Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 74171 dokumen yang sesuai dengan query
cover
Yudhistira Jinawi Agung
"Pendeteksian topik adalah suatu proses untuk mendapatkan pokok bahasan atau topik pada suatu dokumen teks. Pada data yang besar, pendeteksian topik dapat dilakukan dengan lebih efisien menggunakan metode machine learning. Clustering merupakan salah satu metode machine learning yang bertujuan untuk mengelompokkan data yang memiliki karakteristik serupa ke dalam suatu kelompok/cluster. Beberapa contoh metode clustering adalah K-Means, Fuzzy C-Means (FCM), dan Eigenspace-Based Fuzzy C-Means (EFCM). Metode clustering hanya memproses data numerik, oleh sebab itu diperlukan metode representasi teks. Metode representasi teks yang umum digunakan sebelumnya adalah Bag of Words (BoW) dan Term-Frequency Inversed Document Frequency (TFIDF). Namun, metode BoW dan TFIDF kurang baik dalam merepresentasikan teks secara kontekstual. Pada tahun 2018 metode representasi teks yang baru ditemukan yaitu metode Bidirectional Encoder Representation from Transformers (BERT). Model BERT dapat merepresentasikan teks secara kontekstual dan menghasilkan representasi teks berdimensi tinggi. EFCM merupakan teknik clustering yang menggunakan kombinasi teknik reduksi dimensi Truncated Singular Value Decomposition (TSVD) dengan teknik clustering FCM. Pada tahun 2022 terdapat penelitian yang mengombinasikan BERT dan EFCM untuk pendeteksian topik. Pada model kombinasi BERT dan EFCM terdapat beberapa nilai parameter yang dapat diatur, antara lain adalah pemilihan lapisan encoder BERT, dimensi EFCM, dan derajat fuzziness. Penelitian ini berfokus pada analisis sensitivitas parameter untuk melihat pengaruh dari nilai parameter terhadap kinerja model EFCM berbasis BERT untuk pendeteksian topik. Analisis sensitivitas parameter menggunakan metode Sobol untuk menentukan parameter yang tidak sensitif dan yang paling sensitif. Kinerja model dievaluasi menggunakan metrik evaluasi topic coherence, topic diversity, dan topic quality. Hasil penelitian menunjukkan bahwa parameter lapisan encoder, dimensi EFCM, dan derajat fuzziness sensitif terhadap kinerja model. Selain itu, diperoleh model optimal pada tiga dataset menggunakan parameter tuning metode grid search. Penerapan parameter tuning dapat meningkatkan performa model pada ketiga dataset berdasarkan nilai topic quality.

Topic detection is a process to get the subject matter or topic in a text document. In large data, topic detection can be done more efficiently using machine learning methods. Clustering is a machine learning method aiming to group data with similar characteristics into a group/cluster. Some examples of clustering methods are K-Means, Fuzzy C-Means (FCM), and Eigenspace-Based Fuzzy C-Means (EFCM). The clustering method only processes numeric data; therefore, a text representation method is needed. Previously used text representation methods were Bag of Words (BoW) and Term-Frequency Inverse Document Frequency (TFIDF). However, the BoW and TFIDF methods are not good at representing text contextually. In 2018 a new text representation method was discovered, namely the Bidirectional Encoder Representation from Transformers (BERT) method. The BERT model can contextually represent text and produce high-dimensional text representations. EFCM is a clustering technique that combines the Truncated Singular Value Decomposition (TSVD) dimension reduction technique with the FCM clustering technique. In 2022 there will be research that combines BERT and EFCM for topic detection. In the BERT and EFCM combination model, there are several parameter values that can be set, including the selection of the BERT encoder layer, EFCM dimensions, and the degree of fuzziness. This study focuses on parameter sensitivity analysis to see the effect of parameter values on the performance of the BERT-based EFCM model for topic detection. Parameter sensitivity analysis uses the Sobol method to determine which parameters are insensitive and the most sensitive. Model performance was evaluated using evaluation metrics of topic coherence, topic diversity, and topic quality. The results showed that the parameters of the encoder layer, EFCM dimensions, and degree of fuzziness were sensitive to model performance. In addition, the optimal model was obtained for three datasets using the grid search method parameter tuning. Parameter tuning can improve the model performance on the three datasets based on topic quality values.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nicholas Ramos Richardo
