendekati Kapasitor konvensional. Salah satu alternatif bahan material yang dapat digunakan untuk pembuatan KIL yaitu, sampah organik, khususnya dalam penelitan ini ampas tebu. Hasil penggilingan tebu berupa ampas kasar kemudian di olah menjadi karbon aktif dengan memperhatikan variasi suhu aktivasi KOH. Karbon aktif pada skripsi ini memiliki luas permukaan mencapai 2136,66 m2/g terjadi pada suhu aktivasi 800°C. Berdasarkan hasil yang diperoleh melalui prediksi machine learning didapatkan nilai kapasitansi dengan suhu aktivasi 800oC, 700oC dan 600oC masing-masing sebesar 141,214 F; 80,955 F dan 102,855 F dengan MAE sebesar 28,11. Suhu aktivasi memiliki peran penting dalam penentuan hasil luas permukaan dan kapasitansi pada Kapasitor Lithium Ion.

Global warming is a frightening specter for humans, along with the increased consumption of fossil fuel-based primary energy that causes greenhouse gases. This prompted researchers around the world to change these habits to renewable energy (EBT). However, both photovoltaic (PLTS) and wind power plants (PLTB) both have intermittent characteristic so, that energy storage system are needed to cope with intermittent characteristic. One of the energy storage devices is Lithium Ion Capacitors (KIL). This type of energy storage has specific power and specific energy characteristics that are between lithium ion batteries and conventional capacitors, so it is expected to be able to have a capacity close to Lithium Ion Batteries with power density that are close to conventional capacitors. One alternative material that can be used for the manufacture of KIL is organic waste, especially in this research is sugarcane bagasse. The results of sugarcane milling in the form of coarse pulp then processed into activated carbon with temperature variation in KOH activation. Activated carbon in this thesis has a surface area of 2136.66 m2 / g which occurs at an activation temperature of 800 ° C. Based on the results obtained through machine learning prediction, the capacitance values with activation temperatures of 800 oC, 700 oC and 600 oC were 141.214 F; 80,955 F and 102,855 F with MAEs of 28.11. Activation temperature has an important role in determining the results of surface area and capacitance in Lithium Ion Capacitors."
Depok: Fakultas Teknik Universitas Indonesia , 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gde Ngurah Renaldi Shantika
"Perkembangan luas baterai lithium-ion (LIB) telah menarik banyak minat dari banyak peneliti. Peningkatan khusus penelitian baterai ini dapat dilihat dari LIB yang mulai digunakan dalam sistem grid yang disebut battery energy storage system (BESS). Proyek tesis ini bertujuan untuk menentukan jenis LIB apa yang cocok untuk digunakan dalam sistem jaringan yang berbeda. Untuk memilih jenis LIB mana yang cocok untuk sistem, efisiensi siklus dan mekanisme degradasi LIB harus dipelajari. Saat ini, jenis LIB yang digunakan untuk BESS adalah Lithium Iron Phosphate (LFP) dan Lithium Nickel Manganese Cobalt (NMC).
Terlepas dari kemampuan LFP dan NMC, mekanisme degradasi mereka masih merupakan bagian penting dari batasan BESS. Selain itu, degradasi LFP dan NMC dipengaruhi oleh suhu dan laju arus sehingga peningkatan kedua parameter akan menghasilkan degradasi yang lebih tinggi. Variasi suhu dan laju arus membuktikan bahwa LFP memiliki stabilitas yang unggul dibandingkan NMC, meskipun memiliki kapasitas lebih rendah dari NMC. Oleh karena itu, dapat disimpulkan bahwa LFP lebih cocok untuk sistem bersiklus tinggi, sementara NMC lebih cocok untuk sistem yang memiliki penyimpanan kapasitas tinggi sebagai perhatian utama mereka.

The vast development of lithium-ion batteries (LIB) has gained a lot of interest from many researchers. The particular improvement of LIB research is that LIB is starting to be used in a grid system called battery energy storage system (BESS). This thesis project aims to determine what type of LIB is suitable to be used in different grid systems. To choose which type of LIB that is suitable for the system, the cycling efficiency and the degradation mechanism of the LIB must be studied. Currently, the types of LIB used for BESS are Lithium Iron Phosphate (LFP) and Lithium Nickel Manganese Cobalt (NMC).
