Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 103570 dokumen yang sesuai dengan query
cover
Ayom Widipaminto
"Identifikasi jenis material atap bangunan sangat dilakukan untuk bermacam pemanfaatan dari pemodelan cuaca mikro hingga analisis resiko bencana. Penelitian identifikasi jenis material atap bangunan telah dilakukan dengan menggunakan data hiperspektral, data lapangan, laboratorium serta data satelit penginderaan jauh masih memerlukan peningkatan akurasi. Penelitian ini bertujuan untuk mengembangkan metode spektroskopi reflektansi menggunakan kombinasi kanal spektral pada fusi data satelit penginderaan jauh resolusi resolusi spasial sangat tinggi (50 cm) dengan menerapkan koreksi spekular, masking vegetasi serta machine learning Random Forest untuk meningkatkan akurasi identifikasi jenis material atap bangunan. Metode yang dikembangkan menghasilkan akurasi untuk material aluminium, asbes, keramik, beton, genteng pasir besi dengan akurasi total 97.48% dengan nilai Kappa 0,958. Fusi data Pleiades dan Landsat-8 dilakukan untuk memperoleh data SWIR dengan panjang gelombang 2107–2294 nm dan resolusi spasial 50 cm untuk analisis spektral, sehingga identifikasi jenis material atap bangunan asbes dapat diidentifikasi dengan akurasi 95%. Koreksi spekular dan masking vegetasi meningkatkan akurasi identifikasi jenis material atap bangunan 8-12% sebagai perbaikan koreksi radiometrik dalam pengolahan data resolusi sangat tinggi.

Identification of the type of building roof material is widely used for various application from micro weather modeling to disaster risk analysis. Research on the identification of the type of building roof material has been carried out using hyperspectral data, field data, laboratories and remote sensing satellite data still requires increased accuracy. This study aims to develop method spectroscopy reflectance using a spectral channel combination on remote sensing satellite data fusion with very high spatial resolution (50 cm) by applying specular correction, vegetation masking and Random Forest machine learning to improve the accuracy of identifying the type of building roof material. The developed method produces accuracy for aluminum, asbestos, ceramic, concrete, iron sand tiles with a total accuracy of 97.48% with a Kappa value of 0.958. Pleiades and Landsat-8 data fusion was carried out to obtain SWIR data with a wavelength of 2107–2294 nm and a spatial resolution of 50 cm for spectral analysis, so that the identification of the type of asbestos roof material can be identified with an accuracy of 95%. Specular correction and vegetation masking increase the accuracy of identifying the type of building roof material by 8-12% as an improvement in radiometric correction in very high spatial resolution (50 cm) data processing."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Jason Albert Natanael
"Kopi telah menjadi komoditas ekspor non migas yang memberikan kontribusi terhadap devisa negara dalam jumlah yang tidak sedikit. Nilai ekspor kopi sendiri pada kancah internasional bergantung kepada 2 faktor utama, yaitu jenis atau varietas biji kopi dan tingkat kelayakan atau kualitas dari biji kopi. Upaya untuk mengklasifikasikan kedua faktor tersebut masih cenderung dilakukan secara manual oleh para petani kopi. Atas pertimbangan inilah, penulis hendak menggunakan metode lain, yakni penggunaan model CNN (Convolutional Neural Network) dengan basis masukan berupa citra normal (spektrum RGB) dan citra multispektral (spektrum OCN). Selain itu, penulis juga hendak membandingkan performa dari 2 arsitektur model CNN yang berbeda, yakni ResNet18 terhadap SqueezeNet. Input dari kedua arsitektur ini berupa kombinasi dari citra normal, citra multispektral, atau citra yang telah diregistrasikan (1 citra dengan 6 channel berbeda). Hasil akurasi tertinggi dicapai oleh arsitektur ResNet18 dengan input citra normal (RGB) yang memberikan akurasi sebesar 89% untuk klasifikasi varietas biji kopi hijau, serta 97% untuk klasifikasi tingkatan kualitas biji kopi. Meski demikian, arsitektur ini mampu untuk melakukan klasifikasi multi-output secara bersamaan walaupun terdapat sedikit pengurangan pada tingkat akurasi yang didapatkan.