"Pendeteksian topik adalah suatu proses untuk menentukan suatu topik dalam teks dengan menganalisis kata di dalam teks tersebut. Pendeteksian topik dapat dilakukan dengan membaca isi dari teks tersebut. Namun, cara ini semakin sulit apabila data yang dimiliki semakin besar. Memanfaatkan metode machine learning dapat menjadi alternatif dalam menangani data yang berjumlah besar. Metode clustering adalah metode pengelompokkan data yang mirip dari suatu kumpulan data. Beberapa contoh metode clustering adalah K-Means, Fuzzy C-Means (FCM), dan Eigenspaced-Based Fuzzy C-Means (EFCM). EFCM adalah metode clustering yang memanfaatkan metode reduksi dimensi Truncated Singular Value Decomposition (TSVD) dengan metode FCM (Murfi, 2018). Dalam pendeteksian topik, teks harus direpresentasikan kedalam bentuk vektor numerik karena model clustering tidak dapat memproses data yang berbetuk teks. Metode yang sebelumnya umum digunakan adalah Term-Frequency Inversed Document Frequency (TFIDF). Pada tahun 2018 diperkenalkan suatu metode baru yaitu metode Bidirectional Encoder Representations from Transformers (BERT). BERT merupakan pretrained language model yang dikembangkan oleh Google. Penelitian ini akan menggunakan model BERT dan metode clutering EFCM untuk masalah pendeteksian topik. Kinerja performa model dievaluasi dengan menggunakan metrik evaluasi coherence. Hasil simulasi menunjukkan penentuan topik dengan metode modifikasi TFIDF lebih unggul dibandingkan dengan metode centroid-based dengan dua dari tiga dataset yang digunakan metode modifikasi TFIDF memiliki nilai coherence yang lebih besar. Selain itu, BERT lebih unggul dibandingkan dengan metode TFIDF dengan nilai coherence BERT pada ketiga dataset lebih besar dibandingkan dengan nilai coherence TFIDF.

Topic detection is a process to determine a topic in the text by analyzing the words in the text. Topic detection can be done with reading the contents of the text.However, this method is more difficult when bigger data is implemented. Utilizing machine learning methods can be an alternative approach for handling a large amount of data. The clustering method is a method for grouping similar data from a data set. Some examples of clustering methods are K-Means, Fuzzy C-Means (FCM), and Eigenspaced-Based Fuzzy C-Means (EFCM). EFCM is a clustering method that utilizes the truncated dimension reduction method Singular Value Decomposition (TSVD) with the FCM method (Murfi, 2018). In topic detection, the text must be represented in numerical vector form because the clustering model cannot process data in the form of text. The previous method that was most commonly used is the Term-Frequency Inverse Document Frequency (TFIDF). In 2018 a new method was introduced, namely the Bidirectional Encoder method Representations from Transformers (BERT). BERT is a pretrained language model developed by Google. This study will use the BERT model and the EFCM clustering method for topic detection problems. The performance of the model is evaluated using the coherence evaluation metric. The simulation results show that modified TFIDF method for topic determination is superior to the centroid-based method with two of the three datasets used by modified TFIDF method having a greater coherence value. In addition, BERT is superior to the TFIDF method with the BERT coherence value in the three datasets greater than the TFIDF coherence value."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Rasyid Rabbani
"Fraud atau kecurangan merupakan salah satu permasalahan yang masih dihadapi oleh industri asuransi dan masih memberikan kerugian yang sangat besar bagi industri ini. Biaya yang dikeluarkan pun untuk mengatasi permasalahan ini masih cukup besar, untuk itu dikembangkanlah sebuah model machine learning untuk membantu pencegahan terjadinya fraud pada asuransi. Salah satu model yang sedang sangat berkembang adalah model Imbalance-XGBoost, penelitian ini dilakukan untuk meninjau kemampuan model Imbalance-XGBoost dalam mendeteksi fraud sebagai langkah pencegahan fraud pada asuransi. Penelitian ini berhasil mendapati bahwa Imbalance-XGBoost memiliki performa yang lebih baik jika dibandingkan dengan model dasarnya yaitu XGBoost tanpa penanganan kelas tidak seimbang.

