Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 156672 dokumen yang sesuai dengan query
cover
Fadila Paradise
"NTRU adalah sebuah lattice-based public key cryptosystem yang didesain oleh Hoffstein, Pipher, dan Silverman pada tahun 1996. NTRU dipublikasikan pada Algorithmic Number Theory Symposium (ANTS) pada tahun 1998. Pada tahun 2008 NTRU ANTS’98 ditetapkan sebagai standar dalam IEEE untuk teknik public key cryptography berbasis hard problem pada lattice. NTRU kemudian dikembangkan kembali oleh NTRU Inc. sejak tahun 2018 dan menjadi salah satu finalis pada round 3 kompetisi pemilihan standar post-quantum cryptography yang diselenggarakan oleh NIST pada tahun 2020. Secara umum terdapat 2 jenis algoritma yang diajukan oleh NTRU dalam proses seleksi round 3 jika diklasifikasikan berdasarkan penentuan parameternya, yaitu NTRU-HPS (Hoffstein, Pipher, Silverman) dan NTRU-HRSS (Hulsing, Rijnveld, Schanck, Schwabe). Percobaan algebraic cryptanalysis terhadap NTRU ANTS’98 sudah pernah dilakukan pada tahun 2009 dan 2012.
Dalam penelitian ini, dilakukan algebraic cryptanalysis terhadap NTRU-HPS dengan, (ntruhps2048509) serta NTRU-HRSS dengan (ntruhrss701). Tujuan dari penelitian ini adalah untuk mengevaluasi ketahanan algoritma NTRU-HPS dan NTRU-HRSS terhadap algebraic cryptanalysis dengan melakukan rekronstruksi nilai private key. Dari hasil penelitian didapatkan bahwa NTRU-HPS dan NTRU-HRSS tahan terhadap algebraic cryptanalysis.

NTRU is a lattice-based public-key cryptosystem designed by Hoffstein, Pipher, and Silverman in 1996. NTRU published on Algorithmic Number Theory Symposium (ANTS) in 1998. The ANTS’98 NTRU became the IEEE standard for public key cryptographic techniques based on hard problems over lattices in 2008. NTRU was later redeveloped by NTRU Inc. since 2018 and became one of the finalists in round 3 of the PQC (Post-Quantum Cryptography) standardization process organized by NIST in 2020. There are two types of NTRU algorithms proposed by NTRU Inc., which are classified based on parameter determination, NTRU-HPS (Hoffstein, Pipher, Silverman) and NTRU-HRSS (Hulsing, Rijnveld, Schanck, Schwabe). Algebraic cryptanalysis on ANTS’98 NTRU had previously been carried out in 2009 and 2012.
In this paper, algebraic cryptanalysis is performed on NTRU-HPS with, (ntruhps2048509) and NTRU-HRSS with (ntruhrss701). This study aims to evaluate the resistance of NTRU-HPS and NTRU-HRSS algorithms against algebraic cryptanalysis by reconstructing the private key value. As a result, NTRU-HPS and NTRU-HRSS are resistant to algebraic cryptanalysis.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Blomer, Valentin, editor
"The text that comprises this volume is a collection of surveys and original works from experts in the fields of algebraic number theory, analytic number theory, harmonic analysis, and hyperbolic geometry. A portion of the collected contributions have been developed from lectures given at the "International Conference on the Occasion of the 60th Birthday of S. J. Patterson", held at the University Göttingen, July 27-29 2009. Many of the included chapters have been contributed by invited participants."
