Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 217082 dokumen yang sesuai dengan query
cover
Darin Ramadhiani Gita Wijaya
"Sebagai BUMN yang bergerak di bidang energi, PT Pertamina (Persero) harus memastikan distribusi BBM Subsidi tepat sasaran dan tidak terjadi penyalahgunaan. Dalam upaya tersebut, mulai 1 Juli 2022 Pertamina melakukan uji coba program Subsidi Tepat, di mana konsumen BBM Subsidi yang memiliki kendaraan roda empat harus mendaftarkan kendaraannya untuk dapat membeli Pertalite atau Biosolar. Salah satu cara pendaftaran program Subsidi Tepat dapat dilakukan di aplikasi digital MyPertamina, suatu aplikasi loyalitas untuk seluruh pelanggan produk Pertamina yang dapat diunduh di toko aplikasi digital Play Store. Hingga awal Maret 2023, aplikasi MyPertamina telah diunduh sebanyak lebih dari 10 juta kali di Play Store. Namun, penilaian (rating) yang diberikan pengguna di Play Store hanya mencapai 2,9/5. Angka tersebut cukup kecil jika dibandingkan dengan aplikasi layanan pemerintah lainnya yang memiliki jumlah unduhan serupa. Dengan banyaknya jumlah pengunduh dan rendahnya rating dari pengguna, ulasan pengguna perlu dianalisis untuk memastikan kinerja aplikasi MyPertamina. Berdasarkan hal tersebut, penelitian ini akan menerapkan pendeteksian topik menggunakan model BERT-EFCM untuk menganalisis topik-topik mengenai aplikasi MyPertamina pada ulasan pengguna di Play Store dan akan menerapkan analisis sentimen menggunakan model BERT-NN untuk menganalisis sentimen yang diekspresikan pada setiap topik yang dibahas mengenai aplikasi MyPertamina pada ulasan pengguna di Play Store. Hasil penelitian menunjukkan terdapat tiga topik yang dibahas mengenai aplikasi MyPertamina yaitu, penggunaan aplikasi untuk pembelian BBM di SPBU, pendaftaran dan layanan yang terkait dengan aplikasi, dan evaluasi pengguna terhadap aplikasi. Pada keseluruhan topik, mayoritas pengguna memberikan sentimen negatif dengan perbandingan sentimen sebagai berikut: 84% negatif dan 16% positif untuk topik pertama, 85% negatif dan 15% positif untuk topik kedua, serta 80% negatif dan 20% positif untuk topik ketiga.

As a state-owned enterprise in the energy sector, PT Pertamina (Persero) must ensure the targeted distribution of subsidized fuel (BBM) and prevent misuse. In this effort, starting from July 1, 2022, Pertamina initiated a pilot program called "Subsidi Tepat" (Precise Subsidy), where BBM Subsidi consumers with four-wheeled vehicles are required to register their vehicles in order to purchase Pertalite or Biosolar. One of the registration methods for the Subsidi Tepat program is through the MyPertamina digital application, a loyalty application for all Pertamina product customers that can be downloaded from the Play Store digital application store. Until early March 2023, the MyPertamina application has been downloaded more than 10 million times from the Play Store. However, the user ratings given in the Play Store only reach 2,9/5. This rating is relatively low compared to other government service applications with a similar number of downloads. With a large number of downloads and low user ratings, it is necessary to analyze user reviews to ensure the performance of the MyPertamina application. Based on this, this research will apply topic detection using the BERT-EFCM model to analyze the topics discussed in user reviews of the MyPertamina application in the Play Store. It will also apply sentiment analysis using the BERT-NN model to analyze the sentiments expressed for each topic related to the MyPertamina application in user reviews on the Play Store. The research results show three topics discussed regarding the MyPertamina application: the use of the application for purchasing BBM at gas stations, registration and related services, and user evaluations of the application. Overall, the majority of users express negative sentiments with the following sentiment ratios: 84% negative and 16% positive for the first topic, 85% negative and 15% positive for the second topic, and 80% negative and 20% positive for the third topic.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Habib Saputra
"Pada era digital saat ini, aplikasi Mobile Jaminan Kesehatan Nasional (JKN) telah menjadi alat penting dalam memudahkan akses dan manajemen layanan kesehatan masyarakat. Namun, untuk meningkatkan kualitas layanan dan kepuasan pengguna, perlu dilakukan analisis ulasan pengguna untuk memahami sentimen dan topik yang terkandung di dalamnya. Penelitian ini bertujuan untuk mengembangkan model analisis sentimen menggunakan metode Bidirectional Encoder Representations from Transformers (BERT) dan pendeteksian topik menggunakan metode Latent Dirichlet Allocation (LDA) pada ulasan pengguna aplikasi Mobile JKN. Penelitian ini menggunakan dataset yang terdiri dari ulasan pengguna aplikasi Mobile JKN yang dikumpulkan dari Play Store. Hasil dari penelitian ini menunjukkan bahwa model BERT yang