Fraud or dishonesty is one of the persistent challenges faced by the insurance industry and continues to result in significant losses for the industry. The costs incurred to address this issue are also quite substantial. Therefore, a machine learning model has been developed to assist in preventing insurance fraud. One of the models that is currently gaining traction is the Imbalance-XGBoost model. This research was conducted to assess the ability of the Imbalance-XGBoost model in detecting fraud as a preventive measure in insurance. The study found that Imbalance-XGBoost performs better compared to its base model, XGBoost, which does not handle imbalanced classes.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zalfa Nurfadhilah Haris
"Kemiskinan merupakan salah satu masalah sosial yang masih menjadi perhatian pemerintah. Hampir seluruh negara berkembang memiliki standar hidup yang masih rendah. Salah satu cara untuk mengurangi kemiskinan adalah dengan menganalisis faktor-faktor yang memengaruhi Salah satu metode yang cocok dalam menganalisis tingkat kemiskinan adalah dengan menggunakan Geographically Weighted Regression (GWR). Hal ini dikarenakan dalam model GWR dipertimbangkan aspek spasial yang berbeda-beda untuk masing-masing lokasi pengamatan. Dalam model GWR dilakukan pendekatan analisis regresi yang digunakan untuk memahami hubungan spasial antara variabel-variabel dalam konteks geografi. Hal ini dikarenakan model GWR mempertimbangkan jarak lokasi pengamatan dengan lokasi sekitarnya, model GWR juga mempertimbangkan pembobot pada masing-masing lokasi pengamatan. Daerah yang dekat dengan lokasi pengamatakan mendapatkan pembobot yang lebih besar daripada daerah yang jauh dengan lokasi pengamatan, dalam hal ini penentuan pembobot dalam model GWR bergantung pada bandwidth. Dalam penelitian ini dilakukan analisis dengan mempertimbangkan empat pembobot spasial yaitu fixed gaussian kernel, fixed bisquare kernel, fixed tricube kernel, dan fixed exponential kernel yang diterapkan pada dua bandwidth yaitu bandwidth CV dan bandwidth AIC. Variabel dependen yang digunakan adalah tingkat kemiskinan dan variabel independen yang digunakan adalah rata-rata lama sekolah, upah minimum, tingkat pengangguran, indeks pembangunan manusia, angka harapan hidup dan jumlah penduduk. Hasil dari penelitian ini menunjukkan bahwa pada 118 Kabupaten/Kota di Pulau Jawa memiliki model GWR yang berbeda-beda. Untuk model GWR menggunakan bandwidth CV diperoleh model terbaik dengan menggunakan fixed exponential kernel dengan sembilan kelompok variabel yang signifikan, untuk model GWR menggunakan bandwidth AIC diperoleh model terbaik dengan menggunakan fixed bisquare kernel dengan enam kelompok variabel yang signifikan.

Poverty is one of the social issues that continues to be a concern for the government. Almost all developing countries have low living standards. One way to reduce poverty is by analyzing the factors that influence it. One suitable method for analyzing poverty levels is by using Geographically Weighted Regression (GWR). This is because the GWR model considers different spatial aspects for each observation location. In the GWR model, a regression analysis approach is used to understand the spatial relationship between variables in a geographical context. This is because the GWR model considers the distance between the observation location and its surrounding locations. The GWR model also considers weighting for each observation location. Areas close to the observation location are given a higher weight than areas far from the observation location. In this case, the determination of the weight in the GWR model depends on the bandwidth. This research analyzes four spatial weights, namely fixed Gaussian kernel, fixed bisquare kernel, fixed tricube kernel, and fixed exponential kernel, applied to two bandwidths: CV bandwidth and AIC bandwidth. The dependent variable used is the poverty rate, and the independent variables used are average length of schooling, minimum wage, unemployment rate, human development index, life expectancy, and population. The results of this study show that the 118 districts in Java Island have different GWR models. For the GWR model using the CV bandwidth, the best model is obtained using the fixed exponential kernel with nine significant variable groups. For the GWR model using the AIC bandwidth, the best model is obtained using the fixed bisquare kernel with six significant variable groups.