Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 27577 dokumen yang sesuai dengan query
cover
Sachin Naik
"Recognition of handwritten mathematical expressions has been an important topic for many researchers for decades. It remains one of the most challenging and exciting areas in pattern recognition. In the recognition process of offline handwritten mathematical expressions, segmentation is the most important process. Problems in ambiguities of identifying superscript and subscript in complex offline mathematical expressions remain one of the most important problem. To the best of our knowledge little work has been done in the segmentation of offline handwritten mathematical expressions with respect to superscript and subscript. In this paper an efficient segmentation technique for superscript, subscript and main characters within offline handwritten mathematical expressions has been proposed. This technique is based on the generation of predictions for superscript, subscript and main characters within handwritten mathematical expressions, which helps for the reconstruction of mathematical expressions during the recognition process with their spatial interrelationship. The proposed system was conducted as an experiment with a database of 300 samples of scanned mathematical expressions that comprised 2,000 symbols out of which there were 31 different types of Mathematical Symbols. The classification of the elements was carried out by the K-NN-classifier based on density features. This experiment shows remarkable results."
Depok: Faculty of Engineering, Universitas Indonesia, 2015
UI-IJTECH 6:3 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
"In this particularly well written volume Graeme Hirst presents a theoretically motivated foundation for semantic interpretation (conceptual analysis) by computer, and shows how this framework facilitates the resolution of both lexical and syntactic ambiguities.
"
Cambridge, UK: Cambridge University Press, 1987
e20393629
eBooks  Universitas Indonesia Library
cover
Jidan Dhirayoga Gumbira
"Skripsi ini membahas tentang pengembangan sistem face recognition yang diaplikasikan pada aplikasi ujian berbasis Android yang diberi nama AyoTest menggunakan FaceNet. Tujuan dari dikembangkannya AyoTest sendiri adalah untuk membantu tenaga pengajar dalam meningkatkan efektivitas pengawasan ujian yang dilakukan secara daring. Penelitian ini diharapkan dapat membantu dalam meningkatkan efektivitas pengawasan ujian daring dengan menggunakan face recognition untuk mengotomatisasi sebagian besar dari kegiatan pengawasan yang sebelumnya harus dilakukan secara manual oleh tenaga pengajar. Berdasarkan hasil penelitian, didapatkan bahwa implementasi sistem face recognition dari aplikasi AyoTest dapat digunakan untuk meningkatkan efektivitas pengawasan ujian, di mana pada proses face authentication akurasi yang didapatkan adalah sebesar 100% bahkan ketika peserta ujian hanya memiliki 1 foto pada basis data wajah dan nilai false negative dan false positive pada proses face monitoring yang tercatat hanya sebesar 16,67% dan 22,22% untuk 18 partisipan yang berhasil melaksanakan ujian.

This bachelor thesis discusses the system development of face recognition applied to an Android-based examination application called AyoTest using FaceNet. The purpose of the development of AyoTest itself is to assist teaching staff in increasing the effectiveness of conducting online examinations. This research is hoped to assist in increasing the effectiveness of examination proctoring with face recognition to automate most of the supervisions that previously had to be conducted manually by teaching staff. Based on the results of the research, it was found that the implementation of the face recognition system from the AyoTest application can be used to increase the effectiveness of examination proctoring, where the accuracy score obtained in the face authentication process is 100% even if the examinee only has 1 photo in the face database and the false negative and false positive scores in the face monitoring process were recorded at only 16.67% and 22,22% for 18 participants who successfully carried out the examination."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohammad Salman Alfarisi
"

Salah satu permasalahan yang terdapat pada sistem Automatic Speech Recognition (ASR) yang sudah ada adalah kurangnya transparansi dalam penanganan data suara, yang tentunya membuat adanya keraguan terhadap privasi data tersebut. Di sisi lainnya, untuk mengembangkan sebuah sistem ASR yang memiliki akurasi memadai dan dapat bekerja secara luring membutuhkan jumlah data yang banyak, khususnya data suara yang sudah diiringi dengan transkripnya. Hal ini menjadi salah satu hambatan utama pengembangan sistem pengenalan suara, terutama pada yang memiliki sumber daya minim seperti Bahasa Indonesia. Oleh karena itu, dalam penelitian ini dilakukan perancangan sistem pengenalan suara otomatis berbasis model wav2vec 2.0, sebuah model kecerdasan buatan yang dapat mengenal sinyal suara dan mengubahnya menjadi teks dengan akurasi yang baik, meskipun hanya dilatih data dengan label yang berjumlah sedikit. Dari pengujian yang dilakukan dengan dataset Common Voice 8.0, model wav2vec 2.0 menghasilkan WER sebesar 25,96%, dua kali lebih baik dibandingkan dengan model Bidirectional LSTM biasa yang menghasilkan 50% namun membutuhkan jumlah data dengan label 5 kali lipat lebih banyak dalam proses pelatihan. Namun, model wav2vec membutuhkan sumber daya komputasi menggunakan 2 kali lebih banyak RAM dan 10 kali lebih banyak memori dibandingkan model LSTM