dikembangkan berhasil mencapai akurasi sebesar 90% dalam melakukan analisis sentimen pada ulasan pengguna aplikasi Mobile JKN. Dari analisis sentimen tersebut, ditemukan bahwa dari 54.000 data yang akan dianalisis terdapat 14.748 data ulasan positif, 3.950 data ulasan netral, dan 35.302 data ulasan negatif yang terdeteksi oleh model BERT yang telah dikembangkan. Selanjutnya, melalui pendekatan LDA, penelitian ini juga berhasil mengidentifikasi 6 topik utama yang muncul dalam ulasan pengguna aplikasi Mobile JKN yang memiliki coherence value sebesar 0,466131. Topik-topik tersebut yaitu, topik pertama mengenai Pelayanan Mobile JKN, topik kedua perubahan data peserta, topik ketiga pembayaran iuran, topik keempat verifikasi nomor handphone, topik kelima update dan login pada aplikasi, dan topik keenam pendaftaran online. Hasil sentimen pada masing-masing topik menunjukkan bahwa topik 1, 2, dan 3 memiliki ulasan dengan sentimen positif lebih banyak daripada sentimen negatif, sedangkan topik 4, 5, dan 6 memiliki ulasan dengan sentimen negatif lebih banyak daripada sentimen positif. Demikian untuk topik mengenai verifikasi nomor handphone, update dan login pada aplikasi, dan pendaftaran online harus dilakukan evaluasi untuk perbaikan aplikasi Mobile JKN kedepannya.

In the current digital era, the National Health Insurance (Jaminan Kesehatan Nasional or JKN) mobile application has become an essential tool in facilitating access and management of healthcare services for the public. However, to improve service quality and user satisfaction, it is necessary to analyze user reviews to understand the sentiments and topics contained within them. This research aims to develop a sentiment analysis model using the Bidirectional Encoder Representations from Transformers (BERT) method and topic detection using the Latent Dirichlet Allocation (LDA) method on user reviews of the JKN mobile application. The research utilizes a dataset consisting of user reviews of the JKN application collected from the Play Store. The results of this study show that the developed BERT model successfully achieved an accuracy of 90% in sentiment analysis of user reviews of the JKN mobile application. From the sentiment analysis it is known that of the 54,000 data to be analyzed, there are 14,748 positive reviews, 3,950 neutral reviews, and 35,302 negative reviews detected by the BERT model that has been developed. Furthermore, through the LDA approach, this research also successfully identified 6 main topics that emerged in user reviews of the JKN mobile application with a coherence value of 0.466131. These topics are, the first topic regarding Mobile JKN Services, the second topic is changing participant data, the third topic is payment of contributions, the fourth topic is handphone number verification, the fifth topic is updating and logging in to the application, and the sixth topic is online registration. The sentiment results for each topic show that topics 1, 2, and 3 have reviews with more positive sentiment than negative sentiment, while topics 4, 5, and 6 have reviews with more negative sentiment than positive sentiment. So that for topics regarding handphone number verification, updating and logging into applications, and online registration, an evaluation must be carried out to improve the Mobile JKN application in the future."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Riko Wijayanto
"Perkembangan teknologi informasi dan komunikasi (TIK) yang pesat menuntut inovasi dalam pengembangan aplikasi juga berkembang cepat. Aplikasi Tokopedia Seller merupakan salah satu aplikasi utama milik PT Tokopedia yang diperuntukkan bagi penjual dalam melakukan kegiatan operasional penjualan produk. Aplikasi yang baru diluncurkan di Android ini tergolong aplikasi perintis dan memerlukan banyak masukan dari pengguna, salah satunya dari Google Play Store. Akan tetapi, banyaknya ulasan yang masuk dan beragamnya opini, mengakibatkan proses analisis sentimen dan aspek ulasan menjadi lambat dan banyak terlewat. Oleh karena itu, perlu dilakukan suatu penelitian yang mengusulkan sistem otomatis untuk melakukan analisis sentimen berbasis aspek. Tujuan dari usulan sistem otomatis ini adalah untuk memudahkan proses analisis ulasan pengguna. Adapun data ulasan yang digunakan sebagai masukan eksperimen bersumber dari Google Play Store sejumlah 6.221 data berlabel dari Juli – September 2021. Penelitian ini menunjukkan bahwa algoritma Support Vector Machine (SVM) yang dipadukan dengan SMOTE menghasilkan performa yang paling baik dibandingkan dengan CNN dan Logistic Regression dengan accuracy 54%, precision 48%, dan recall 52% untuk mengklasifikan sentimen. Selaras dengan analisis sentimen, SVM dengan SMOTE juga menghasilkan performa yang lebih baik dengan accuracy 40%, precision 41%, dan recall 40%. Kondisi data ulasan yang cenderung singkat yakni kurang dari 10 kata, mengakibatkan performa klasifikasi kurang optimal.