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michael Mario Bramanthyo Adhi
"Angka Harapan Hidup (AHH) merupakan rata-rata perkiraan banyak tahun yang dapat ditempuh oleh seseorang sejak lahir. Badan Pusat Statistik (BPS) mencatat bahwa AHH penduduk di Provinsi Jawa Barat tahun 2021 mencapai 73,23 tahun dan menempati posisi keempat dengan nilai AHH tertinggi di Indonesia pada 2021. Penelitian ini bertujuan untuk menganalisis variabel-variabel yang menjelaskan AHH di setiap kabupaten/kota di Provinsi Jawa Barat tahun 2021 menggunakan model regresi linear berganda, Geographically Weighted Regression (GWR), dan Mixed Geographically Weighted Regression (MGWR) yang kemudian dievaluasi untuk memeroleh model terbaik. Pada penelitian ini, model regresi linier berganda digunakan untuk mengetahui seberapa besar pengaruh variabel-variabel independen terhadap variabel AHH dimana nilai estimasi parameter regresi sama untuk setiap wilayah penelitian atau disebut dengan model regresi global. Provinsi Jawa Barat terdiri dari 27 kabupaten/kota yang memiliki karakteristik berbeda antarwilayah sehingga memungkinkan adanya heterogenitas spasial. Model GWR bertujuan untuk mengeksplor heterogenitas spasial dengan membentuk model regresi yang berbeda pada setiap lokasi pengamatan atau dapat disebut dengan model regresi lokal. Hal ini akan menimbulkan permasalahan apabila terdapat variabel independen yang tidak bersifat lokal atau tidak mempunyai pengaruh lokasi, tetapi diduga memiliki pengaruh terhadap variabel dependen secara global. Oleh karena itu, dikembangkan lagi menggunakan model MGWR. Model MGWR menghasilkan estimasi parameter yang bersifat global dan lokal sesuai dengan lokasi pengamatan. Variabel yang bersifat global, yaitu Tingkat Pengangguran Terbuka (TPT) dan Pengeluaran Per Kapita (PPK), sedangkan variabel yang bersifat lokal, yaitu Jumlah Penduduk Miskin (JPM), Harapan Lama Sekolah (HLS), dan Persentase Penduduk yang Mempunyai Keluhan Kesehatan Sebulan Terakhir (KK). Hasil penelitian ini menunjukkan bahwa kedua variabel global berpengaruh terhadap AHH, sedangkan variabel lokal yang berpengaruh terhadap AHH berbeda pada setiap wilayahnya, begitu pula dengan model yang terbentuk juga akan berbeda untuk setiap wilayahnya. Selain itu, model terbaik yang diperoleh adalah model GWR dengan fungsi pembobot fixed Gaussian kernel dengan nilai AIC terkecil, adjusted R-squared terbesar, dan RMSE terkecil dibandingkan model regresi linier berganda dan MGWR.

Life Expectancy (AHH) is an estimate of the years that a person will take from birth. Badan Pusat Statistik (BPS) notes that the AHH of the population in West Java Province in 2021 reached 73.23 years and ranked fourth with the highest AHH value in Indonesia in 2021. This study aims to analyze the variables that explain AHH in each district/city in West Java Province in 2021 using multiple linear regression models, Geographically Weighted Regression (GWR) models, and Mixed Geographically Weighted Regression (MGWR) models which are then evaluated to obtain the best model. In this study, the multiple linear regression model is used to determine how much influence the independent variables had on the AHH variable where the estimated values of the regression parameters were the same for each study area or called the global regression model. West Java