New York: [Springer, ], 2012
e20419409
eBooks  Universitas Indonesia Library
cover
Erna Wulandari
"Dalam penelitian ini membahas mengenai rancangan sistem penilaian ujian lisan (SIPENILAI) otomatis pada bahasa Jepang menggunakan algoritma rabin karp. Algoritma rabin karp merupakan algoritma yang digunakan untuk melakukan pencarian dan perhitungan jumlah kata yang sama dalam setiap kata kunci yang dilakukan perbandingan. Algoritma rabin karp digunakan karena mempunyai kelebihan yaitu dapat melakukan pencocokan string yang bervariasi dengan lama waktu yang cepat. Algoritma rabin karp melakukan pencocokan string berdasarkan nilai hash pada teks dan nilai hash pada pola. Input pada sistem ini ialah berupa suara yang akan diubah menjadi teks bahasa Jepang dengan menerapkan proses romanisasi untuk mengubah karakter ke bentuk romaji. Pada sistem ini, algoritma rabin karp menerapkan model Bahasa N-gram. Sistem penilaian ujian lisan (SIPENILAI) otomatis ini dilakukan pengujian pertama dengan menggunakan Google Speech API dengan variasi parameter terbaik n=2 dan p=2 dan perhitungan cosine similarity yang diuji oleh 43 mahasiswa yang menghasilkan akurasi sebesar 88.35%. Dalam melakukan penilaian, sistem berjalan dengan kecepatan rata-rata sebesar 337.05 millisecond atau 0.337 second.

This research discusses design of automatic grading system for Japanese-Language examination (SIPENILAI) using rabin karp algorithm. Rabin-Karp algorithm is used to search and calculate the same number of words in each keyword that is compared. Rabin Karp algorithm has the advantage that can perform string matching that varies with a very fast time. Rabin-Karp algorithm perform string matching hash value based on the text and the pattern hash value. The system receives speech or voice input, then it is converted into Japanese text with Google speech recognition. In this system, Rabin Karp algorithm applies N-gram Language model. The accuracy rate for SIPENILAI were tested by 43 students is 88.35% by using Google Speech API, by using best variation of parameters n=2 and p=2 and cosine similarity. The system executes processes with an average speed of 337.05 milliseconds or 0.337 seconds.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ginzburg, Abraham
New York: Academic Press, 1968.
629.89 GIN a
Buku Teks  Universitas Indonesia Library
cover
Amsterdam : North-Holland Publishing Company, 1981
511.5 ALG
Buku Teks SO  Universitas Indonesia Library
cover
Rosenberg, Jonathan
New York: Springer, 1944
512.66 ROS a
Buku Teks SO  Universitas Indonesia Library
cover
Dundas, Bjørn Ian
"[This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. , This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. ]"
London: [Springer, ], 2013
e20419276
eBooks  Universitas Indonesia Library
cover
Afifah
"ABSTRAK
Teknologi Internet of Things (IoT) menjadi salah satu kebutuhan yang terus meningkat, dan tentunya memunculkan risiko dan tantangan keamanan informasi. Mengingat serangan terhadap perangkat IoT juga semakin meningkat, aspek keamanan menjadi bagian utama dalam implementasi IoT salah satunya adalah teknik kriptografi. Dari segi teknik kriptografi, lightweight cryptography dibutuhkan untuk memenuhi aspek keamanan informasi sekaligus didesain untuk diterapkan pada perangkat IoT. PRESENT merupakan salah satu algoritma block cipher ultra lightweight yang banyak diimplementasikan karena telah teruji ringan dan cepat, serta termasuk dalam salah satu algoritma lightweight yang direkomendasikan pada standar ISO/IEC 29192-2. Namun beberapa peneliti telah melakukan analisis kelemahan algoritma PRESENT terhadap suatu cryptanalysis salah satunya adalah improbable differential cryptanalysis. Improbable differential cryptanalysis merupakan gabungan dari metode impossible differential characteristic dan differential characteristic. Metode improbable differential cryptanalysis ini memanfaatkan karakteristik unik berupa undisturbed bit dari s-box PRESENT untuk membentuk pola dalam melakukan analisis cryptanalysis. Oleh karena itu, pada penelitian ini dilakukan analisis dan pengembangan algoritma modifikasi PRESENT berdasarkan ketahanannya terhadap potensi improbable differential cryptanalysis. Modifikasi algoritma dilakukan dengan mengganti s-box PRESENT menggunakan 9 (sembilan) pilihan s-box yang meliputi 4 (empat) s-box SERPENT, s-box BORON, s-box KLEIN, s-box LED, s-box RECTANGLE, dan s-box NES. Analisa yang dilakukan menggunakan uji Strict Avalanche Criterion (SAC), uji Differential Approximation Probability (DAP), dan analisa terhadap probabilitas karakteristik improbable differential yang dapat dibentuk. Berdasarkan hasil penelitian, substitution box KLEIN menghasilkan nilai uji SAC dan DAP yang paling baik dibandingkan 9 s-box lainnya yaitu memiliki nilai SAC rata-rata sebesar 0.59375 dan nilai DAP tertinggi sebesar 0.25 sebanyak 15. Serta berdasarkan hasil analisa improbable differential, algoritma modifikasi PRESENT yang menggunakan s-box KLEIN memiliki probabilitas terendah yaitu sebesar . Hal ini menunjukkan bahwa algoritma modifikasi PRESENT menggunakan s-box KLEIN memiliki ketahanan yang lebih baik terhadap potensi dilakukannya improbable differential cryptanalysis.