The rapid development of information and communication technology (ICT) requires innovation in the field of application development. The Tokopedia Seller application is one of the main applications owned by PT Tokopedia which develops for sellers in carrying out product sales operational activities. It was just launched on Android, and it is classified as a pioneering application and requires a lot of input from users, one of which is from the Google Play Store. However, due to a lot of reviews came in, it makes the process of sentiment analysis and aspect review being slow and many being missed. Therefore, it is necessary to conduct a study that proposes a automatic system to perform aspect-based sentiment analysis. The purpose of this automated system proposal is to simplify the process of analyzing user reviews. The review of the data used as experimental input sourced from the Google Play Store with a total of 6,221 data labeled from July – September 2021. This study shows that the Support Vector Machine (SVM) algorithm combined with SMOTE produces the best performance compared to CNN and Logistic Regression with 54% accuracy, 48% precision, and 52% recall for classifying sentiments. In line with sentiment analysis, SVM with SMOTE also produces better performance with 40% accuracy, 41% precision, and 40% recall. The condition of the short review data is less than 10 words, resulting in a less than optimal classification performance."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Jefka Dhammananda
"Pesatnya perkembangan teknologi informasi dan komunikasi menuntut adanya inovasi dalam pengembangan aplikasi agar dapat mengikuti perkembangan yang cepat tersebut. Segari adalah salah satu penyedia layanan supermarket online yang populer di Indonesia. Segari merupakan perusahaan yang berlandasan customer centric dan mempunyai nilai Be Obsessed with our Customers, sangat mengedepankan kebutuhan dari pelanggannya. Minimnya sumber daya manusia dan banyaknya ulasan pelanggan yang perlu di analisis menghambat proses penggalian informasi dari ulasan pelanggan tersebut, sehingga diperlukan model pembelajaran mesin yang dapat secara otomatis melakukan analisis sentimen untuk mengklasifikasikan ulasan menjadi sentimen positif atau negatif. Informasi yang diambil dari analisis sentimen dapat digunakan sebagai referensi untuk menjaga kualitas layanan berdasarkan sentimen positif, sedangkan hasil dari sentimen negatif dapat digunakan sebagai bahan evaluasi untuk meningkatkan layanan dan aplikasi Segari. Dalam penelitian ini, peneliti membahas implementasi model analisis sentimen menggunakan ulasan pelanggan dari Google Play Store. Metode pembuatan model dimulai dari pengumpulan data, pelabelan data, pra proses data, ekstraksi fitur, model klasifikasi sentimen, evaluasi model, dan pemodelan topik. Peneliti menggunakan dua algoritma klasifikasi, Naive Bayes Classifier (NB) dan Support Vector Machine (SVM), pada total 10.507 ulasan. Data menunjukkan bahwa 74,37% ulasan mengungkapkan sentimen positif, sedangkan 25,63% mengungkapkan sentimen negatif. Hasil penelitian menunjukkan bahwa algoritma SVM dengan oversampling mencapai kinerja model terbaik, dengan recall sebesar 89,98%. Selain itu, peneliti menggunakan Latent Dirichlet Allocation (LDA) untuk mengidentifikasi topik terkait dengan perspektif pelanggan tentang Segari yang selanjutnya disampaikan kepada tim terkait. Hasil analisis mengungkapkan bahwa terdapat pelanggan yang puas dan kecewa dengan proses pengiriman produk. Pelanggan umumnya sudah puas dengan kualitas dan kesegaran dari produk. Beberapa pelanggan merasa kecewa karena pesanan yang kosong atau tidak lengkap dalam paket. Terdapat pelanggan yang puas dan kecewa terhadap aplikasi antarmuka pengguna, kecepatan, maupun kinerja aplikasi. Terdapat pelanggan yang puas dan kecewa terhadap harga, promo, dan voucher yang tersedia. Beberapa pelanggan merasa kecewa terhadap servis yang diberikan oleh customer service. Secara keseluruhan, penelitian ini memperluas pengetahuan tentang metode analisis sentimen dan memberikan wawasan tentang melakukan penelitian terkait analisis sentimen dan ulasan pelanggan.