Coffee has become one of the non-oil and gas export commodity, providing numerous amount of Indonesia’s foreign income. Within the international market, the export value of coffee beans rely on 2 aspects, its variety and its quality. The attempts to classify coffee beans are done manually by the farmers. Therefore, the writer attempts to design a new method, using convolutional neural networks with normal (RGB spectrum image) and multispectral images (OCN spectrum image) as its inputs. The writer also wishes to analyze and compare 2 different CNN architectures performance in this case; ResNet18 towards SqueezeNet. Considering the combination of the inputs; normal images, multispectral images, or the registered images (images with 6 different channels). The highest accuracy acquired from the ResNet18 CNN model architecture using normal images (RGB) is as following: 86% for green coffee beans varieties classification, and 96% for green coffee beans. These architectures are also capable of performing multi-class output classification despite the trade-off in accuracy gained."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Arsy
"Indonesia memproduksi lebih dari 700 ribu ton biji kopi, menjadikannya negara keempat terbesar penghasil kopi di dunia. Di dalam biji kopi sendiri, terkandung berbagai zat kimia yang bermanfaat bagi kesehatan seperti kafein, chlorogenic  acid (CA), dan trigonelline. Kadar masing-masing zat kimia ini bergantung pada varietas biji kopi serta tingkat penyangraiannya. Sebuah metode terbaru untuk meninjau sifat dari suatu biji kopi secara efisien dan non-destruktif adalah menggunakan Convolutional Neural Network (CNN), yaitu metode pembelajaran mesin (Machine learning) yang meninjau citra dari target yang diberikan. Jenis citra yang diberikan pada suatu model CNN dapat berupa citra multispektral yang terdiri dari banyak panjang gelombang. Citra semacam ini memiliki lebih banyak informasi karena jumlah pita gelombang yang lebih banyak, serta terdapat panjang gelombang yang tidak kasat mata. Penelitian ini bertujuan untuk merancang dan membangun sistem klasifikasi varietas dan tingkat penyangraian biji kopi berbasis citra multispektral dengan menggunakan pemodelan Convolutional Neural Network dengan input citra multispektral dan output majemuk. Citra multispektral yang dipakai menggunakan terdiri atas citra RGB (Red, Green, Blue), dan OCN (Orange, Cyan, NIR). Hasil akurasi pengujian tertinggi dicapai menggunakan arsitektur SqueezeNet, input citra RGB sajam dengan akurasi 95,49% untuk klasifikasi varietas, dan 99,02% untuk tingkat penyangraian. Melalui penelitian ini, perancangan sistem multi output berbasis citra multispektral mampu mengklasifikasikan tingkat penyangraian dan varietas secara bersamaan.