Province consists of 27 districts/cities which have different characteristics between regions, thus allowing for spatial heterogeneity. The GWR model aims to explore spatial heterogeneity by forming a different regression model at each observation location or it can be called a local regression model. This will cause problems if there are independent variables that are not local in nature or do not have a location effect, but are suspected of having an influence on the dependent variable globally. Therefore, it is further developed using the MGWR model. The MGWR model produces parameter estimates that have global and local characteristics according to the observation location. Global variables are Open Unemployment Rate (TPT) and Per Capita Expenditures (PPK), while local variables are Number of Poor Population (JPM), Expected Years of Schooling (HLS), and Percentage of Population with Health Complaints in the Last Month (KK). The results of this study indicate that both global variables have a significant effect on AHH, while local variables which have a significant effect on AHH are different in each region, as well as the model formed will also be different for each region. In addition, the best model obtained is the GWR model with a fixed Gaussian kernel weighting function with the smallest AIC value, the largest adjusted R-squared, and the smallest RMSE compared to the multiple linear regression model and MGWR model.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Besarnya angka statistik pernikahan dini (pengantin di bawah usia 16 tahun) di beberapa daerah di Indonesia secara keseluruhan cukup tinggi. Dalam rangka menanggulangi hal tersebut perlu dilakukan upaya untuk mempersiapkan remaja agar memiliki pengetahuan berkaitan dengan program KB. Untuk itu, peneliti ingin menganalisis keinginan remaja untuk menggunakan alat/cara KB setelah menikah dengan menggunakan metode CART dan QUEST berdasarkan data Survei Kesehatan Reproduksi Remaja Indonesia (SKRRI) 2002-2003. Berdasarkan hasil analisis antara metode CART dan QUEST diperoleh faktor-faktor yang mempengaruhi keinginan remaja untuk menggunakan alat/cara KB setelah menikah, serta karakteristik dari remaja berkaitan dengan hal tersebut. Selain itu diperoleh keakuratan tingkat klasifikasi dari kedua metode, dimana keakuratan tingkat klasifikasi metode CART sedikit lebih tinggi dibandingkan dengan metode QUEST. "
Universitas Indonesia, 2007
S27684
UI - Skripsi Membership  Universitas Indonesia Library
cover
Roviani Amelia
"Curah hujan menjadi faktor cuaca yang sangat berpengaruh terhadap aktivitas penerbangan, mulai dari saat pesawat akan lepas landas, ketika berada di udara, dan saat akan melakukan pendaratan. Oleh karena itu, penelitian ini bertujuan untuk mengembangkan sebuah model prediksi curah hujan di Bandara Silangit, Tapanuli Utara yang memiliki variasi curah hujan yang tinggi, karena dipengaruhi oleh posisi geografisnya di dekat garis khatulistiwa. Model prediksi curah hujan tersebut dibangun dengan memanfaatkan data dari AWOS dan menerapkan algoritma XGBoost dan selanjutnya dioptimasi dengan menggunakan dua metode, yaitu random search dan bayesian optimization untuk mencari kombinasi hyperparameter optimal dan meningkatkan akurasi model prediksi tersebut. Hasil penelitian menunjukkan bahwa model XGBoost sebelum dioptimasi berhasil mencapai akurasi prediksi 74.8%. Sementara itu, dengan hyperparameter tuning melalui metode bayesian optimization, akurasi model meningkat hingga 76.6%, dengan kombinasi nilai hyperparameter optimal yang didapatkan, diantaranya max_depth: 17, min_child_weight: 3, learning_rate: 0.1, n_estimators: 100, subsample: 0.91, dan colsample_bytree: 0.88. Temuan ini menegaskan potensi yang besar dalam penggunaan teknologi canggih untuk prediksi curah hujan dalam rangka mendukung keselamatan penerbangan di wilayah dengan kondisi cuaca yang kompleks dan dinamis.