The rapid development of information and communication technology demands innovation in application development to keep up with such rapid advancement. Segari is one of the popular online supermarket service providers in Indonesia. Segari is a customer-centric company with a core value of being obsessed with its customers, prioritizing their needs. The lack of human resources and the abundance of customer reviews that need to be analyzed hinder the process of extracting information from these reviews. Therefore, a machine learning model is needed to automatically perform sentiment analysis and classify the reviews into positive or negative sentiments. The information extracted from sentiment analysis can be used as a reference to maintain service quality based on positive sentiments, while the results of negative sentiments can be used for evaluation to improve Segari's services and application. In this research, the implementation of a sentiment analysis model using customer reviews from the Google Play Store is discussed. The model development process includes data collection, data labeling, data preprocessing, feature extraction, sentiment classification model, model evaluation, and topic modeling. The researcher utilized two classification algorithms, Naive Bayes Classifier (NB) and Support Vector Machine (SVM), on a total of 10,507 reviews. The data shows that 74.37% of the reviews express positive sentiments, while 25.63% express negative sentiments. The results of the study indicate that the SVM algorithm with oversampling achieved the best model performance, with a recall of 89.98%. Additionally, the researcher used Latent Dirichlet Allocation (LDA) to identify topics related to customer perspectives on Segari, which will be communicated to the relevant team. The analysis revealed that some customers are satisfied while others are disappointed with the product delivery process. Customers generally expressed satisfaction with the quality and freshness of the products. Some customers felt disappointed due to missing or incomplete items in their orders. There were mixed opinions about the user interface, speed, and performance of the application. Customers also expressed satisfaction and dissatisfaction with the available prices, promotions, and vouchers. Some customers felt disappointed with the service provided by the customer service team. Overall, this paper extends knowledge of sentiment analysis methods and provides insights on conducting research related to sentiment analysis and customer reviews.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Syahrul Amrie
"Perkembangan media sosial telah berkembang pesat, tidak hanya sebagai alat komunikasi sosial antar individu. Fungsi dan kegunaannya semakin berkembang serta banyak dimanfaatkan organisasi swasta maupun pemerintah untuk mengukur tingkat layanan. Ditjen Imigrasi selaku organisasi pemerintah merupakan salah satu organisasi yang memanfaatkan media sosial, salah satu fungsinya untuk mengetahui apakah layanan yang diberikan telah diterima dengan baik oleh masyarakat. Selain melalui media sosial, Imigrasi juga telah meluncurkan aplikasi M-Paspor di platform Google Play Store, di platform tersebut Imigrasi juga dapat mengetahui tingkat efektivitas dari aplikasi yang telah diluncurkan. Berdasarkan survei yang dilakukan oleh Balitbangham yang merupakan internal dari Kemenkumham, layanan yang diberikan oleh imigrasi mendapat nilai sangat baik, namun faktanya pada media sosial maupun google play store banyak komentar maupun ulasan yang kurang puas dengan pelayanan pihak imigrasi. Hal tersebut menjadi kontradiksi antara hasil survei Balitbangham dan data di media sosial. Namun, akan sulit untuk melakukan analisis data media sosial dikarenakan jumlah yang banyak. Oleh karena itu, perlu dilakukan untuk mengusulkan sistem untuk melakukan analisis sentimen menggunakan data teks komentar dan ulasan. Sehingga pihak Imigrasi dapat mengambil langkah terbaik untuk dapat memperbaiki layanan yang masih belum maksimal. Dataset yang digunakan berupa data yang diambil dari media sosial Twitter dan Instagram serta ulasan pada Google Play Store. Hasil penelitian menunjukan jika fitur ekstraksi TF-IDF Unigram yang dipadukan dengan algoritma Support Vector Machine (SVM) serta SMOTE menghasilkan performa paling tinggi dibandingkan dengan nave Bayes (NB) maupun Random Forest (RF). dalam melakukan klasifikasi, SVM menghasilkan dengan hasil Precision 72%, Recall 69%, Accurasy 69, serta F1-Score sebesar 68%. Model tersebut dapat digunakan Imigrasi untuk mengetahui umpan balik pelayanan dari masyarakat yang dapat digunakan sebagai pertimbangan dalam melakukan perbaikan pelayanan serta merumuskan strategi pelayanan oleh Direktorat terkait agar pelayanan lebih efisien untuk kedepannya. Sehingga, Imigrasi akan mampu dengan cepat merespon kendala yang dihadapai oleh masyarakat.

The development of social media has grown rapidly, not only as a means of social communication between individuals. Its functions and uses are growing and are widely used by private and government organizations to measure service levels. The Directorate General of Immigration as a government organization is one of the organizations that utilizes social media. Its function is to find out whether the services provided have been well received or not by the public. Apart from social media, Immigration has also launched the M-Passport application on the Google Play Store platform, on the platform, Immigration officials can also find out the effectiveness of the applications that have been launched. Based on a survey conducted by Balitbangham which is internal to the Ministry of Human Rights, the services provided by immigration get a very good score, but the fact is that on social media and the Google Play Store some many comments and reviews are not satisfied with the services of the immigration authorities. This is a contradiction between the results of the Balitbangham survey and data on social media. However, it will be difficult to analyze social media data due to the large number. Therefore, it is necessary to propose a system to perform sentiment analysis using commentary and reviewing text data. So that Immigration can take the best steps to be able to improve services that are still not optimal. The dataset used is in the form of data taken from social media Twitter and Instagram as well as reviews on the Google Play Store. The results show that the TF-IDF Unigram extract feature combined with the Support Vector Machine (SVM) and SMOTE algorithms produces the highest performance compared to Naïve Bayes (NB) and Random Forest (RF). In classifying, SVM produces 72% Precision, 69% Recall, 69% Accuracy, and 68% F1-Score. This model can be used by Immigration to find out service feedback from the community as a consideration in making service improvements and formulating more efficient service strategies for the future. Thus, Immigration will be able to quickly respond to the obstacles faced by the community."