Despite the capability of LFP and NMC, their degradation mechanism is still an essential part of the limitation of the BESS. Additionally, the degradation of LFP and NMC are affected by temperature and current rate (C-rate) such that increasing both parameters will result in higher degradation. The variation of temperature and C-rate proves that LFP has superior stability compared to NMC, despite having lower capacity than NMC. Therefore, it can be concluded that LFP is more suitable for a high cycling system while NMC is more suitable for system which has high capacity storage as their primary concern.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adream Bais Junior
"Pemisah pada baterai lithium-ion (LIB) berfungsi sebagai pemisah antara anoda dan katoda untuk mencegah terjadinya arus pendek, namun tetap memungkinkan pergerakan ion elektrolit. Pemisah yang banyak digunakan dalam LIB komersial biasanya berbahan dasar poliolefin. Pemisah baterai yang terbuat dari bahan ramah lingkungan seperti selulosa asetat memiliki sifat mekanik dan termal yang sesuai, tidak beracun, dan hidrofilisitas yang baik. Fokus penelitian ini adalah karakteristik membran pemisah LIB berbahan selulosa asetat yang diproduksi menggunakan Temperature and Non-solvent Induction Phase Separation (N-TIPS) dengan DMSO dan pelarut non-udara, serta penambahan asam sitrat. sebagai agen pengikat silang. Pada penelitian ini yang menjadi fokus utama adalah pada variasi konsentrasi asam sitrat yaitu 0%; 5%; 10%; dan 15%. Hasil penelitian menunjukkan kuat tarik setelah penambahan asam sitrat sebesar 38,543 MPa; 68.291 MPa; 73.093 MPa; dan 68,963 MPa serta elongasi sebesar 5,334%; 8,908%; 6,575%; 7,130%; 50,093% untuk 0%; 5%; 10%; dan konsentrasi asam sitrat 15%, masing-masing. Selain itu, konduktivitas ionik membran ini adalah 2,16 × 10-5 S/cm; 2,53 × 10-7 S/cm; 6,63 × 10-9 S/cm; dan 3,91×10-7 S/cm sebesar 0%; 5%; 10%; dan konsentrasi asam sitrat 15%, masing-masing. Jika dibandingkan dengan membran Celgard, 4,80 10-6 S/cm, penambahan asam sitrat menurunkan konduktivitas ionik di bawah Celgard. Selanjutnya, membran dengan kinerja terbaik, asam sitrat 10%, memiliki ketahanan termal tertinggi sebesar 3,97%, keterbasahan sebesar 39,26 nM/m, dan porositas sebesar 2,17%.

The separator in a lithium-ion battery (LIB) functions as a separator between the anode and cathode to prevent short circuits, but still allows the movement of electrolyte ions. Separators that are widely used in commercial LIBs are usually polyolefin based. Battery separators made from sustainable materials such as cellulose acetate have suitable mechanical and thermal properties, non-toxicity, and good hydrophilicity. The focus of this research is the characteristics of LIB separator membranes made from cellulose acetate which were produced using a Temperature and Non-solvent Induced Phase Separation (N-TIPS) with DMSO and non-air solvents, as well as the addition of citric acid as a crosslinking agent. In this study, the main focus is on the variation of citric acid concentration, namely 0%; 5%; 10%; and 15%. The result shows a tensile strength after the addition of citric acid with the value of 38.543 MPa; 68.291 MPa; 73.093 MPa; and 68.963 MPa and elongation of 5.334%; 8.908%; 6.575%; 7.130%; 50.093% for 0%; 5%; 10%; and 15% citric acid concentration, respectively. Additionally, the ionic conductivity of these membranes is 2.16 × 10-5 S/cm; 2.53 × 10-7 S/cm; 6.63 × 10-9 S/cm; and 3.91 × 10-7 S/cm for 0%; 5%; 10%; and 15% citric acid concentration, respectively. If compared to Celgard membrane, 4.80 10-6 S/cm, the addition of citric acid lowered the ionic conductivity below Celgard. Furthermore, the best performing membrane, 10% citric acid, has the highest thermal resistance at 3.97%, wettability of 39.26 nM/m, and a porosity of 2.17%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hugo Abraham
"Optimalisasi kinerja untuk anoda baterai lithium-ion (LIBs) dapat dilakukan dengan mencampur ZnO-nanorods dengan ketentuan Karbon Aktif. Dalam penelitian ini, ZnO-nanorods di sintesis melalui suatu proses yang menggunakan bahan dasar HMTA dan Zinc Oxide. Untuk mengatasi masalah ini karbon telah diaktifkan karena memiliki sifat konduktivitas yang baik dan dapat mempengaruhi volume yang terjadi. Variasi dalam persentase nanorods ZnO yang 4wt%, 7wt%, dan 10wt%. Karakterisasi sampel diperiksa menggunakan X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), dan Brunauer-Emmett-Teller (BET). Kinerja baterai sampel diperoleh dengan Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV), dan Charge-Discharge (CD) pengujian setelah dirangkai menjadi baterai sel berbentuk koin.