Rainfall is a weather factor that significantly affects aviation activities, from takeoff and in-flight operations to landing. Therefore, this study aims to develop a rainfall prediction model for Silangit Airport in North Tapanuli, an area with high rainfall variability due to its geographic location near the equator. The rainfall prediction model is constructed using data from the Automated Weather Observing System (AWOS) and employs the XGBoost algorithm, which is further optimized using two methods: random search and Bayesian optimization. These methods are used to find the optimal hyperparameter combinations and improve the model's prediction accuracy.The results of the study show that the XGBoost model achieved a prediction accuracy of 74.8% before optimization. However, with hyperparameter tuning using Bayesian optimization, the model's accuracy increased to 76.6%. The optimal hyperparameter values obtained were max_depth: 17, min_child_weight: 3, learning_rate: 0.1, n_estimators: 100, subsample: 0.91, and colsample_bytree: 0.88. These findings highlight the significant potential of advanced technology in predicting rainfall, thereby supporting aviation safety in regions with complex and dynamic weather conditions.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Dalam pengujian hipotesis prinsip metode statistika parametrik adalah mencocokkan data di bawah asumsi distribusi dari populasinya. Namun pada kenyataannya, banyak permasalahan yang tidak memenuhi asumsi ini. Permasalahan seperti itu dapat diselesaikan dengan dua pendekatan. Pendekatan pertama adalah menggunakan prosedur bebas distribusi. Pendekatan kedua adalah mentransformasi data ke dalam bentuk yang bisa mendekati distribusi normal, seperti transformasi log, transformasi akar kuadrat dan lainnya. Transformasi rank (TR) merupakan prosedur yang mengkombinasikan kedua pendekatan tersebut. Prosedur ini mentransformasi data yang bebas distribusi ke dalam bentuk rank kemudian mengaplikasikan metode parametrik pada data yang telah ditransformasi. Dalam skripsi ini dibahas mengenai aplikasi dari transformasi rank pada data rating televisi. Nilai yang diperoleh dengan prosedur transformasi rank dapat disetarakan dengan nilai yang diperoleh dengan metode parametrik maupun nonparametrik. "
Universitas Indonesia, 2006
S27628
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadhira Rafik
"Subscription Video on Demand (SVoD) merupakan layanan video streaming dengan metode subscription yang dibayarkan pengguna pada periode tertentu untuk dapat mengakses seluruh konten yang disediakan SVoD. Banyaknya judul program baik film, series, tv show, dan konten video lainnya yang ada pada SVoD memberikan penggunanya semakin banyak pilihan untuk menentukan program mana yang ingin ditonton. Untuk menghindari kebingungan dan kesulitan yang dirasakan pengguna dari banyaknya pilihan program, SVoD menyediakan rekomendasi yang disesuaikan dengan personalisasi pengguna dengan harapan dapat mempermudah pengguna dalam menentukan tontonan program yang mungkin disukai. Dalam rangka mengidentifikasi faktor-faktor yang dapat memengaruhi niat keberlanjutan penggunaan SVoD, penelitian ini menyertakan kualitas rekomendasi untuk menganalisis pengaruhnya terhadap kepuasan, manfaat yang dirasakan, dan experience pengguna dalam menggunakan SVoD. Flow theory digunakan dalam penelitian ini untuk mengukur pengalaman holistik pengguna ketika dalam keterlibatan dan merasakan kenikmatan dari menggunakan SVoD. Metode analisis yang digunakan pada penelitian ini yaitu mixed-method dengan melakukan analisis kuantitatif terlebih dahulu, lalu dilanjutkan dengan analisis kualitatif. Analisis data kuantitatif dilakukan dengan metode PLS-SEM dengan data yang berhasil terkumpul melalui penyebaran kuesioner online sebanyak 394 pengguna SVoD. Hasil dari pengolahan analisis data didapatkan bahwa recommendation accuracy, recommendation novelty, dan recommendation diversity memengaruhi perceived usefulness dan flow. Selain itu, kualitas rekomendasi yang memengaruhi satisfaction hanya recommendation novelty dan satisfaction juga dipengaruhi oleh perceived usefulness dan flow. Selanjutnya, satisfaction, perceived usefulness, dan flow terbukti memengaruhi continuance intention. Hasil yang didapatkan dari penelitian ini diharapkan dapat memberikan saran praktis bagi penyedia layanan SVoD untuk meningkatkan pengembangan kualitas rekomendasi yang dapat memengaruhi niat keberlanjutan penggunaan SVoD.