One of the main problems that have plagued ready-to-use Automatic Speech Recognition (ASR) Systems is that there is less transparency in handling the user’s voice data, that has raised concerns regarding the privacy of said data. On the other hand, developing an ASR system from scratch with good accuracy and can work offline requires a large amount of data, more specifically labeled voice data that has been transcribed. This becomes one of the main obstacles in speech recognition system development, especially in low-resourced languages where there is minimal data, such as Bahasa Indonesia. Based on that fact, this research conducts development of an automatic speech recognition system that is based on wav2vec 2.0, an Artificial Model that is known to recognize speech signals and convert it to text with great accuracy, even though it has only been trained with small amounts of labeled data. From the testing that was done using the Common Voice 8.0 dataset, the wav2vec 2.0 model produced a WER of 25,96%, which is twice as low as a traditional Bidirectional LSTM model that gave 50% WER, but required 5 times more labeled data in the training process. However, the wav2vec model requires more computational resource, which are 2 times more RAM and 10 times more storage than the LSTM model.

"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Geraard Jonathan Raf
"ABSTRAK
Human Activity Recognition merupakan sebuah teknologi yang penting karena dapat diimplementasikan dalam berbagai kebutuhan manusia sehari-hari, seperti mengenai kesehatan manusia. Tujuan dari Human Activity Recognition adalah untuk mengidentifikasi aktivitas manusia yang umum, dimana data yang diterima dapat diteliti lebih lanjut. Seiring perkembangan teknologi, keberadaan komputer dan smartphone sudah tidak dapat dipisahkan lagi dalam kehidupan dan aktivitas manusia. Perkembangan teknologi ini membuat sebuah smartphone dapat memiliki berbagai jenis sensor. Sensor-sensor yang terdapat pada smartphone dapat digunakan untuk melakukan Human Activity Recognition dengan mudah. Contoh sensor pada smartphone yang dapat digunakan untuk melakukan Human Activity Recognition adalah sensor accelerometer untuk mengukur perpindahan. Penelitian ini membuat sebuah aplikasi berbasis Android untuk membaca input dari sensor, diolah dengan library neural network Long Short-Term Memory, lalu menghasilkan output yang sesuai. Hasil output yang dimaksud adalah kondisi dari aktivitas manusia yang diteliti, yaitu kondisi berdiri, berjalan, berlari, duduk, menaiki tangga, dan menuruni tangga.

ABSTRACT
Human Activity Recognition is an important technology because it can be implemented to many human problems, such as healthcare. The main purpose for Human Activity Recognition is to recognize common, simple human activities, where the data received can be researched further. With the development of technology these days, the presence of computer and smartphone cant be removed from daily human activities. This technology development made a smartphone that has been integrated with all kind of sensors. An example of sensor that can be used to do a Human Activity Recognition are accelerometer to measure movement. This research made an Android-based application that will read input from these sensors, processed by neural network Long Short-Term Memor y library, and finally produced the intended output. The outputs are the current activity of user thats been researched on, such as standing, walking, running, sitting, walking upstair, or walking downstair."
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"This chapter describes some advances in modern pattern classification techniques, and new classes of information systems dedicated for image analysis, interpretation and semantic classification. In this book we present some new solutions for the development of modern pattern recognition techniques for processing and analysis of several classes of visual patterns, as well as some theoretical foundations for modern pattern interpretation approaches. In particular this monograph presents selected areas of application of pattern recognition and classification approaches including handwriting recognition, medical image analysis and interpretation, development of cognitive systems for image computer understanding, moving object detection, advanced image filtration and intelligent multi-object labeling and classification."
Berlin: Springer, 2012
e20398133
eBooks  Universitas Indonesia Library
cover
Hershey, PA : Information Science Reference, 2012
930.102 85 PAT
Buku Teks SO  Universitas Indonesia Library
cover
Tobing, Joseph H.
"ABSTRACT
Musik memiliki pengaruh yang besar dalam kehidupan manusia. Berbagai macam bunyi dapat memunculkan emosi tertentu dalam pendengarnya. Music Emotion Recognition MER adalah sebuah bidang yang bertujuan untuk mendeteksi emosi dalam sebuah karya musik. Proses untuk pendeteksian ini dilakukan menggunakan sistem-sistem terotomasi yang berkaitan dengan machine learning. MER sudah terbukti dalam menggolongkan berbagai jenis lagu kedalam kategori emosi tertentu dan juga dalam mendeteksi emosi yang terdapat dalam sebuah karya musik menggunakan berbagai macam algoritma machine learning. Pada penelitian ini, dilakukan analisis terhadap hubungan melodi dalam pendeteksian emosi dalam musik dengan mengamati nilai rata-rata not MIDI yang terdapat dalam sebuah lagu dan mengkomputasikan tingkat ketepatan yang dihasilkan dalam memprediksi tingkat emosi dalam karya musik tersebut menggunakan algoritma Support Vector Regression SVR . Sistem MER yang digunakan dalam penelitian ini adalah sistem dimensional yang memiliki nilai arousal dan valence. Hasil dari penelitian adalah bahwa terdapat hubungan antara melodi dengan emosi yang terdapat dalam sebuah lagu, yang dapat dilihat dari selisih data prediksi dan data referensi arousal dan valence. Nilai rata-rata dari selisih pengujian arousal adalah 0.00273 dan standar deviasinya adalah 1.15528, sementara itu nilai rata-rata dari selisih pengujian valence adalah -0.08 dan standar deviasi 0.96.