Penelitian ini membahas tentang pengaruh penambahan karbon aktif terhadap komposit nanorod ZnO. Hasil penelitian menunjukkan bahwa nanorod AC-10%/ZnO-7% memiliki kapasitas spesifik tertinggi 270,9 mAh/g. Menurut tes Brunner-Emmet-Teller (BET), luas permukaan terbesar adalah 631.685 m2/g. Kinerja elektrokimia paling baik diperoleh oleh nanorods AC-10%/ZnO-7%.

Performance optimization for lithium-ion battery anodes (LIBs) can be done by mixing ZnO-nanorods with the provisions of Active Carbon. In this study, ZnO-nanorods synthesized a process that uses basic ingredients HMTA and Zinc Oxide, in addition. To solve this problem, carbon has been activated because it has good conductivity properties and can affect the volume that occurs. Variations in the percentage of ZnO nanorods which are 4wt%, 7wt%, and 10wt%. Characterization of the samples was examined using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Brunauer-Emmett-Teller (BET). The battery performance of the samples was obtained by Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV), and Charge-Discharge (CD) testing after being assembled into coin cell batteries.
This study discusses the effect of adding activated carbon to ZnO nanorods composites. The results showed that the AC-10%/ZnO-7% nanorods have the highest specific capacity of 270.9 mAh/g. According to Brunner-Emmet-Teller (BET) test, the largest surface area was 631.685 m2/g. Electrochemical performance is best obtained by AC-10% / ZnO-7% nanorods.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aisha Betalia
"LTO atau Li4Ti5O12 litium titanat merupakan suatu senyawa yang digunakan sebagai komponen anoda dalam baterai Li-ion. Anoda LTO digunakan karena memiliki sifat zero strain dan juga tidak menghasilkan SEI Solid Electrolyte Interphase yang dimana menyebabkan rendahnya performa baterai. Namun, LTO juga memiliki masalah yaitu kapasitasnya yang rendah. Untuk mengatasi masalah ini, LTO perlu dikombinasikan dengan material lain yang memiliki kapasitas tinggi seperti karbon aktif dan Sn. Selain itu, dengan membuat LTO menjadi bentuk nanorod pun juga akan meningkatkan performa baterai. LTO nanorod disintesis dengan metode hidrotermal di dalam larutan NaOH 4 M. Kemudian LTO nanorod yang telah disintesis dicampur dengan Sn yang bervariasi, yaitu 5, 10, dan 15 wt , serta 5 wt karbon aktif. Komposit LTO nanorod/Sn-CA tersebut kemudian dikarakterisasi menggunakan XRD, SEM-EDS, dan BET. Performa baterai juga diuji menggunakan pengujian EIS, CV, dan CD. Hasil penelitian menunjukkan bahwa kapasitas tertinggi didapatkan oleh LTO nanorod/15 Sn-CA yaitu sebesar 127,24 mAh/g. Dari penelitian ini dapat disimpulkan bahwa LTO nanorod/15 Sn-CA dapat digunakan sebagai alternatif untuk komponen anoda.