Subscription Video on Demand (SVoD) is one of the video streaming service kind with a subscription method that the user pays within a certain period of time to get full access to watch all content provided by SVoD. The increasing number of program titles, including movies, series, tv shows, and other video content provided by SVoD gives users more choices to determine which programs they want to watch. SVoD provides recommendations that are customized to the user’s personalization in the hope that it can make it easier for users to determine which programs they might like to watch. In order to identify factors that may affect the continuance intention of using SVoD, this research included the quality of recommendation to analyze its influence on user’s satisfaction, perceived usefulness, and experience in using SVoD. Flow theory is used in this research to measure the user’s holistic experience when engaging and feel the enjoyment of using SVoD. Mixed-method is used in this research as an analysis method by conducting the quantitative method first, then continued with the qualitative method. Quantitative data analysis was carried out using the PLS-SEM method with data collected through the distribution of online questionnaires with a total of 394 SVoD users as respondents in this research. The result of processing data analysisi found that recommendation accuracy, recommendation novelty, and recommendation diversity affects perceived usefulness and flow. In addition, the quality of recommendations that affect satisfaction is only recommendation novelty, and satisfaction is also influenced by perceived usefulness and flow. Lastly, satisfaction, perceived usefulness, and flow are proven to affect continuance intention. The results obtained from this research are expected to provide practical advice for SVoD service providers to improve the development of the recommendation quality that can affect the continuance intention on using SVoD.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifanti Putri Tallisha
"Subscription Video on Demand (SVoD) merupakan layanan video streaming dengan metode subscription yang dibayarkan pengguna pada periode tertentu untuk dapat mengakses seluruh konten yang disediakan SVoD. Banyaknya judul program baik film, series, tv show, dan konten video lainnya yang ada pada SVoD memberikan penggunanya semakin banyak pilihan untuk menentukan program mana yang ingin ditonton. Untuk menghindari kebingungan dan kesulitan yang dirasakan pengguna dari banyaknya pilihan program, SVoD menyediakan rekomendasi yang disesuaikan dengan personalisasi pengguna dengan harapan dapat mempermudah pengguna dalam menentukan tontonan program yang mungkin disukai. Dalam rangka mengidentifikasi faktor-faktor yang dapat memengaruhi niat keberlanjutan penggunaan SVoD, penelitian ini menyertakan kualitas rekomendasi untuk menganalisis pengaruhnya terhadap kepuasan, manfaat yang dirasakan, dan experience pengguna dalam menggunakan SVoD. Flow theory digunakan dalam penelitian ini untuk mengukur pengalaman holistik pengguna ketika dalam keterlibatan dan merasakan kenikmatan dari menggunakan SVoD. Metode analisis yang digunakan pada penelitian ini yaitu mixed-method dengan melakukan analisis kuantitatif terlebih dahulu, lalu dilanjutkan dengan analisis kualitatif. Analisis data kuantitatif dilakukan dengan metode PLS-SEM dengan data yang berhasil terkumpul melalui penyebaran kuesioner online sebanyak 394 pengguna SVoD. Hasil dari pengolahan analisis data didapatkan bahwa recommendation accuracy, recommendation novelty, dan recommendation diversity memengaruhi perceived usefulness dan flow. Selain itu, kualitas rekomendasi yang memengaruhi satisfaction hanya recommendation novelty dan satisfaction juga dipengaruhi oleh perceived usefulness dan flow. Selanjutnya, satisfaction, perceived usefulness, dan flow terbukti memengaruhi continuance intention. Hasil yang didapatkan dari penelitian ini diharapkan dapat memberikan saran praktis bagi penyedia layanan SVoD untuk meningkatkan pengembangan kualitas rekomendasi yang dapat memengaruhi niat keberlanjutan penggunaan SVoD.

Subscription Video on Demand (SVoD) is one of the video streaming service kind with a subscription method that the user pays within a certain period of time to get full access to watch all content provided by SVoD. The increasing number of program titles, including movies, series, tv shows, and other video content provided by SVoD gives users more choices to determine which programs they want to watch. SVoD provides recommendations that are customized to the user’s personalization in the hope that it can make it easier for users to determine which programs they might like to watch. In order to identify factors that may affect the continuance intention of using SVoD, this research included the quality of recommendation to analyze its influence on user’s satisfaction, perceived usefulness, and experience in using SVoD. Flow theory is used in this research to measure the user’s holistic experience when engaging and feel the enjoyment of using SVoD. Mixed-method is used in this research as an analysis method by conducting the quantitative method first, then continued with the qualitative method. Quantitative data analysis was carried out using the PLS-SEM method with data collected through the distribution of online questionnaires with a total of 394 SVoD users as respondents in this research. The result of processing data analysisi found that recommendation accuracy, recommendation novelty, and recommendation diversity affects perceived usefulness and flow. In addition, the quality of recommendations that affect satisfaction is only recommendation novelty, and satisfaction is also influenced by perceived usefulness and flow. Lastly, satisfaction, perceived usefulness, and flow are proven to affect continuance intention. The results obtained from this research are expected to provide practical advice for SVoD service providers to improve the development of the recommendation quality that can affect the continuance intention on using SVoD.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>