Jakarta: Fakultas Ilmu Kompter Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Novialdi Ashari
"Perkembangan pesat teknologi menyebabkan pertumbuhan pengguna perangkat mobile
semakin meningkat. Hal tersebut mendorong para pengembang aplikasi untuk
mengembangkan berbagai aplikasi. Aplikasi Learn Quran Tajwid merupakan aplikasi
yang diperuntukkan bagi pengguna untuk belajar dan memahami bacaan al-quran lebih
detail dengan audio yang tepat dalam melafadzkan al-quran dan pengguna dapat
mempraktekkan bacaan dengan koreksi dari aplikasi. Pendapatan Learn Quran Tajwid
bersumber pada layanan berlangganan dan iklan. Sumber utamanya pada pendapatan
layanan paket berlangganan khususnya di Google Play Store namun sumber pendapatan
utama tersebut terus mengalami penurunan pertumbuhan bulanan dari tahun sebelumnya.
Target peningkatan pertumbuhan pendapatan bulanan Aplikasi Learn Quran Tajwid di
Google Play Store dari tahun sebelumnya (y-o-y) tidak tercapai. Oleh sebab itu, dilakukan
analisis akar masalah dan didapatkan masalah utamanya adalah kepuasaan pelanggan
menurun. Tujuan penelitian ini adalah melihat bagaimana pandangan pengguna Aplikasi
Learn Quran Tajwid di Google Play Store dengan melakukan analisis sentimen dan
pemodelan topik. Data ulasan yang digunakan berjumlah 5100 ulasan yang didapatkan
dengan melakukan scraping dari ulasan pengguna aplikasi Learn Quran Tajwid di Google
Play Store dengan rincian 3026 ulasan sebagai data latih. Selanjutnya data latih
dianotasikan manual untuk menentukan sentimen positif atau negatif kemudian dilakukan
preprocessing dan representasi teks menggunakan TF-IDF. Penelitian ini menggunakan
algoritma NB, SVM, XGBoost, CNN, LSTM dan BERT untuk klasifikasi sentimen. Hasil
eksperimen menunjukkan bahwa algoritma klasifikasi dengan kinerja terbaik adalah
algoritma BERT dengan akurasi 96%, diikuti SVM imbalanced class dengan akurasi
95,2% serta SVM-smote dan LSTM dengan akurasi 94,8%. Sementara itu, algoritma
pemodelan topik yang digunakan adalah LDA. Hasil pemodelan topik menggunakan
algoritma LDA untuk sentimen positif dan negatif. kesimpulan topik pada sentimen
positif yakni pengguna merasa aplikasi sangat bagus dan memberikan manfaat yang
besar, serta mudah digunakan Sedangkan dari topik yang muncul pada sentimen negatif
didapatkan kesimpulan yakni pengguna merasa iklan yang muncul sangat mengganggu
dan mengurangi pengalaman pengguna walaupun pengguna merasa aplikasi bagus dan
bermanfaat namun karena terdapat iklan yang sangat mengganggu berpengaruh terhadap
kepuasaan pengguna sehingga memberikan rating rendah.