LTO or Li4Ti5O12 lithium titanate is a compound that is used as an anode component in lithium ion battery. LTO anode is used because it has zero strain properties and doesn rsquo t produce SEI solid electrolyte interphase which cause low battery performance. However, LTO also has a problem, which is its low capacity. To overcome this problem, the LTO needs to be combined with other materials that have high capacity, which, in this case, are active carbon AC and Sn. Making the LTO to be nano sized can also improve the performance of the battery, thus we tried to synthesize LTO in nanorods form. LTO nanorods is synthesized by hydrothermal in NaOH 4 M solution. The LTO nanorods is mixed with various Sn 5wt , 10wt , and 15wt and 5wt activated carbon. LTO nanorods Sn AC composite was characterized using XRD, SEM EDS, and BET and the battery performance was analyzed by EIS, CV, and CD. The results showed that the highest capacity was obtained at LTO nanorods AC 15wt Sn with 127.24 mAh g. This result shows that LTO nanorods AC 15wt Sn could be used as an alternative for anode component."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bagas Wibisono
"Telah dilakukan sintesis dan karakterisasi grafit oksida dari sabut kelapa dengan menggunakan metode Hummer termodifikasi dan diaplikasikan sebagai aditif pada NMC 811 komersil. Penambahan grafit oksida sebanyak 5 wt.% pada NMC 811 dilakukan dengan menggunakan metode solid state. Hasil pengujian NMC 811/grafit oksida dengan mikroskop elektron (SEM) memperlihatkan bahwa butiran grafit oksida telah melapisi NMC 811 secara merata. Fabrikasi sel baterai diawali dengan pembuatan slurry menggunakan NMP 811 yang sudah ditambahkan aditif, Super-P, dan PVDF dengan perbandingan 8:1:1. Slurry yang terbentuk dituangkan pada lembaran Al dan dilakukan proses coating dengan doctor blade dengan ketebalan 15 μm. Hasil coating dipotong dan dilakukan fabrikasi menggunakan coin cell tipe CR2032. Pengujian baterai dilakukan menggunakan cyclic voltammetry (CV) dan electrochemical impedance spectroscopy (EIS). Hasil uji EIS menunjukkan bahwa nilai koefisien difusi ion NMC 811/grafit oksida masih dibawah NMC 811 komersil namun lebih baik dibandingkan NMC 811/grafen oksida komersial dengan nilai masing-masing secara berturut-turut 4.31x10-13 cm2/s, 6.27x10-13 cm2/s, dan 2.49x10-13 cm2/s. Hasil uji performa baterai dengan CV menunjukkan sampel NMC 811/grafen oksida memiliki kestabilan reaksi oksidasi dan reduksi yang paling baik dengan ΔE sebesar 0.1 V, kemudian diikuti oleh NMC 811/grafit oksida dengan ΔE sebesar 0.49 V serta NMC 811 komersil dengan ΔE sebesar 0.95V. Hasil dari pengujian yang telah dilakukan menunjukkan bahwa sabut kelapa dapat diolah menjadi grafit oksida dan dapat digunakan untuk meningkatkan kestabilan NMC 811

Synthesis and characterization of graphite oxide from coconut coir via modified Hummer method have been carried out and applied as an additive to commercial NMC 811. The addition of 5 wt.% graphite oxide to NMC 811 was carried out via the solid-state reaction. Examination of NMC 811/graphite oxide using electron microscope (SEM) showed that the graphite oxide had coated NMC 811 homogeneously. Battery cell fabrication begins with the manufacture of slurry NMP 811/graphite oxide, Super-P, and PVDF with a ratio of 8:1:1. The slurry was coated onto Al sheets using a doctor's blade method with a thickness of 15 μm. The obtained result was cut and fabricated using a CR2032 coin cell. The performance of battery was tested using cyclic voltammetry (CV) dan electrochemical impedance spectroscopy (EIS). The EIS test results showed that the ion diffusion coefficient of NMC 811/graphite oxide was still below the commercial NMC 811 but better than that of NMC 811/graphene oxide with the values of 4.31x10-13 cm2/s, 6.27x10-13 cm2/s, and 2.49x10-13 cm2/s, respectively. Battery performance test using CV showed that the NMC 811/graphene oxide sample had the best oxidation and reduction reaction stability with ΔE of 0.1 V, followed by NMC 811/graphite oxide with ΔE of 0.49 V and commercial NMC 811 with ΔE of 0.95 V. These results indicate that coconut coir can be processed into graphite oxide and can be used to increase the stability of NMC 811."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdul Salaam
"Litium Titanat (Li4Ti5O12) memiliki beberapa kelebihan : sifat zero strain, charge-discharge yang panjang, tidak menimbulkan SEI (Solid Electrolyte Interphase). Namun Litium Titanat (LTO) memiliki kapasitas yang rendah (10-9 S cmn-1), dimana diatasi melalui pembuatan komposit dengan material lain. Grafit memiliki kapasitas spesifik yang besar, 372 mAh/g. Penambahan ZnO dapat meningkatkan kapasitas dan konduktivitas.