Indonesia produces more than 700 thousand tons of coffee beans, making it the fourth largest coffee producing country in the world. Coffee beans themselves contain various chemicals that are beneficial for health, such as caffeine, chlorogenic acid (CA), and trigonelline. The levels of each of these chemicals depend on the coffee bean variety and the level of roasting. A new method for reviewing the properties of a coffee bean efficiently and non-destructively is using a Convolutional Neural Network (CNN), which is a machine learning method that reviews the image of a given target. The type of image given to a CNN model can be a multispectral image consisting of many wavelengths. This kind of image has more information because there are more wave bands, and there are wavelengths that are not visible to the eye. This research aims to design and build a classification system of varieties and roasting levels of multispectral image-based coffee beans using Convolutional Neural Network modeling with multispectral image input and compound output. The multispectral images used consist of RGB (Red, Green, Blue), and OCN (Orange, Cyan, NIR) images. The highest test accuracy results were achieved using SqueezeNet architecture, input RGB sharp image with 95.49% accuracy for variety classification, and 99.02% for roasting rate. Through this research, the design of a multispectral image-based multi-output system is able to classify roasting level and variety simultaneously."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Priadi Sadikin
Depok: Fakultas Teknik Universitas Indonesia, 1991
S38030
UI - Skripsi Membership  Universitas Indonesia Library
cover
Glen Putra Pratama
"Fase pertumbuhan padi adalah tahapan pertumbuhan yang dialami oleh tanaman padi dari awal ditanam ke dalam tanah hingga siap dipanen yang dapat dipengaruhi oleh keadaan iklim wilayah tanaman padi tersebut ditanam. Citra Sentinel-1 Synthetic Aperture Radar dapat digunakan untuk mengamati fase tumbuh padi pada Band C. Fase pertumbuhan padi diklasifikasikan menjadi lima kelas, menggunakan metode maximum likelihood dan berdasarkan informasi yang diperoleh dari survei kerangka sampel area BPPT, yaitu persiapan lahan, fase vegetatif awal, fase vegetatif akhir, fase generatif, dan fase panen. Tujuan penelitian ini adalah untuk melihat pola spasial dan temporal fase tumbuh padi di Karawang berdasarkan hasil analisa citra Sentinel-1.
Hasil penelitian ini menunjukkan bahwa laju pertumbuhan padi tidak mengikuti pola irigasi dimana wilayah irigasi utara lebih cepat mencapai kondisi panen dibandingkan wilayah irigasi selatan dan tengah. Wilayah irigasi utara memiliki nilai backscatter yang paling rendah. Padi lebih cepat mencapai kondisi panen pada musim kemarau dibandingkan musim hujan dimana nilai backscatter untuk kedua musim ini sama.

Rice phenology is mainly defined as the growing stages that occurs within a rice plant that begins when the rice is planted in the ground and ends when the rice is ready for harvesting. Sentinel 1 Synthetic Aperture Radar images at the C Band are capable of monitoring rice phenology. Rice phenology is divided into 5 classes using maximum likelihood classification according to BPPT area sampling survey which are land preparation, early vegetative, late vegetative, generative, and ripening. The goal of this research is to assess spatial and temporal patterns of rice phenology in Karawang according to Sentinel image analysis.
Results of this study show that rice which grows quickly is distributed in northern irrigation areas that receive water last compared to middle and southern irrigation areas in Karawang Regency. Rice that reaches harvesting in northern irrigation areas have the lowest backscatter values. Rice reaches harvesting stage quicker in dry season compared to rainy season with the same backscatter values.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dede J.
"Pewilayahan obyek pada citra penginderaan jauh (inderaja) dapat dilakukan dengan pendekatan wilayah berdasarkan informasi spektral, spasial maupun pendekatan batas wilayah. Masing-masing metode memiliki kelebihan dan kelemahan yang bergantung kepada batas wilayah dan karakteristik citranya. Proyek mahasiswa ini mengembangkan metode untuk melakukan pewilayahan obyek pada citra yaitu: pewilayahan berdasarkan klasifikasi per piksel dengan metode klasifikasi kemiripan maksimum/maximum likelihood (pendekatan spektral), pewilayahan berdasarkan deteksi sisi dengan metode Canny, serta dengan menggunakan metode segmentasi watershed (pendekatan spasial). Kemudian hasil dari ketiga metode ini, ditambah dengan penggunaan smooth filter Nagao pada hasil klasifikasi, menjadi masukan untuk proses fusi informasi yang menggu+nakan mayoritas dari kontur yang didapat dari ketiga metode tersebut. Studi kasus dilakukan dengan menggunakan citra multispektral wilayah Kebun Raya Bogor.