The rapid development of technology has led to an increasing growth in mobile device
users. This has driven application developers to create various apps. The Learn Quran
Tajwid app is designed for users to learn and understand the recitation of the Quran in
more detail, with accurate audio pronunciation. Users can practice their recitation and
receive corrections from the app. The revenue for Learn Quran Tajwid comes from
subscription services and advertisements. The main source of revenue is the subscription
packages, particularly on the Google Play Store. However, the main revenue source has
been experiencing a decline in monthly growth compared to the previous year. The target
of increasing monthly revenue growth for the Learn Quran Tajwid app on the Google
Play Store from the previous year (year-over-year) was not achieved. Therefore, an
analysis of the root cause was conducted, and it was found that customer satisfaction has
decreased. This research aims to examine the users' perspectives of the Learn Quran
Tajwid app on the Google Play Store through sentiment analysis and topic modelling. A
total of 5100 app reviews were used for the analysis, obtained by scraping user reviews
of the Learn Quran Tajwid app from the Google Play Store. Out of these, 3026 reviews
were used as training data. The training data was manually annotated to determine
positive or negative sentiment, and then pre-processing and text representation using TF
IDF were performed. This study used the NB, SVM, XGBoost, CNN, LSTM, and BERT
algorithms for sentiment classification. The experimental results showed that the BERT
algorithm performed the best with an accuracy of 96%, followed by SVM imbalance class
with 95.2% accuracy, and SVM-SMOTE and LSTM with 94.8% accuracy. As for the
topic modelling algorithm used, it was LDA. The topic modelling results using the LDA
algorithm for positive sentiment and negative sentiment. In conclusion, the topics
identified for positive sentiment indicate that users find the app to be excellent and highly
beneficial, as well as easy to use. On the other hand, from the topics identified for negative
sentiment, it can be concluded that users find the ads to be very disruptive and diminish
the user experience. Despite users perceiving the app as good and useful, the presence of
intrusive ads has a significant impact on user satisfaction, resulting in lower ratings.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Lista Kurniawati
"Pendeteksian topik merupakan masalah komputasi yang menganalisis kata-kata dari suatu data teks untuk menemukan topik yang ada di dalam teks tersebut. Pada data yang besar, pendeteksian topik lebih efektif dan efisien dilakukan dengan metode machine learning. Data teks harus diubah ke dalam bentuk representasi vektor numeriknya sebelum dimasukkan ke model machine learning. Metode representasi teks yang umum digunakan adalah TF-IDF. Namun, metode ini menghasilkan representasi data teks yang tidak memperhatikan konteksnya. BERT (Bidirectional Encoder Representation from Transformer) merupakan metode representasi teks yang memperhatikan konteks dari suatu kata dalam dokumen. Penelitian ini membandingkan kinerja model BERT dengan model TF-IDF dalam melakukan pendeteksian topik. Representasi data teks yang diperoleh kemudian dimasukkan ke model machine learning. Salah satu metode machine learning yang dapat digunakan untuk menyelesaikan masalah pendeteksian topik adalah clustering. Metode clustering yang populer digunakan adalah Fuzzy C-Means. Namun, metode Fuzzy C-Means tidak efektif pada data berdimensi tinggi. Karena data teks berita biasanya memiliki ukuran dimensi yang cukup tinggi, maka perlu dilakukan proses reduksi dimensi. Saat ini, terdapat metode clustering yang melakukan reduksi dimensi berbasis deep learning, yaitu Deep Embedded Clustering (DEC). Pada penelitan ini digunakan model DEC untuk melakukan pendeteksian topik. Eksperimen pendeteksian topik menggunakan model DEC (member) dengan metode representasi teks BERT pada data teks berita menunjukkan nilai coherence yang sedikit lebih baik dibandingkan dengan menggunakan metode representasi teks TF-IDF.

Topic detection is a computational problem that analyzes words of a textual data to find the topics in it. In large data, topic detection is more effective and efficient using machine learning methods. Textual data must be converted into its numerical vector representation before being entered into a machine learning model. The commonly used text representation method is TF-IDF. However, this method produces a representation of text data that does not consider the context. BERT (Bidirectional Encoder Representation from Transformers) is a text representation method that pays attention to the context of a word in a document. This study compares the performance of the BERT model with the TF-IDF model in detecting topics. The representation of the text data obtained is then entered into the machine learning model. One of the machine learning methods that can be used to solve topic detection problems is clustering. The popular clustering method used is Fuzzy CMeans. However, the Fuzzy C-Means method is not effective on high-dimensional data. Because news text data usually has a high dimension, it is necessary to carry out a dimension reduction process. Currently, there is a clustering method that performs deep learning-based dimension reduction, namely Deep Embedded Clustering (DEC). In this research, the DEC model is used to detect topics. The topic detection experiment using the DEC (member) model with the BERT text representation method on news text data shows a slightly better coherence value than using the TF-IDF text representation method.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Moh. Hasan Basri
"Perbankan di Indonesia telah meluncurkan aplikasi perbankan seluler dengan tujuan untuk memberikan pengalaman layanan yang baik bagi nasabah. Bank harus meningkatkan efektivitas aplikasi perbankan seluler mereka untuk memberikan peningkatan nilai aplikasi tersebut. Dalam upaya menemukan ruang perbaikan bagi perbankan, penelitian ini dilakukan untuk mengetahui topik yang umum dibicarakan serta mengetahui sentimen ulasan pengguna layanan perbankan seluler di Indonesia pada ulasan Google Play yang dimiliki oleh BNI, BCA, dan Mandiri. Penelitian ini menambah penerapan text mining dan membantu pengembang platform digital perbankan ulasan dengan efisien, dan mendukung pengambilan keputusan dan strategi bisnis unggul. Tiga algoritma klasifikasi sentimen, yaitu logistic regression, naïve bayes, dan support vector machine digunakan dalam penelitian ini. Algoritma dijalankan pada pemodelan train data, k-fold cross validation data train, k-fold cross validation semua data, dan prediksi data test. Pemodelan topik adalah LDA (Latent Dirichlet Allocation) untuk kategori sentimen. Algoritma logisitc regression memiliki akurasi tertinggi yaitu 97,00 %. Model digunakan pada data baru, diketahui ulasan didominasi dengan sentimen negatif yaitu sebesar 62,22% atau sebanyak 7.374 sedangkan ulasan sentimen positif sebesar 37,78% atau sebanyak 4.477 ulasan. Pemodelan topik ulasan aplikasi perbankan seluler sentimen positif memiliki nilai koheren tertinggi 0,649 dengan jumlah 19 topik membahas kemudahan dan kelancaran transaksi, kelengkapan fitur, keamanan, akses dan login, kecepatan dan efisiensi, dan kemudahan penggunaan. Pemodelan topik ulasan aplikasi perbankan seluler sentimen negatif memiliki nilai koheren tertinggi 0,440 dengan jumlah 18 topik membahsas push notifikasi uang masuk, top-up dan transfer gagal, kesulitan login aplikasi perbankan seluler, update mengganggu, gagal transaksi, saldo terpotong saat gagal transaksi, error sistem, kendala BI-Fast dan kartu, dan masalah verifikasi. Kata kunci: pemodelan topik, analisis sentimen, text mining, aplikasi perbankan seluler, ulasan aplikasi.