ABSTRACT
Music has a big influence in human life. A variation of sounds can evoke a certain emotion in the listener. Music Emotion Recognition MER is a field that is geared towards the detection of emotions in music. The process to for emotion detection is by using automated systems which are related with machine learning. MER has been proven capable to categorize various sorts of music by their emotional characteristics and also detecting emotion that is in a certain musical piece using various kinds of machine learning algorithms. In this study, we conduct an analysis towards a relation between the melody of a music piece by examining the average MIDI note value in a song and compute the accuracy rate in predicting the emotion contained in a song using the Support Vector Regression SVR algorithm. The result of this study is that there is a connection between the melody and the emotion that is contained in a song, which can be seen by the difference in the predicition value and the reference value in the arousal dan valence tests. The average of the difference in the arousal test is 0.00273 and the standard deviation is 1.15528, while the average of the difference in the arousal test is 0.08 and the standard deviation is 0.96. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M.N.Shah Zainudin
"Wearable sensor technology is evolving in parallel with the demand for human activity monitoring applications. According to World Health Organization (WHO), the percentage of health problems occurring in the world population, such as diabetes, heart problem, and high blood pressure rapidly increases from year-to-year. Hence, regular exercise, at least twice a week, is encouraged for everyone, especially for adults and the elderly. An accelerometer sensor is preferable, due to privacy concerns and the low cost of installation. It is embedded within smartphones to monitor the amount of physical activity performed. One of the limitations of the various classifications is to deal with the large dimension of the feature space. Practically speaking, a large amount of memory space is demanded along with high processor performance to process a large number of features. Hence, the dimension of the features is required to be minimized by selecting the most relevant feature before it is classified. In order to tackle this issue, the hybrid feature selection using Relief-f and differential evolution is proposed. The public domain activity dataset from Physical Activity for Ageing People (PAMAP2) is used in the experimentation to identify the quality of the proposed method. Our experimental results show outstanding performance to recognize different types of physical activities with a minimum number of features. Subsequently, our findings indicate that the wrist is the best sensor placement to recognize the different types of human activity. The performance of our work also been compared with several state-of-the-art of features for selection algorithms."
Depok: Faculty of Engineering, Universitas Indonesia, 2017
UI-IJTECH 8:5 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Rido Dwi Oktanto
"Pada era digital ini, teknologi informasi dan komunikasi berkembang pesat dan berpengaruh signifikan dalam berbagai aspek kehidupan, termasuk keamanan dan pengenalan identitas. Salah satu penerapan teknologi yang menonjol adalah sistem deteksi dan pengenalan wajah yang digunakan di berbagai tempat yang memerlukan keamanan ekstra. Penelitian ini bertujuan untuk mengembangkan sistem deteksi dan pengenalan wajah menggunakan arsitektur ResNet dan perangkat ESP-32, dengan fokus pada implementasi dan evaluasi efektivitas sistem tersebut dalam meningkatkan keamanan.
Metode yang digunakan dalam penelitian ini meliputi penggunaan ResNet-50 untuk pengenalan wajah dan Cascade Classifier untuk deteksi wajah. Data yang digunakan untuk pelatihan model diperoleh melalui proses augmentasi data untuk meningkatkan variasi dan jumlah sampel. Sistem ini diimplementasikan menggunakan perangkat keras ESP-32 dan perangkat lunak MATLAB, serta diuji pada lingkungan nyata untuk mengevaluasi kinerjanya.
Hasil penelitian menunjukkan bahwa sistem yang dikembangkan mampu mendeteksi dan mengenali wajah dengan akurasi tinggi. Integrasi sistem dengan infrastruktur keamanan yang ada juga memungkinkan peningkatan perlindungan terhadap data dan perangkat keras. Dengan demikian, penelitian ini berhasil menunjukkan bahwa teknologi deteksi dan pengenalan wajah dapat memberikan solusi efektif untuk meningkatkan keamanan di berbagai tempat.

In this digital era, information and communication technology has developed rapidly, significantly impacting various aspects of life, including security and identity recognition. One notable application of this technology is the facial detection and recognition system used in various high-security areas. This research aims to develop a facial detection and recognition system using ResNet architecture and ESP-32, focusing on the implementation and evaluation of the system's effectiveness in enhancing security.
The methods used in this study include employing ResNet-50 for facial recognition and Cascade Classifier for facial detection. The data used for model training were obtained through data augmentation processes to increase the variation and number of samples. The system was implemented using ESP-32 hardware and MATLAB software, and tested in real-world environments to evaluate its performance.
The results of the study indicate that the developed system can detect and recognize faces with high accuracy. The system's integration with existing security infrastructure also allows for enhanced protection of data and hardware. Thus, this research successfully demonstrates that facial detection and recognition technology can provide effective solutions for improving security in various locations.
"
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>