Dari pengujian didapat bahwa fusi informasi belum tentu menghasilkan akurasi yang lebih baik. Untuk 12 band pada pelatihan dan 5 band pada pengujian, memang didapat hasil yang lebih baik yaitu meningkat dari 79,02 % menjadi 80,72 % dan 64,47 % menjadi 65,94 %. Akan tetapi, bisa juga didapat tingkat akurasi yang lebih rendah seperti pada pelatihan, untuk 5 band (74,43 % menjadi 73,06 %) dan 3 band (81,03 % menjadi 75,85 %). Juga untuk pengujian, pada 12 band (63,63 % menjadi 62,12 %) dan 3 band (79,49 % menjadi 70,04 %). Hasil yang beragam ini dapat terjadi karena pada proses deteksi sisi dan segmentasi watershed tidak mendapatkan sisi yang cukup baik."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2005
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arief Prasetyo
"ABSTRAK
Perkembangan perkotaan yang pesat terjadi di negara berkembang terutama pada wilayah pinggiran kota. Dampaknya adalah terjadinya penjalaran yang merupakan fenomena perkotaan yang kompleks dan sulit diukur. Pemangku kebijakan memerlukan metode yang sederhana untuk mengontrol dan mengevaluasi penjalaran sebuah kota.
Penelitian ini bertujuan untuk mengukur dan menilai tingkat penjalaran perkotaan menggunakan model Shannon Entropy dengan mempertimbangkan jarak terhadap pusat kota dan jaringan jalan. Penerapan Shannon?s Entropy di Bodetabek pada 1989-2014 menunjukkan bahwa pola penjalaran linier lebih dominan terjadi di Kabupaten Bogor, Bekasi dan Kota Bogor. Semakin besarnya indeks Shannon?s Entropy mengindikasikan keenderungan penjalaran perkotaan yang semakin acak. Pola penjalaran melompat (acak) terjadi di Kabupaten Tangerang yang ditandai indeks entropy yang tinggi. Penjalaran kota di Bodetabek dipengaruhi oleh karakterik fisik dan sosial wilayah terutama aspek kemiringan tanah dan perubahan jumlah penduduk.

ABSTRACT
Rapid urban development occurred in developing countries, particularly in the urban fringe area. The impact was related to the occurrence of urban sprawl which is highly complex urban phenomenon and difficult to measure. Related stakeholders require a simple method to estimate and evaluate the urban sprawl patterns.
This paper aims to measure and asses the level of urban sprawl based on Shannon?s Entropy considering on two aspect i.e. the distance to town center and road networks. Application of Shannon's Entropy in Bodetabek for 1989-2014 described that linear pattern of sprawling mostly happened in Bogor, Bekasi and Bogor city. With increasing of entropy index, this pattern tends to become more scattered in the future, even in Bogor regency the pattern becomes leapfrog characteristics for 2014. Tangerang Regency showed leapfrog pattern with high entropy index. Urban sprawl in Bodetabek driven by region?s physical and social characteristics mainly with slope and population growth.
"
2016
T44776
UI - Tesis Membership  Universitas Indonesia Library
cover
Tukul Rameyo Adi
"Metoda klasifikasi Jaringan Syaraf Tiruan (JST) telah banyak diterapkan dalam bidang penginderaan jauh. Dalam penelitian ini dilakukan percobaan klasifikasi awan dengan menerapkan metoda JST Kohonen pada data citra multispektral satelit NOAA AVHRR. JST Kohonen adalah metoda klasifikasi tak terselia yang berbasis pada sistem pembelajaran kompetitif Self-Organizing Maps (SOM). Prosedur percobaan terdiri dari tiga tahap, yakni tahap pembelajaran, tahap pelabelan dan tahap klasifikasi.
Pada mulanya, klasifikasi awan dilakukan menggunakan lima kanal data citra sebagai vektor masukan, yakni kanal cahaya-tampak, infra-merah dekat, infra-merah tengah, dan dua kanal infra-merah termal. Hasil klasifikasi lalu dibandingkan dengan hasil klasifikasi visual untuk menentukan tingkat keberhasilannya. Kemudian, proses klasifikasi dilanjutkan untuk mengevaluasi kanal-kanal yang dominan dalam klasifikasi awan dengan cara mereduksi jurnlah kanal yang digunakan dalam klasifikasi.