Banks in Indonesia have launched mobile banking to provide good experience for customers. However, digital mobile banking services in Indonesia are considered unideal. Banks shall increase the effectiveness of their mobile banking applications to gain value added. Finding room for improvement can be done by analyzing mobile banking user feedback in the Google Play review column. This research aims to determine the topics that are commonly discussed and expected as well as to find out the sentiment of reviews of mobile banking owned by BNI, BCA, and Mandiri. This research enhances the application of text mining and helps digital banking platform developers analyze reviews efficiently, supporting decision-making and superior business strategies. Three sentiment classification algorithms, namely logistic regression, naïve Bayes, and support vector machine were used in this research. Each algorithm is run for modeling train data, k-fold cross validation of train data, k-fold cross validation of all data, and prediction of test data. Topic modeling is LDA (Latent Dirichlet Allocation) for each sentiment category. The logical regression algorithm is the highest accuracy, 97.00%. Apply model for new data, 62.22% or 7,374 reviews are dominated by negative sentiment, while positive sentiment reviews are 37.78% or 4,477 reviews. Topic modeling of mobile banking review with positive sentiment has the highest coherent value of 0.649 with 19 topics discusses ease and smoothness of transactions, completeness of features, security, access and login, speed and efficiency, and ease of use. Meanwhile, topic modeling with negative sentiment has the highest coherent value of 0.440 with a total of 18 topics discusses push notifications for incoming money, failed top-ups and transfers, difficulties login to mobile banking, annoying updates, failed transactions, balances deducted when transactions fail, system errors, BI-Fast and card problems, and verification problems."
Jakarta: Fakultas Ilmu Komputer, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Jwalita Galuh Garini
"IndiHome melalui IndiHome TV mempertahankan posisinya sebagai penyedia saluran televisi terlengkap di Indonesia. Layanan ini juga diperluas ke aplikasi mobile dan situs web. Namun perkembangan pada platform web diketahui sudah lebih cepat dibandingkan platform mobile, padahal terdapat kebutuhan pelanggan untuk peningkatan kenyamanan, kemudahan, dan kelengkapan fitur pada aplikasi mobile. Hasil observasi dan wawancara juga menunjukkan aplikasi mobile IndiHome TV tidak mencapai target rating yang diharapkan yang menjadi indikasi pengguna belum puas dengan aplikasi saat ini. Salah satu akar permasalahan yang diidentifikasi adalah perbaikan aplikasi hanya berasal dari laporan. Sementara laporan tersebut belum sepenuhnya menggambarkan kebutuhan pengguna. Pemanfaatan ulasan pengguna perlu dimaksimalkan sebagai masukan dalam perbaikan aplikasi agar lebih tepat sasaran. Ulasan berpotensi dapat digunakan untuk mengetahui kebutuhan pengguna. Penelitian ini bertujuan melakukan analisis sentimen dan pemodelan topik terhadap ulasan pengguna di Google Play Store dan Apple App Store. Analisis sentimen dilakukan menggunakan Naïve Bayes dan Support Vector Machines untuk mengklasifikasikan ulasan ke dalam positif, netral, dan negatif. Sementara pemodelan topik dilakukan menggunakan Latent Dirichlet Allocation terhadap ulasan sentimen positif dan negatif. Hasil eksperimen menunjukkan model Support Vector Machines secara umum mengungguli model Naïve Bayes. Model terbaik yang diperoleh menghasilkan performa accuracy 80,53%, precision 80,47%, recall 73,28%, dan F1-score 75,89%. Model tersebut mampu mengatasi ketidakseimbangan data dan menunjukkan kemampuan generalisasi yang baik. Hasil klasifikasi sentimen pada keseluruhan data menunjukkan dominasi kelas negatif dan kelas positif dengan 42,30% dan 40,91% dari total ulasan. Sementara pemodelan topik menghasilkan 4 topik pada ulasan positif dan 8 topik pada ulasan negatif. Hasil tersebut dapat digunakan sebagai acuan perbaikan aplikasi agar perusahaan dapat membuat aplikasi yang sesuai dengan harapan pengguna.