Penelitian ini berfokus mengetahui pengaruh penambahan ZnO variasi 3%, 5%, dan 7% dengan konsentrasi grafit tetap sebesar 5% sintesis solid state dengan sampel pembanding neat LTO dan LTO/Grafit disertai penambahan serbuk LiOH sebesar 6%. XRD menunjukkan adanya Li4Ti5O12 yang terbentuk, dengan ukuran kristalit terbesar pada LTO/Grafit-ZnO 3%. Hasil EIS menunjukkan LTO/Grafit-ZnO 5% memiliki konduktivitas terbaik.
Hasil CV menunjukkan Eo terbesar pada 3%, dan uji CV menghasilkan kapasitas spesifik yang lebih besar dari pengujian CD akibat C rate yang lebih besar, dengan kapasitas spesifik tertinggi CV pada LTO/Grafit-ZnO 3%, dan kapasitas terbesar CD pada LTO/Grafit-ZnO 5%, tidak terlalu jauh dengan kapasitas LTO/Grafit-ZnO 3%.
Perhitungan retensi menunjukkan LTO/Grafit-ZnO 3% memiliki rate capability baik sehingga tahan lama. Ketiga sampel memiliki efisiensi coulomb tinggi, sehingga tidak ada energi yang hilang selama charge-discharge. Meninjau hasil penelitian, dibutuhkan penelitian lebih lanjut untuk menghasilkan hasil yang optimal dalam meningkatkan konduktivitas serta kapasitas.

Lithium Titanate (L4Ti5O12) has several advantages, zero strain, good charge-discharge stability, and does not form SEI (Solid Electrolyte Interphase). However, LTO has low specific capacity (10-9 S cmn-1), and to improve that is to make a composite with another materials. Graphite has high specific capacity, 372 mAh/g, and the addition of ZnO would enhanced the capacity and conductivity.
This research focused on examined the effect of ZnO by various concentration 3%, 5% and 7% with a fixed concentration of graphite 5% by using solid state method and make a comparison between the neat LTO along with LTO/Graphite with the addition of excess LiOH 6% for LTO. XRD shows the presence of Li4Ti5O12 on each samples with the biggest crystallite size found in LTO/Graphite-ZnO 3%.
EIS shows LTO/Graphite-ZnO 5% has the best conductivity, and CV shows that LTO/Graphite-ZnO 3% has the biggest specific capacity. CD shows LTO/Graphite-ZnO 5% has the biggest capacity, with a little deviation form LTO/Graphite-ZnO 3%.
Retention indicate the LTO/Graphite-ZnO 3% has good rate capability, and all the samples have good coulumbic efficiency, indicates no energy lost during charge-discharge. Reveiweing the results, further research is need to obtained the best results.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faisal Aldy
"Li4Ti5O12 lithium titanate disintesis menggunakan metode sol-gel dan hidrotermal dengan memakai sumber ion lithium LiOH. Anoda komposit Li4Ti5O12/Sn dipreparasi menggunakan metode ball mill dengan 3 variasi Sn. XRD menunjukkan fasa spinel, TiO2, dan Sn. SEM memperlihatkan bahwa partikel Li4Ti5O12 memiliki ukuran berkisar 20-50 ?m dan ukuran partikel Sn berkisar 2-70 ?m. Nilai hambatan elektrolit terendah didapatkan pada kadar Sn terbesar. Peningkatan kadar Sn dapat meningkatkan kapasitas spesifik dari baterai pada uji CV. Reaksi alloying dan dealloying LixSn mengakomodasi peningkatan kapasitas spesifik pada C/D. Namun, volume ekspansi dari LixSn menyebabkan hilangnya kapasitas saat C rate meningkat. Kapasitas terbesar pada laju charge/discharge rendah dan tinggi didapatkan pada kadar Sn terbesar.

Li4Ti5O12 lithium titanate were synthesized by sol gel and hydrothermal method with LiOH as lithium ion source. Li4Ti5O12 Sn composites anode were preparared by ball mill method with three of Sn variation. XRD shows spinel, TiO2, and Sn phases. SEM shows that Li4Ti5O12 particles are around 20 50 m size and Sn particles are around 2 70 m size. The lowest electrolyte resistance obtained at the highest Sn value. With the increasing Sn value, the specific capacity of battery can be increased from CV. Alloying and dealloying reaction of LixSn accomodate the increased specific capacity from C D. However, volume expansion from LixSn leads to loss of capacity when the C rate increases. The capacity at low and high charge discharge rate obtained at the highest Sn value.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66450
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>