ABSTRACT
Internet of Things (IoT) technology increased for needed, and it raises risks and challenges of information security. Considering that attacks on IoT devices are increasing, security aspects become a part important in the implementation of IoT, one of which is cryptography. In terms of cryptography techniques, lightweight cryptography is needed to comply with the information security aspects and designed to be applied to IoT devices. PRESENT is one of the ultra-lightweight block cipher algorithms that has been implemented because it has been tested small and fast. PRESENT is included in one of the lightweight algorithms recommended in the ISO/IEC 29192-2 standard, but some researchers have analyzed algorithm weaknesses. Improbable differential cryptanalysis is a combination of impossible differential characteristics and differential characteristics. This improbable differential cryptanalysis method uses a unique characteristic consisting of the uninterrupted bits of the PRESENT s-box to create a pattern for conducting cryptanalysis. Therefore, in this research, an analysis of the PRESENT modification algorithm is based on its resistance to improbable differential cryptanalysis potential. Algorithm modification is done by replacing PRESENT S-box using 9 (nine) s-box options, which include 4 (four) SERPENT s-boxes, BORON s-boxes, KLEIN s-boxes, LED s-boxes, RECTANGLE s-boxes, and NES s-boxes. The analysis is performed using Strict Avalanche Criterion (SAC) test, Differential Approximation Probability (DAP) test, and analysis of the probability of improbable differential characteristics that can be formed. Based on the results of the research, KLEIN substitution box produces the best SAC and DAP test values compared to 9 other s-boxes, which have an average SAC value of 0.59375 and the highest DAP value of 0.25 of 15. And based on the results of improbable differential analysis, PRESENT modification algorithm which use the KLEIN s-box has the lowest probability of. This shows that the PRESENT modification algorithm using the KLEIN s-box has better resistance to the potential for improbable differential cryptanalysis.
"
2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Domosi, Pal
"Algebraic Theory of Automata Networks investigates automata networks as algebraic structures and develops their theory in line with other algebraic theories, such as those of semigroups, groups, rings, and fields. The authors also investigate automata networks as products of automata, that is, as compositions of automata obtained by cascading without feedback or with feedback of various restricted types or, most generally, with the feedback dependencies controlled by an arbitrary directed graph. This self-contained book surveys and extends the fundamental results in regard to automata networks, including the main decomposition theorems of Letichevsky, of Krohn and Rhodes, and of others."
Philadelphia : Society for Industrial and Applied Mathematics, 2005
e20442985
eBooks  Universitas Indonesia Library
cover
Natasha Thea
"Suatu graf sederhana dapat direpresentasikan dalam bentuk matriks Laplacian. Nilai eigen kedua terkecil dari matriks Laplacian, didefinisikan sebagai konektivitas aljabar, memiliki peranan dalam menunjukkan keterhubungan dari graf. Dalam tugas akhir ini, pertama-tama dicari batas atas dari jumlah kuadrat derajat pada suatu graf sederhana. Dari hasil yang diperoleh, kemudian ditentukan batas atas dan bawah dari konektivitas aljabar pada graf. Lebih lanjut dibahas pula batas bawah dari konektivitas aljabar pada graf berbobot.

A simple graph can be represented by a Laplacian matrix. The second smallest eigenvalue of Laplacian matrix, defined as algebraic connectivity, is used to show the connectivity of graphs. In this skripsi, first we find some upper bounds on the sum of the squares of the degrees in a simple graph. Using these results, we obtain some upper and lower bounds on the algebraic connectivity of graph. In addition, a lower bound on the algebraic connectivity of a weighted graph is also presented."
2016
S62454
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>