Hasil percobaan menunjukkan bahwa klasifikasi awan menggunakan JST Kohonen memberikan tingkat keberhasilan yang cukup tinggi sebesar 81% untuk katagori 10 kelas atau 95% untuk 4 katagori utama 4 kelas awan, dengan kanal-kanal yang dominan yaitu kanal satu (cahaya-tampak) dan kanal empat (infra-merah termal)."
Depok: Fakultas Teknik Universitas Indonesia, 1999
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Agus Zainal Arifin
"Klasifikasi citra penginderaan jauh (inderaja) bertujuan untuk menghasilkan peta tematik, dimana tiap warna mewakili sebuah objek, misalkan hutan laut, sungai, sawah dan lain-lain. Makalah ini mempresentasikan disain dan implementasi perangkat lunak untuk mengklasifikasi citra inderaja multispektral. Metode berbasis unsupervised yang diusulkan ini adalah integrasi dari metode feature extraction, hierarchical (hirarki) clustering dan partitional (partisi) clustering. Feature extraction dimaksudkan untuk mendapatkan komponen utama citra multispektral tersebut sekaligus mengeliminir komponen yang redundan, sehingga akan mengurangi kompleksitas komputasi. Histogram komponen utama ini dianalisa untuk lemlah terkonsentrasinya pixel dalam feature space, sehingga proses split dapat menghasilkan cluster dengan cepat.
Beberapa cluster yang sangat mirip akan digabungkan oleh proses merge. Pada tahap akhir proses partisi akan mendeteksi prototype tiap cluster dengan Fuzzy C-Mean (FCM). Uji coba perangkat lunak ini dilakukan pada citra Landsat TM dan GOES-8. Hasilnya diukur berdasarkan homogenitas eksekusi dan nilai label contingency. Tabel ini akan membuktikan keberhasilan klasifikasi terhadap 800 sampel dari Jawa Timur yang sebelumnya telah dikenali. Untuk bahan perbandingan sampel diuji coba dengan algortima ISMC (Improve Split and Merge Classification), yang berdasarkan penelitian sebelumnya telah telah terbukti lebih baik dari pada ISODATA. Secara umum, uji coba menunjukkan keunggulannya dibandingkan ISMC."
2002
JIKT-2-1-Mei2002-49
Artikel Jurnal  Universitas Indonesia Library
cover
"Pemilihan ciri merupakan subyek penting dalam pengenalan pola. Tulisan ini merupakan hasil kajian metode pemilihan
fitur atau ciri transformasi komponen utama pada data penginderaan jauh. Pada aplikasi penginderaan jauh dengan
sensor optik seperti Landsat TM, yang sensornya terdiri dari 7 panjang gelombang, akan diperoleh 7 citra fitur (multi
band). Adanya kendala awan pada citra optik, telah menyebabkan adanya upaya penggunaan citra radar. Pada
interpretasi citra radar, diperlukan analisis ciri tekstur yang merupakan hasil transformasi dari model tekstur terhadap
data aslinya. Untuk tujuan penyimpanan dan pemrosesan data, diusahakan hanya menggunakan sejumlah data yang
terbatas, tetapi menghasilkan klasifikasi yang optimal. Pemilihan fitur merupakan suatu metode yang bertujuan untuk
mendapatkan subset fitur yang optimal. Pada tulisan ini memperkenalkan metode pemilihan fitur transformasi
komponen utama yang diujicobakan terhadap dua data uji, yaitu citra optik (data citra daerah Jawa Tengah) dan citra
radar (data citra daerah Sumatera Selatan) yang semuanya merupakan data skala kecil yaitu tiap-tiap data kurang dari 20
ciri. Akurasi klasifikasi rata-rata yang didapat dengan metode transformasi komponen utama untuk kedua data uji
secara berturut-turut adalah sebagai berikut: pada data citra daerah Jawa Tengah sebesar 91,86% dan pada data citra
daerah Sumatera Selatan sebesar 86,58%."
621 ELIT 2:1 (2011)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>