IndiHome, through IndiHome TV, maintains its position as Indonesia's most complete television channel provider. This service is also extended to mobile applications and websites. However, developments on web platforms are known to be faster than mobile platforms, even though there is a customer need for increased comfort, convenience, and completeness of features in mobile applications. The observations and interviews also show that the IndiHome TV mobile application did not reach the expected rating target, which is an indication that users are not satisfied with the current application. One of the root causes identified was that application improvements only came from reports. Meanwhile, the report does not fully describe user needs. User reviews need to be maximized as input in improving applications to make them more targeted. Reviews can be used to determine user needs. This research aims to conduct sentiment analysis and topic modeling on user reviews on the Google Play Store and Apple App Store. Sentiment analysis used Naïve Bayes and Support Vector Machines to classify reviews into positive, neutral, and negative. Meanwhile, topic modeling was carried out using Latent Dirichlet Allocation for positive and negative sentiment reviews. Experimental results show that the Support Vector Machines model generally outperforms the Naïve Bayes model. The best model obtained produced an accuracy performance of 80,53%, precision of 80,47%, recall of 73,28%, and F1-score of 75,89%. The model can overcome data imbalance and shows good generalization ability. The sentiment classification results on the entire data show the dominance of the negative and positive classes, with 42,30% and 40,91% of the total reviews. Meanwhile, topic modeling produced four topics with positive reviews and eight topics with negative reviews. These results can be used as a reference for application improvements so that companies can create applications that meet user expectations."
Jakarta: Fakultas Ilmu Komputer Universitas ndonesia, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Tiara Ayumi
"Tuberkulosis (TB) merupakan salah satu penyakit menular yang menyebabkan kematian di dunia. TB disebabkan oleh Mycobacterium tuberculosis dan umumnya menyerang paru-paru. Berbagai pendekatan matematika telah dilakukan dalam menganalisis penyebaran TB. Pada skripsi ini, dikonstruksi model matematika penyebaran TB dengan pendekatan sistem persamaan diferensial dimana populasi manusia dibagi menjadi empat kompartemen. Fakta penting yang dipertimbangkan dalam model ini adalah adanya manusia yang terinfeksi TB laten dan intervensi perawatan terpantau. Selanjutnya, model tersebut dikembangkan menjadi masalah kontrol optimal untuk memperoleh strategi intervensi yang optimal dalam mengendalikan sistem dinamik yang digambarkan oleh variabel state (manusia) dan variabel kontrol (intervensi perawatan terpantau). Masalah kontrol optimal dikonstruksi dengan menggunakan prinsip minimum Pontryagin. Kajian analitik meliputi analisis eksistensi dan kestabilan secara lokal dan global dari titik-titik keseimbangan model dan hubungannya dengan bilangan reproduksi dasar (R_0). Selanjutnya, simulasi numerik terhadap model dengan membuat berbagai skenario kontrol dan analisis efektivitas biaya untuk mengetahui strategi yang terbaik. Analisis efektivitas biaya pada skripsi ini menggunakan dua pendekatan, yaitu IAR (Infection Averted Ratio) dan ACER (Average Cost-Effectiveness Ratio). Dari hasil simulasi numerik, diperoleh bahwa skenario terbaik dalam upaya mereduksi kasus infeksi TB dengan biaya yang efektif adalah melakukan intervensi perawatan terpantau sejak awal infeksi dengan kontrol bergantung waktu.

Tuberculosis (TB) is one of the infectious diseases that causes death worldwide. TB is caused by Mycobacterium tuberculosis which commonly attacks the lungs. Various mathematical approaches have been used to analyze the spread of TB. In this thesis, the mathematical model of TB transmission is constructed using the approach of an ordinary differential equation system, where the human population is divided into four subpopulations. Important facts considered in the model are the existence of latent TB and monitored treatment intervention. Furthermore, the model was developed into an optimal control problem to obtain the optimal intervention strategy in controlling the dynamic system described by state variables (humans) and control variables (monitored treatment intervention). The optimal control problem is constructed by using Pontryagin minimum principle. Analytical study including an analysis of the existence of equilibrium points, local and global stability of the equilibrium points, and how they related to the basic reproduction number (R_0). Then, numerical simulations were carried out by making several control scenarios and cost-effectiveness analysis to find out the best strategy. Cost-effectiveness analysis in this thesis used two approaches, namely IAR (Infection Averted Ratio) and ACER (Average Cost-Effectiveness Ratio). From the results of the numerical simulation, the best strategy to reduce TB infection with effective cost is to do the monitored treatment in the early infection with time dependent control.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>